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Abstract
Breaking of equivalence between the microcanonical ensemble and the 
canonical ensemble, describing a large system subject to hard and soft 
constraints, respectively, was recently shown to occur in large random graphs. 
Hard constraints must be met by every graph, soft constraints must be met 
only on average, subject to maximal entropy. In Squartini, de Mol, den 
Hollander and Garlaschelli (2015 New J. Phys. 17 023052) it was shown that 
ensembles of random graphs are nonequivalent when the degrees of the nodes 
are constrained, in the sense of a non-zero limiting specific relative entropy 
as the number of nodes diverges. In that paper, the nodes were placed either 
on a single layer (uni-partite graphs) or on two layers (bi-partite graphs). In 
the present paper we consider an arbitrary number of intra-connected and 
inter-connected layers, thus allowing for modular graphs with a multi-partite, 
multiplex, time-varying, block-model or community structure. We give a 
full classification of ensemble equivalence in the sparse regime, proving that 
breakdown occurs as soon as the number of local constraints (i.e. the number 
of constrained degrees) is extensive in the number of nodes, irrespective of 
the layer structure. In addition, we derive an explicit formula for the specific 
relative entropy and provide an interpretation of this formula in terms of 
Poissonisation of the degrees.

Keywords: random graph, community structure, multiplex network, 
stochastic blockmodel, constraints, microcanonical ensemble, equivalence 
versus non-equivalence
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1. Introduction and main results

1.1. Background and outline

For systems with many interacting components a detailed microscopic description is infea-
sible and must be replaced by a probabilistic description, where the system is assumed to be 
a random sample drawn from a set of allowed microscopic configurations that are consistent 
with a set of known macroscopic properties, referred to as constraints. Statistical physics 
deals with the definition of the appropriate probability distribution over the set of microscopic 
configurations and with the calculation of the resulting macroscopic properties of the sys-
tem. The three main choices of probability distribution are: (1) the microcanonical ensemble, 
where the constraints are hard (i.e. are satisfied by each individual configuration); (2) the 
canonical ensemble, where the constraints are soft (i.e. hold as ensemble averages, while indi-
vidual configurations may violate the constraints); (3) the grandcanonical ensemble, where 
also the number of components is considered as a soft constraint.

For systems that are large but finite, the three ensembles are obviously different and, in 
fact, represent different physical situations: (1) the microcanonical ensemble models com-
pletely isolated systems (where both the energy and the number of particles are ‘hard’); (2) the 
canonical ensemble models closed systems in thermal equilibrium with a heat bath (where the 
energy is ‘soft’ and the number of particles is ‘hard’); (3) the grandcanonical ensemble models 
open systems in thermal and chemical equilibrium (where both the energy and the number 
of particles are ‘soft’). However, in the limit as the number of particles diverges, the three 
ensembles are traditionally assumed to become equivalent as a result of the expected vanish-
ing of the fluctuations of the soft constraints, i.e. the soft constraints are expected to become 
asymptotically hard. This assumption of ensemble equivalence, which dates back to Gibbs 
[33], has been verified in traditional models of physical systems with short-range interactions 
and a finite number of constraints, but it does not hold in general. Nonetheless, equivalence is 
considered to be one of the pillars of statistical physics and underlies many of the results that 
contribute to our current understanding of large real-world systems.

Despite the fact that many textbooks still convey the message that ensemble equivalence 
holds for all systems, as some sort of universal asymptotic property, over the last decades 
various examples have been found for which it breaks down. These examples range from 
astrophysical processes [19, 35, 40, 41, 56], quantum phase separation [5, 10, 25], nuclear 
fragmentation [21], and fluid turbulence [23, 24]. Across these examples, the signatures of 
ensemble nonequivalence differ, which calls for a rigorous mathematical definition of ensem-
ble (non)equivalence: (i) thermodynamic equivalence refers to the existence of an invertible 
Legendre transform between the microcanonical entropy and canonical free energy [25]; (ii) 
macrostate equivalence refers to the equivalence of the canonical and microcanonical sets 
of equilibrium values of macroscopic properties [58]; (iii) measure equivalence refers to the 
asymptotic equivalence of the microcanonical and canonical probability distributions in the 
thermodynamic limit, i.e. the vanishing of their specific relative entropy [57]. The latter refer-
ence reviews the three definitions and shows that, under certain hypotheses, they are identical.

