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Abstract. This study constructs the population migration networks among economic areas in
the United States for every consecutive year from 1990 to 2011, and examines their structural
properties and population migration dynamics. Various aspects of the structural properties of
the networks are explored, including the connectivity, clustering, assortativity and centrality.
It was found that these structural properties are mediated by migration dynamics and inter-
area distance, and the patterns of varying structural properties across areas of different
connectivity reveal the hub-and-spoke structure of the networks. It is evident that there exists
tremendous complexity in migration connectivity and dynamics in the US internal migration
system.
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1 Introduction

Human population migration can be studied as period-specific population flows among places,
and the migration flows form complex local and national connections among places due to their
specific economic, social, demographic, and cultural characteristics that attract or repulse differ-
ent kinds/volume of migrants (Greenwood 1985, 1988; Mueser 1989; Rayer and Brown 2001;
Plane and Jurjevich 2009). With the rapid development of information and communication tech-
nology and the declining cost of the transportation, places are increasingly connected, and the
geographic distance becomes a less important factor for migrants when deciding where to move
(Pedersen et al. 2008). The network effect or the connectivity among places plays an increas-
ingly significant role in population migration; a typical example is the so-called beaten path ef-
fect, in which migrants rely heavily on social networks (such as kinship, friendship, and shared
community origin) in their migration decisions and form steady flows among certain localities
(Massey et al. 1993; Frey et al. 2005). As a result, migration among places forms population
migration networks that are increasingly interconnected and complex. Based on the Internal
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Revenue Service (IRS) annual county-to-county migration flow data, this study constructs the
population migration networks among the economic areas in the United States for every consec-
utive year from 1990 to 2011, and investigates the various aspects of the structural properties of
the networks and how the connection structure of the networks relates the population migration
process taking place on the networks.

Most population migration studies are based on migration measurements aggregated at
places and rely on the classic statistical models that are grounded on the independence assump-
tion (Plane 1984; Pandit 1997a, 1997b, 2000). The place-based aggregate migration measure-
ments (e.g., total number of in or out-migrants) reflect the effects of a period of population
migration on places but do not contain the information of the population movement processes
among places (i.e., migration flows or streams), which are important to address the inadequacy
in the assumptions of linear distance and isotropic directionality in migration studies (Wolpert
1967). The places are interconnected to each other in many ways and the interconnections are
increasingly complex. Ignoring the connection structures or failing to model the accurate
connection relationships can introduce significant bias in modelling the spatial interaction
among places (Olsson 1965; Goodchild and Smith 1980; Fotheringham 1984; Mueser 1989).
The network approach employed in this study directly addresses the connectivity and population
migration process among places.

The area-to-area migration flow represents the migration stream or the volume of the mi-
grants between areas. The area-to-area migration data have been used in studying movement dy-
namics (Tobler 1987; Holland and Plane 2001; Rae 2009), and in modelling spatial interaction
among places (Fotheringham and Webber 1980; Plane 1984; Slater 1985). Areas can be con-
nected by migration streams as population migration networks in which the areas are vertices
and migration streams are edges. Nevertheless, the network approach has been an underutilized
method in migration study. There is only a paucity of studies that explore the population migra-
tion from the network perspective. Slater (1984b, 1985) studied the US inter-county migration
(i.e., 5 year inter-county migration flows from 1970 census, e.g., 1965-1970) by applying hier-
archical clustering to the standardized inter-county migration table and found US counties form
large migration fields. The inter-county migration table is the adjacency matrix representation of
population migration network. Plane (1999) recognized that the human population migration
among places has great similarity with the networked systems studied in physical geography,
and he investigated the temporal migration dynamics of US state-to-state migration flows
from 1980 to 1995, and found the most volatile and stable interstate migration streams, and
the ‘floods’ and ‘droughts’ of migration streams. In this study, the area-to-area population
migration flows are connected as directed and weighted networks of population migration
in the United States.

The network approach has been a classic method to study movement and connectivity in
networked systems dating back to the geography quantitative revolution (Haggett and Chorley
1969; Haggett et al. 1977; Gastner and Newman 2006). Unlike the classic statistical models that
are grounded on the independence assumption, the network approach emphasizes connectivity,
interdependence, and evolution (Barabasi and Frangos 2014). With the availability of greater
and cheaper computing power and large-scale empirical datasets on networked systems, many
systems and structures in nature and society have been represented and analysed as networks,
and the last two decades have witnessed the explosive growth of studies on a variety of net-
works and networked systems of much larger size and more complex structure. As the result,
a multidisciplinary synthesis of new measures, techniques, and modelling approaches has
emerged as a ‘new’ science of networks (Watts 2004; Barabasi and Frangos 2014).

The emerging science of networks defines new concepts and measures to characterize vari-
ous aspects of the structure of networks, discovers the unifying principals and statistical proper-
ties common to various empirical networks, and explores how the structure of networks affects
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the dynamics taking place on networks (Boccaletti et al. 2006; Newman 2003b). What makes it
especially ‘new’ are the new network models that capture the essential structures of various
complex networked systems in nature and society, for example, the small-world network (Watts
and Strogatz 1998) and scale-free network models (Barabdasi and Albert 1999). The small-world
network represents a common structure existing in many networks, namely, these networks have
both highly clustered and highly connected structures (Watts and Strogatz 1998). Many real-
world networks are also found to be scale-free networks of which the distributions of vertex
connectivity follow a power-law distribution, with exponents varying in the range 2 to 3
(Barabasi and Albert 1999; Barabasi 2009). The power law distribution is a statistical manifes-
tation of the facts that the vertex connectivity in many real-world networks, rather than being
close to an average number, spans many magnitudes of scales. In fact, it is common to many
networks that a few vertices are very highly connected while the majority of vertices have only
a few connections. These fundamental natures of the networks have great implications for dy-
namics occurring on networks, such as the diffusion of epidemics is affected by the structure
of social networks (Pastor-Satorras and Vespignani 2002; May and Lloyd 2001; Xu and Sui
2009). In addition to these findings, recent advances in network science have suffused with
new measures and methods to characterize various aspects of the structure of networks as they
become increasingly large and complex (Boccaletti et al. 2006). Comprehensive reviews on the
concepts and methods can be found in (Newman 2003b; Boccaletti et al. 2006).

Recent studies on international migration networks have been evident the usefulness of the
network approach in better understanding the structures and migration dynamics of country-to-
country population migration network (Davis et al. 2013; Fagiolo and Mastrorillo 2013). The
population migration networks in the United States from 1990 to 2011 are constructed from
the county-to-county migration flows aggregated from the address changes between two consec-
utive years in IRS income tax returns. The networks contain about 80 per cent of the total US
internal migrants with a one-year interval. Based on this valuable dataset, this study takes
advantage of the advances in network science and examines various aspects of the structural
properties and migration dynamics of the internal migration systems/networks in the United
States from 1990 to 2011.

In the remainder of this paper, the population migration networks that are aggregated from
the address changes in individuals’ income tax returns filed to IRS in every consecutive year
from 1990 to 2011 are described. Additionally, the details of the measures and methods of
the network approach adopted in this study are articulated and the structural properties of the
population migration networks are reported.

2 The population migration networks of counties and economic areas

The US Internal Revenue Service (IRS) provides county-to-county migration flow data based on
the address changes reported in the individuals’ annual income tax returns. Before 2011, the mi-
gration data only include those individuals who filed income tax returns before September, and
it is only after 2011 that the IRS migration data are based on full year tax returns (Pierce 2015).
The county-to-county migration flow data used here are between two consecutive years from
1990 to 2011, which is a period of consistent data processing in IRS. Similar data should exist
for early years as Engels and Healy (1981) and Plane (1982, 1999) studied IRS migration data
before 1990, but only the data after 1990 were available for this study. The inter-county migra-
tion flows consist of three tax return variables: the number of returns (used as the estimate of the
number of migrated households); the number of exemptions (used as the estimates of the num-
ber of migrants); and the aggregate adjusted gross income (available only after 1992). Each
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county has the same variables for non-migrants whose addresses have not changed (non-
movers) or not changed to different county in the consecutive annual tax filing.