In the present paper we focus on the equivalence between microcanonical and canonical 
ensembles, although nonequivalence can in general involve the grandcanonical ensemble 
as well [59]. While there is consensus that nonequivalence occurs when the microcanonical 
specific entropy is non-concave as a function of the energy density in the thermodynamic 
limit, the classification of the physical mechanisms at the origin of nonequivalence is still 
open. In most of the models studied in the literature, nonequivalence appears to be asso-
ciated with the non-additivity of the energy of the subparts of the system or with phase 
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transitions [15, 16, 57]. A possible and natural mechanism for non-additivity is the pres-
ence of long-range interactions. Similarly, phase transitions are naturally associated with 
long-range order. These ‘standard mechanisms’ for ensemble nonequivalence have been 
documented also in the study of random graphs. In [4], a Potts model on a random regular 
graph is studied in both the microcanonical and canonical ensemble, where the microscopic 
configurations are the spin configurations (not the configurations of the network itself). It 
is found that the long-range nature of random connections, which makes the model non-
additive and the microcanonical entropy non-concave, ultimately results in ensemble non-
equivalence. In [50], [51], [52] and [18], random networks with given densities of edges 
and triangles are considered, and phase transitions characterised by jumps in these densities 
are found, with an associated breaking of ensemble equivalence (where the microscopic 
configurations are network configurations).

Recently, the study of certain classes of uni-partite and bi-partite random graphs [30, 55] has 
shown that ensemble nonequivalence can manifest itself via an additional, novel mechanism, 
unrelated to non-additivity or phase transitions: namely, the presence of an extensive number 
of local topological constraints, i.e. the degrees and/or the strengths (for weighted graphs) 
of all nodes3. This finding explains previously documented signatures of nonequivalence in 
random graphs with local constraints, such as a finite difference between the microcanonical 
and canonical entropy densities [1] and the non-vanishing of the relative fluctuations of the 
constraints [54]. How generally this result holds beyond the specific uni-partite and bi-partite 
cases considered so far remains an open question, on which we focus in the present paper. 
By considering a much more general class of random graphs with a variable number of con-
straints, we confirm that the presence of an extensive number of local topological constraints 
breaks ensemble equivalence, even in the absence of phase transitions or non-additivity.

The remainder of our paper is organised as follows. In section 1.2 we give the definition 
of measure equivalence and, following [55], show that it translates into a simple pointwise 
criterion for the large deviation properties of the microcanonical and canonical probabilities. 
In section 1.3 we introduce our main theorems in pedagogical order, starting from the char-
acterisation of nonequivalence in the simple cases of uni-partite and bi-partite graphs already 
explored in [55], and subsequently moving on to a very general class of graphs with arbitrary 
multilayer structure and tunable intra-layer and inter-layer connectivity. Our main theorems, 
which (mostly) concern the sparse regime, not only characterise nonequivalence qualita-
tively, they also provide a quantitative formula for the specific relative entropy. In section 2 
we discuss various important implications of our results, describing properties that are fully 
general but also focussing on several special cases of empirical relevance. In addition, we 
provide an interpretation of the specific relative entropy formula in terms of Poissonisation 
of the degrees. We also discuss the implications of our results for the study of several empiri-
cally relevant classes of ‘modular’ networks that have recently attracted interest in the lit-
erature, such as networks with a so-called multi-partite, multiplex [11], time-varying [38], 
block-model [37, 39] or community structure [26, 49]. In section 3, finally, we provide the 
proofs of our theorems.

In future work we will address the dense regime, which requires the use of graphons. 
In that regime we expect nonequivalence to persist, and in some cases become even more 
pronounced.