Since the IRS migration flow data are based on individuals’ income tax records, they are
considered inclusive and reliable annual population mobility data with information on the
county-to-county migration of the number of households, migrants, and the aggregated change
of family income (Gross 2003). However, the IRS migration data have several limitations, most
of which as well as their strengths have been well documented (Gross 2003; Manson and Groop
2000). The data are only based on those tax returns filed by the end of September, and they rep-
resent 95-98 per cent of total annual fillings, and it is only after 2011 that the IRS migration data
are based on total annual fillings with several other enhancements (Pierce 2015). Since the poor
and/or elderly may not file income tax, the IRS migration data only cover about 80 per cent of
the total population, and the coverage varies state by state (Plane 1999; Manson and Groop
2000). The IRS migration data do not have other migration relevant attributes, like age, educa-
tion, race, or ethnicity, and they have suppressed those inter-county migration flows if they have
less than 10 returns (Manson and Groop 2000). With these caveats, the IRS migration data how-
ever ‘represent an extremely large sample compared with other migration sources, such as the
Current Population Survey’s March mobility question or the decennial census (long-form) ques-
tion on place of previous residence’ (Plane 1999, p. 315), and they provide important migration
flow data with a one-year interval for every year through at least last two decades.

Based on the 21-year IRS inter-county migration data from 1990 to 2011, the total number
of migrants ranged from 8,658,703 (1990-1991) to 10,729,375 (2005-2006), and the national
migration rates ranged from 4.16 per cent (2009-2010) to 5.00 per cent (2005-2006).
Figure 1(a) shows the total number of annual inter-county migrants and non-migrants (including
non-movers and intra-county movers) from 1990 to 201 1. Figure 1(b) shows the total number of
the annual inter-county migrants and its ratio to the total population. There were significant in-
creases in total number of migrants during 2004-2007 period (10,243,130 for 2004-2005,
10,729,376 for 2005-2006, 10,157,450 for 2006-2007, and 10,257,449 for 2007-2008, and
only these four years have more than 10 million inter-county migrants during the last two de-
cades). During the 2004-2007 period, multiple hurricanes hit the Gulf Coast (in 2004 and
2005), and especially Hurricanes Katrina and Rita caused severe damage and large population
displacement in 2005. Economic factors are important to migration; starting in 2008, the reces-
sion contributes to the fall off in migration. The national migration rate reached the maximum
(5.00%) at 2005-2006 (Figure 1(b)).
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Fig. 1. (a) The number of migrants and non-migrants for every consecutive year from 1990 to 2011, (b) the total number
of migrants (bar) and total national migration rate (curve) at every consecutive year from 1990 to 2011
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As a basic exploration and verification of the annual county-to-county population migration,
we examined the top 10 counties gaining the most population from migration for every annual
migration from 1990 to 2011. These counties are the major metropolitan counties in the nation,
and their migration effect reflects certain degrees of the most volatile population migration dy-
namics across the nation. Volatility of the annual migration can be appreciated by comparing the
population gain from migration of the county ranked 1st over the years. The county ranked 1st
in 2008-2009 (Fort Bend, TX) has only gained 14,516 people from migration, but the county
ranked 1Ist in 2004-2005 (Maricopa, AZ) has gained 56,204 people. Volatility can also be
reflected by the change of the rank of top gainers. Maricopa County (AZ) was ranked number
nine in 1990-1991, number three in 1991-1992, and stayed in the top three counties until
2006-2007. It then fell to number nine in 2007-2008, and fell out of the top 10 counties after-
wards. Clark County (NV) was the number one county gaining population from migration in
1990-1991, stayed in the top three until 2006-2007, and fell out of the top 10 in 2008-2009
and afterwards. These volatile migration dynamics can only be examined with the county-level
annual migration data.

The US counties have several features that prevent them from being the ideal unit of analysis
in this study. It is well known that the US counties have drastic differences in geographic size
and total population. This is the fundamental reason for the modifiable areal unit problem
(MAUP) that causes the migration flows or other county-based migration measures not statisti-
cally comparable. Moreover, the US counties are not a socially and economically meaningful
unit. The nature of migration between two adjacent metropolitan counties can be totally differ-
ent from migration between two non-metropolitan counties. In the New England region, mainly
in Virginia, cities or towns are separated from counties in migration statistics, and they should
be merged to be comparable with other counties. In this study, we merge counties and equiva-
lents in the IRS county-to-county migration datasets to the economic areas defined by the
Bureau of Economic Analysis (BEA) of USDA in 2004. One hundred and seventy seven eco-
nomic areas in the continental United States were defined on counties to consider the population
density and commuting pattern. These economic areas are also considered better representation
of local labour markets.

The population migration networks among the BEA economic areas (area-to-area or inter-
area networks thereafter) are still relative large, with 177 BEA Economic Areas as vertices
and more than 9,000 inter-area migration flows as edges. In addition to distance, the edges of
the networks have three weights: the number of returns, the number of exemptions, and the ag-
gregate adjusted gross income (in thousands). Table 1 summarizes the basic statistics of the 21
inter-area networks.

The number of returns or exemptions, and aggregate adjusted gross income of a migration
connection between two areas are affected by or are the artifacts of the total population of the
areas. To remove the population effect, the iterative proportional fitting procedure (IPFP)
(Fienberg 1970; Slater 1984a) is applied to these three weights as well as distance. Figure 2
maps the large inter-area migration flows (those that have more than 3,000 exemptions) in the
population migration networks for the years of 1990-1991 and 2010-2011 as well as the stan-
dardized flows of both networks. There were apparent local and national migration flow patterns
in the original networks of both years (Figure 2(a)). High volume migration occurs among the
nation’s major metropolitan areas. In the West Coast, these include metropolitan areas in Cali-
fornia, Arizona and Washington. In the East Coast, these mainly include those in Florida and
New York. Metropolitan areas in Texas and Illinois also have high volume migration exchange
with others. Figure 2(b) maps the same networks in Figure 2(a) but using standardized migration
flows by the IPFP. The high volume migration among the major metropolitan areas in the East
and West Coast are mainly the artifacts of the large total population of the origin and destination
metropolitan areas, and their standardized weights are less than 0.1 and no longer prominent.
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Table 1. Summary statistics of the area—to—area population migration networks from 1990 to 2011

Numner of returns Number of exemptions Aggregate income (thousands)

Year Vertices Edges Min Mean Max  Min  Mean Max Min Mean Max

1990-1991 177 9126 10 215 25197 10 413 47890 N/A N/A N/A

1991-1992 177 9245 10 208 23553 10 398 43446 N/A N/A N/A

1992-1993 177 9448 10 205 23965 10 398 43959 —2667 6239 757230
1993-1994 177 9352 10 208 23254 10 402 43684 87 6449 775615
1994-1995 177 9569 10 211 22790 10 400 40998 975896 6521 804215
1995-1996 177 9423 10 209 22641 10 395 40982 —6566 7272 833992
1996-1997 177 9434 10 216 23096 10 404 40645 -220 8010 952391
1997-1998 177 9505 10 218 21318 10 403 37223 —4362 8767 1006947
1998-1999 177 9525 10 222 20484 10 408 34701 79 9558 993464
1999-2000 177 9495 10 228 21763 10 417 36563 -546 10475 1099392
2000-2001 177 9485 10 234 22936 10 423 44883 97 11611 1439211
2001-2002 177 9437 10 230 24561 10 417 48755 —4409 10420 1309507
2002-2003 177 9197 10 227 22365 10 413 43835 2754 9805 1140182
20032004 177 9091 10 232 21089 10 425 42871 -3433 10240 1272861
2004-2005 177 9317 10 238 20999 10 439 41573 -5224 11139 1547913
2005-2006 177 9445 10 254 21745 10 471 43997 83 12216 1424315
20062007 177 9428 10 243 19635 10 447 35844 40 12129 1239259
2007-2008 177 9566 10 246 19768 10 441 33803 —-1421 12245 1178699
2008-2009 177 9540 10 234 19216 10 419 32274 —18421 10969 1036778
20092010 177 9222 10 224 17538 10 401 32977 -7164 9832 964494
2010-2011 177 9541 10 232 18844 10 412 32105 -1611 10689 1037649

3 Structure and migration dynamics of the networks

The inter-area population migration networks can be represented as Nx N weight matrices, W'
(t=1990, 1991,...,2010), where W' is the matrix for year t and N is the total number of economic
areas in the networks. A cell in the matrix of year (7), w} J» represents the weight (the number of
returns, exemptions, or the aggregate adjust gross income) that associate with the migration from
area i to j. When only the connection topology of the networks is considered, the weight matrices
can be converted to binary matrices, B’, in which b’ ; = lif the number of migrants is greater than
0 and b} ; = Ootherwise. Since the weight of migration from area i to j is very often different from
the weight of migration from area j to i, the weight matrices W' are weighted and asymmetric.
This matrix notation provides the basis of the definitions of network metrics in the following sec-
tions. These network metrics characterize four essential aspects of network structure: connectiv-
ity, clustering, assortativity, and centrality (Fagiolo et al. 2009).

3.1 Persistent heterogeneity in migration connections and weights

A basic migration characteristic of an economic area is how many other economic areas with
which it has exchanged migrants. In the inter-area population migration networks, this can be
characterized by the migration connectivity of an economic area, that is, the area’s connection
degree. Formally, the connection degree of an area ican be represented as d;=Y.;.;b;, where
bj; is the binary adjacency matrix, and b;=1 if the area i and j are connected, b;=0 otherwise.