3 While in binary (i.e. simple) graphs the degree of a node is defined as the number of edges incident to that node, in 
weighted graphs (i.e. graphs where edges can carry weights) the strength of a node is defined as the total weight of 
all edges incident to that node. In this paper, we focus on binary graphs only.
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1.2. Microcanonical ensemble, canonical ensemble, relative entropy

For N∈n , let Gn denote the set of all simple undirected graphs with n nodes. Let ⊆G G�
n n be 

some non-empty subset of Gn, to be specified later. Informally, the restriction from Gn to G�n 
allows us to forbid the presence of certain links, in such a way that the n nodes are effectively 
partitioned into N∈M  groups of nodes (or ‘layers’) of sizes …n n, , M1  with ∑ == n ni

M
i1 . This 

restriction can be made explicit and rigorous through the definition of a superstructure, which 
we call the master graph, that will be introduced later. A given choice of G�n corresponds to 
the selection of a specific class of multilayer graphs with desired intra-layer and inter-layer 
connectivity, such as graphs with a multipartite, multiplex, time-varying, block-model or com-
munity structure. In the simplest case, =G G�

n n, which reduces to the ordinary choice of uni-
partite (single-layer) graphs. This example, along with various more complicated examples, is 
considered explicitly later on.

In general, any graph ∈ G�G n can be represented as an ×n n matrix with elements

{( )                    =g
i j

G
1 if there is a link between node and node ,
0 otherwise.i j, (1.1)

Let 
→
C denote a vector-valued function on G�n. Given a specific value 

→∗
C , which we assume to be 

graphic, i.e. realisable by at least one graph in G�n, the microcanonical probability distribution 
on G�n with hard constraint 

→∗
C  is defined as

( ) /   ( )→
→ →

⎪

⎪
⎧
⎨
⎩

=
Ω = ∗

∗
P

C C
G

G1 , if ,

0, else,
Cmic (1.2)

where

{ ( ) }→
→ →

Ω =| ∈ = | >∗
∗ G� C CG G: 0

C n (1.3)

is the number of graphs that realise 
→∗
C . The canonical probability distribution ( )P Gcan  on G�n is 

defined as the solution of the maximisation of the entropy

( ) ( ) ( )∑= −
∈G�

S P P PG Glnn
G

can can can

n
 (1.4)

subject to the soft constraint ⟨ ⟩
→ →
= ∗

C C , where ⟨ ⟩⋅  denotes the average w.r.t. Pcan, and subject to 
the normalisation condition ( )∑ =∈G� P G 1G can

n
. This gives

( ) [ ( )]
( )

→

→
θ

θ
=

−
∗

∗P
H

Z
G

Gexp ,
,can (1.5)

where

( ) ( )
→ → →
θ θ= ⋅H CG G, (1.6)

is the Hamiltonian (or energy) and

( ) [ ( )]
→ →

∑θ θ= −
∈G�

Z H Gexp ,
G n

 (1.7)

is the partition function. Note that in (1.5) the parameter 
→
θ  must be set to the particular value 

→
θ ∗ that realises ⟨ ⟩

→ →
= ∗

C C . This value also maximises the likelihood of the model, given the 
data [31].
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It is worth mentioning that, in the social network analysis literature [17], maximum-
entropy canonical ensembles of graphs are traditionally known under the name of Exponential 
Random Graphs (ERGs). Indeed, many of the examples of canonical graph ensembles that we 
will consider in this paper, or variants thereof, have been studied previously as ERG models 
of social networks. Recently, ERGs have also entered the physics literature [1, 2, 9, 28, 42, 
47, 53, 54] , [8, 27, 29, 39, 48] because of the wide applicability of techniques from statisti-
cal physics for the calculation of canonical partition functions. We will refer more exten-
sively to these models, and to the empirical situations for which they have been proposed, in  
section 2.2. Apart for a few exceptions [1, 48, 55], these previous studies have not addressed 
the problem of ensemble (non)equivalence of ERGs. The aim of the present paper is to do so 
exhaustively, and in a mathematically rigorous way, via the following definitions.

The relative entropy of Pmic w.r.t. Pcan is

( ) ( ) ( )
( )∑| =

∈G�
S P P P

P

P
G

G
G

ln ,n
G

mic can mic
mic

can
n

 (1.8)

and the specific relative entropy is

( )= |−s n S P P .n n
1

mic can (1.9)

Following [55, 57], we say that the two ensembles are measure equivalent if and only if their 
specific relative entropy vanishes in the thermodynamic limit →∞n , i.e.