The inter-area population migration networks are weighted networks, in which edges repre-
sent not only the existence of migration connections but also how much weight the connections
carry, or how strong the migration connections are. The weights of the inter-area population
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2010-2011 network k ‘ﬂ’.
(b)

Fig. 2. The 1990-1991 (left) and 2010-2011 (right) population migration networks among economic areas that are
defined by BEA in 2004: (a) migration flows of greater than 3000 exemptions; (b) standardized migration flows of
greater than 0.1

migration networks include the geographic distance, number of returns or exemptions, and
aggregate adjusted gross income.

Across the networks, there exists extraordinary heterogeneity in the areas’ migration con-
nectivity and the weights associated with the inter-area migration connections. The heterogene-
ity is much larger than what the bell-shaped probability distribution can characterize. The
probability distributions of these characteristics are right-skewed with heavy tails, and can be
approximated by gamma distribution with shape parameters ranging 1.72—1.86 for total degree,
1.59-1.80 for in degree, and 1.76-2.07 for out degree. These heavy tail distributions imply that
there are a large number of areas having small number of migration connections to other areas,
while only a small number of areas have a large number of migration connections, and this
heterogeneity has been persistent in the 21 networks over the last two decades. Figure 3 shows
the cumulative probability distribution of in-, out-, and total degree for all the 21 migration
networks.

The distributions of standardized weights (i.e., geographic distance, the number of returns
and exemptions and the aggregate adjusted gross income) are highly skewed power law distri-
butions (Figure 4). These power law distributions have exponent ranging 1.72—1.75 for the
number of returns, 1.73-1.6 for the number of exemptions, 1.74—1.77 for the aggregate adjust
gross income, and 2.38-2.68 for the distance. These highly right skewed distributions imply
the existence of large number of small volume inter-area migrations and very small number
of large volume inter-area migrations.
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Fig. 4. Cumulative distribution of standardized weights of the edges of all networks (only networks after 1992 have
income distribution)

3.2 Persistent high connectivity and relative low clustering

In addition to the connection degree, the connectivity of each vertex in a network can be char-
acterized by its average shortest path length. The connectivity of a network can be quantified by
the mean value of its vertices” average shortest path length. High connectivity should be the es-
sential feature of any networks. Real-world networks are usually not as highly connected as
fully connected or randomly connected networks, as their vertices have limited capability to
connect or more connections might raise costs. However, many networks maintain high connec-
tivity with highly clustered connections, which is the essential feature of the small-world
networks (Watts and Strogatz 1998).
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Clustering is about the density of the connections. For example, in a hub-and-spoke net-
work, if the spokes do not connect to each other at all, the network is not clustered. If the spokes
are fully connected to each other, the hub-and-spoke network is fully clustered. Many read-
world networks fall between the not-clustered and fully clustered. In the inter-area population
migration networks, this clustering characteristic can be measured by the extent of an area’s di-
rectly connected neighbours being connected to each other, which is indicative of the cohesive-
ness of an area’s neighbourhoods (i.e., areas have migration connections with the area). The
clustering is quantified by the transitivity or clustering coefficient (or weighted clustering coef-
ficient) of an area (Watts and Strogatz 1998; Barrat et al. 2004). The clustering coefficient for an
area i can be formulized as ¢;=yipiers/ Mpossivie_tripters= Xy xPiibiubuld(d; — 1), where d; is the con-
nection degree of area i, b;; (or by, or by) is 1 if area i and j (or i and k, or j and k) are directly
connected and is 0 otherwise, and the j and k are all the areas that directly connect to area i. If an
area’s clustering coefficient is 1, it means that the area’s connected neighbouring areas are fully
connected to each other. A zero clustering coefficient means that the area’s connected
neighbouring areas do not connect to each other at all. The clustering coefficient of a network
is the mean value of its vertices’ clustering coefficients.

The overall connectivity and clustering of the networks are inspected by computing the
average shortest path lengths and clustering coefficients of the networks. The average shortest
path lengths range from 1.71 to 1.73 for all the 21 networks. This means that two areas in the
US inter-area population migration networks on average are a little less than two steps away.
A similar sized random network (e.g., a network with 177 vertices and 9,000 edges) has the
average shortest path length, 1.42. Therefore, the US inter-area population migration networks
have as high connectivity as a similar sized random network.

The clustering coefficients of the inter-area population networks range from 0.26 to 0.28.
The clustering coefficient for a similar sized random network (i.e., a network with 177 vertices
and 9,000 edges) is 0.58. Therefore, the US inter-area population migration networks have con-
nectivity as high as a similar sized random network, but their clustering are not as high as a sim-
ilar sized random network. As such, the inter-area population migration networks do not have
the connection topology of small-world networks, which have higher clustering than a similar
sized random network (Watts and Strogatz 1998).

3.3 Low connectivity areas tend not to connect each other

For weighted networks like the inter-area population migration networks in this study, the clus-
tering coefficient of an area i can be adjusted by considering the weights of edges that connect
with the neighbours (the neighbours of an economic area i are all the areas to which the area i
directly connect); and the weighted clustering coefficient for area i can be formulized as, ¢’ =
Zj,k(wij + wik)biibikbjx [ 25i(d; — 1), wheres; is the strength of the area i. The weighted clustering
coefficient (¢}) of an area also ranges from O to 1. A large value of ¢” implies that those areas
connecting area i with large weight are more likely to connect to each other.

For each area in the inter-area population migration networks, the clustering coefficient is cal-
culated based on both topological connection and the weights of the connections, that is, the
number of returns, number of exemptions, aggregate adjusted gross income, and geographic dis-
tance between connected areas. The higher value of the weighted clustering coefficient implies
not only more triplets are formed among an area’s neighbours, but also that the triplets are formed
by high weight connections. The average clustering coefficient over the whole network measures
the overall network cohesiveness or the average density of interconnected triplets.

The network clustering coefficients range 0.26—0.28 when only the topological connection is
considered (i.e., all edges are assumed having no weight or equal weight). When the edge’s
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weights are considered, the weighted network clustering coefficients for the networks increase to
0.70-0.72 for the number of returns and exemptions, 0.69-0.71 for the aggregate adjusted gross
income, and 0.75-0.79 for geographic distance. The distance-weighted clustering coefficients are
the highest over all the years, the income-weighted and the return and exemption-weighted are
not much different, but they are much larger than the topological clustering coefficients. This im-
plies that many triplets are formed by the inter-area migrations of long geographic distance, high
income, and high migration volume (i.e., large number of returns and exemptions).

Areas of different connection degree might have different degree of clustering (or cohesive-
ness) among areas to which they connect. The relation between the connection degree of areas
d;, and their clustering coefficients (or weighted clustering coefficients), ¢,(d) (orc!(d)), indi-
cates how the areas’ connectivity relates the cohesiveness in its connected neighbours through-
out the networks (Barrat et al. 2004; Xu and Harriss 2008). A decaying ci(d) (or ¢(d)) with
increasing connection degree indicates the hub-and-spoke network structure, in which large de-
gree areas serve as hubs and they connect to many low-connectivity areas that do not connect
among each other. An increasing c/(d) (orc! (d)) with increasing connection degree indicates that
the network is highly connected and clustered.

The clustering coefficients are computed for each area in the networks. The mean clustering
coefficients of areas in 50 degree intervals are plotted with the degree. The inter-area population
migration networks have demonstrated the declining clustering coefficient (for both weighted
clustering and topological clustering) as the connection degree of areas increases, the same pat-
tern found in many real-world networks (Ravasz and Barabasi 2003; Barrat et al. 2004; Xu and
Harriss 2008; Lin and Ban 2014). Figure 5 shows the declining clustering coefficients of three
selected networks of 1994—-1995, 1999-2000 and 2009-2010; and all the 21 networks have the
same pattern. As the area’s degree increases, the clustering coefficients weighted by migration
attributes (number of returns, exemptions, and income) decline, and the clustering coefficient
weighted by distance has an initial increase but decline even faster.

The weights make the network more clustered. The declining trend implies that the low con-
nectivity areas have high clustering while high connectivity areas have lower clustering, a
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Fig. 5. The declining clustering coefficients as the degree of vertices increases
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typical feature of hub-and-spoke network structure. The 200 appears as a bifurcation point in
connection degree between decline trend of distance-weighted clustering coefficient and
returns- (or exemptions- or income-) weighted clustering coefficient. For areas with less than
200 connection degree, their long-distance-connected areas tend to be connected. For areas with
greater connection degree, their high-volume-connected areas tend to be connected.

3.4 Low connectivity areas tend to connect high connectivity areas

As networks are about the connections, it is interesting to know what kinds of vertices connect
to what other kinds of vertices. In the inter-area population migration networks, we wonder what
areas connect to what other areas in terms of the similarity of their connectivity, which is a char-
acteristic of networks called assortativity (Newman 2002, 2003a). Social networks are often as-
sortative, in which similar people are more likely to connect to each other, a phenomena termed
as homophily (Kandel 1978; McPherson et al. 2001), while many technological or biological
networks tend to be dissortative, that is, highly connected vertices tend to connect to loosely
connected vertices. Newman et al. (2002, 2003a) and Newman and Girvan (2003) define a mea-
sure of the network assortativity based on the topological properties of the vertices (e.g., the
connection degree, strength, betweenness, etc.) as well as non-topological attributes of the
vertices. The measure is a variant of Pearson correlation coefficient, and can be formulized
as, r = ”%Jzk Jk(ep — qjqk), where ej; is the joint excess degree probability for excess degrees

of vertex j and k (the excess degree of a vertex is equal to one less than its total degree),
qr = (k+1) pey/ X Jp; is the normalized distribution of the excess degree, and 02 is the

J
variance of the normalized distribution, g, (Newman 2002; Noldus and Van Mieghem 2015).
The assortativity coefficient only provides a global characterization of the networks. Local
assortativity (i.e., assortativity of each vertex) can be measured by the average nearest neigh-
bours’ degree or the weighted average nearest neighbours’ degree. The average nearest neigh-
bours’ degree can be represented as, Ky, ;= Y evi)d;/d;, where d; is the degree of vertex j, a
vertex in vertex i’s neighbourhood, v(i). For weighted networks, the k,,,; can be weighted by
the edge’s weights. The weighted average nearest neighbours’ degree can be then represented
as k:fn_’i = Zjevmw,jdj /si, where w;; is the weight between vertex i and j and s; is the vertex i’s
strength. A scatterplot between vertices’ degree versus their average nearest neighbours’ degree
can reveal the detailed local degree correlation structure, which is a technique similar to the
Moran scatterplot in geography (Anselin 1996).

For every inter-area population migration network, we calculate the average nearest neigh-
bours’ degree (and its weighted variants by considering the number of returns, number of ex-
emptions, aggregate adjusted gross income, and geographic distance as weights) for each area
in the network, and examine how the average nearest neighbours’ degree vary as the area’s con-
nection degree increases. To see the general trend, the means of the average nearest neighbours’
degrees of areas in every 50-degree interval are plotted over the degree. Figure 6 shows how the
average nearest neighbours’ degree vary over the connection degree for three selected networks
for 1994-1995, 1999-2000, and 2009-2010. The same pattern is common to all the 21 net-
works. As the area’s connection degree increases, both the topological and weighted average
nearest neighbours’ degrees increase to a certain degree and then decline. This pattern has been
found in other networks (Newman 2002, 2003a; Barrat et al. 2004). It implied that the networks
show assortative for areas with degree under around 250, and dissortative for areas with degree
larger than around 250. However, the networks are essentially dissortative networks where the
low-degree areas (lower than around 250) connect with high-degree areas and high-degree areas
tend to connect with low-degree areas.
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Fig. 6. Variation of topological and weighted average nearest neighbour degrees as the connection degree of
vertices increase

3.5 Highly connected areas are more central

Vertices in social networks are considered being at central positions and therefore more influen-
tial when they are more connected or strategically located on the paths linking other vertices, or
close to the rest of other vertices of the networks (Freeman 1979). Three centrality measures are
commonly used, namely, degree, betweenness, and closeness centralities (Freeman 1977, 1979;
Linton 1977; Freeman et al. 1991; Borgatti 2005). The degree centrality considers the connection
degree of a vertex as a measure of the vertex’s centrality. The closeness centrality measures how
close a vertex to/from the rest of other vertices in the network, and it is defined as the inverse of
the average shortest distance to/from all the rest of vertices in the network, 9?’”” =
(N — 1)/ X4di;» where N is the number of vertices in the network, and d; ; represents the shortest
distance between vertex i and j. The betweenness centrality measures to what degree a vertex (or
edge) is located on the path between other vertices, and it is defined as the number of geodesic
paths passing through a vertex (or edge), namely, 9?““”’””“ =y Pickerj / Picsjp 1 #]#k, where
L

Di <k jTepresents the number of geodesic paths between vertices i and j that pass through vertex
k, and p; ., ; represents the total number of geodesic paths between vertices i and j.

In the population migration networks, the betweenness centralities of areas increase with
area’s connection degree (Figure 7). This implies that the highly connected areas have high
betweenness, that is, these areas are located on the critical paths that connect the majority of
the networks. However, the increasing pattern is different among the weighted and topological
betweennesses. When the vertex’s degree is less than around 200, the returns, exemptions, and
income weighted betweennesses increase more than topological and distance-weighted
betweennesses. For areas with degree greater than 200, their topological betweenness increases
exponentially, while the returns, exemptions, and income weighted betweennesses increase
slower, and the distance weighted betweenness does not increase as much except a surge at
the degree of around 300. These differential patterns imply that the migration dynamics in-
creases the betweenness of less connected counties while suppresses the betweenness of highly
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Fig. 7. Variation of betweenness centralities as the connection degree increases

connected counties. In other words, the migration dynamics make the betweenness of low-
connection vertices higher than their topological betweenness, but the migration dynamics make
the betweenness of high-connection vertices lower than their topological betweenness. The geo-
graphic distance reduces counties’ betweenness the most.

The closeness centrality of an area characterizes how close the area is to the rest of other
areas. The weighted closenesses show the same increasing pattern, a rapid increase when
vertex’s degree is less than 200 and a very slow increase afterwards (Figure 8). This is a pattern
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Fig. 8. Variation of closeness centralities as the connection degree increases
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of highly connected networks, in which the vertices just need to take very few steps to reach
most of the vertices when they have a reasonable number of connections.

4 Summary and conclusions

We constructed the population migration networks among BEA economic areas in the United
States for every consecutive year from 1990 to 2011 from the IRS county-to-county migration
data. We reported the violate one-year population migration dynamics among US counties.
Since the US counties have several issues in regards use as the unit of migration analysis, we
aggregated the county-to-county data to population migration networks among the BEA eco-
nomic areas in the continental United States, and analysed the various aspects of the structural
properties of the networks, and how the migration dynamics mediate the topological structure of
the networks.

We find that the IRS county-to-county migration data are valuable to reveal the violate mi-
gration dynamics among US counties over one-year interval. Aggregated on the county-to-
county migration data, the population migration networks among economic areas in the
United States have tremendous heterogeneity or highly skewed distributions in the number of
migration connections of areas, number of returns and exemptions, aggregated adjusted gross
income, and distance of the inter-area migration. A small number of areas have exchanged mi-
grants to a large number of other areas, and only a small number inter-area migration has ex-
changed large volume of migrants. Four aspects of the network structural properties were
explored: connectivity, clustering, assortativity, and centrality. We particularly focused on
how these properties have varied on areas of different connectivity, and how these properties
have been mediated by the migration dynamics. Analysis on these structural properties has
pointed to a fundamental structure of the inter-area population migration networks in the
United States, that is, the hub-and-spoke dissortative structure in which a small number of
highly connected areas exchange high volume and long distance migration while connecting
to many less connected areas.

Recent advances in network science have provided approaches to study various aspects of
the complex structures of the networks. This study has demonstrated how a few complex net-
work approaches help to better understand the structural properties and how migration dynamics
mediate the structural properties of the population migration networks among economic areas in
the United States. When researchers modified the gravity model as constrained models or inter-
vening opportunity models, and examined errors in migration models, they have realized that
the complex interaction among places should not be overlooked to correctly and fully under-
stand migration system. In addition to the network metric techniques, this study demonstrated
the complex migration interaction in the US internal migration system in hope of informing
more accurate migration model.
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Resumen. Este estudio construye las redes de migraciéon de poblacion entre dreas econémicas
en los Estados Unidos para cada afio consecutivo desde 1990 a 2011, y examina sus propiedades
estructurales y la dindmica de migracién de la poblacién. Se exploran varios aspectos de las
propiedades estructurales de las redes, como la conectividad, la conglomeracion, la asortatividad
y la centralidad. Se encontr6 que estas propiedades estructurales estdan influidas por las
dindmicas de migracion y la distancia entre dreas, y que los patrones de diferentes propiedades
estructurales entre areas de diferente conectividad revelan la estructura de eje central y radios de
las redes. Se pone de manifiesto que existe una tremenda complejidad en la conectividad y
dindmica migratoria en el sistema migratorio interno de los Estados Unidos.
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