( )
→

= | =∞
∞

−s n S P Plim 0.
n

n
1

mic can (1.10)

It should be noted that, for a given choice of G�n and 
→
C, there may be different ways to realise 

the thermodynamic limit, corresponding to different ways in which the numbers { }=ni i
M

1 of 
nodes inside the M layers grow relatively to each other. So, (1.10) implicitly requires an under-
lying specific definition of the thermodynamic limit. Explicit examples will be considered in 
each case separately, and certain different realisations of the thermodynamic limit will indeed 
be seen to lead to different results. With this in mind, we suppress the n-dependence from our 
notation of quantities like G, 

→
C, 

→∗
C , Pmic, Pcan, H, Z. When letting →∞n  it will be understood 

that ∈ G�G n always.
Before considering specific cases, we recall an important observation made in [55]. 

The definition of ( )
→
θH G,  ensures that, for any ∈ G�G G, n1 2 , ( ) ( )=P PG Gcan 1 can 2  whenever 

( ) ( )
→ →

=C CG G1 2  (i.e. the canonical probability is the same for all graphs having the same value 
of the constraint). We may therefore rewrite (1.8) as

( ) ( )
( )

| =
∗

∗S P P
P

P

G
G

ln ,n mic can
mic

can
 (1.11)

where ∗G  is any graph in G�n such that ( )
→ →

=∗ ∗
C CG  (recall that we have assumed that 

→∗
C  is 

realisable by at least one graph in G�n). The condition for equivalence in (1.10) then becomes

[ ( ) ( )]
→

− =
∞

− ∗ ∗n P PG Glim ln ln 0,
n

1
mic can (1.12)

which shows that the breaking of ensemble equivalence coincides with ( )∗P Gmic  and ( )∗P Gcan  
having different large deviation behaviour. Importantly, this condition is entirely local, i.e. it 
involves the microcanonical and canonical probabilities of a single configuration ∗G  realising 
the hard constraint. Apart from its theoretical importance, this fact greatly simplifies math-
ematical calculations. Note that (1.12), like (1.10), implicitly requires a specific definition of 
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the thermodynamic limit. For a given choice of G�n and 
→
C, different definitions of the thermo-

dynamic limit may result either in ensemble equivalence or in ensemble nonequivalence.

1.3. Main theorems

Most of the constraints that will be considered below are extensive in the number of nodes.

1.3.1. Single layer: uni-partite graphs. The first class of random graphs we consider is speci-
fied by M  =  1 and =G G�

n n. This choice corresponds to the class of (simple and undirected) 
uni-partite graphs, where links are allowed between each pair of nodes. We can think of these 
graphs as consisting of a single layer of nodes, inside which all links are allowed. Note that in 
this simple case the thermodynamic limit →∞n  can be realised in a unique way, which makes 
(1.10) and (1.12) already well-defined.

Constraints on the degree sequence. For a uni-partite graph ∈ GG n, the degree sequence 
is defined as ( ) ( ( ))

→
= =k kG Gi i

n
1 with ( ) ( )= ∑ ≠k gG Gi j i i j, . In what follows we constrain the 

degree sequence to a specific value 
→∗
k , which (in accordance with our aforementioned general 

prescription for 
→∗
C ) we assume to be graphical, i.e. there is at least one graph with degree 

sequence 
→∗
k . The constraints are therefore

( )
→ →

N= = ∈∗ ∗ ∗
=C k k ,i i

n n
1 0 (1.13)

where { }N N= ∪ 00  with { }N = …1, 2, . This class is also known as the configuration model 
([7, 13, 20, 44, 45, 54]; see also [36, chapter 7]). In [55] the breaking of ensemble equivalence 
was studied in the sparse regime defined by the condition

( )
⩽ ⩽

= =∗ ∗m k o nmax .
i n

i
1 (1.14)

Let ( )NP 0  denote the set of probability distributions on N0. Let

( )N∑ δ= ∈−

=

∗ Pf n ,n
i

n

k
1

1
0i (1.15)

be the empirical degree distribution, where δk denotes the point measure at k. Suppose that 
there exists a degree distribution ( )N∈Pf 0  such that

∥ ∥
→

( )− =
∞

�f flim 0,
n

n g1 (1.16)

where → [ )N ∞g : 0,0  is given by

( ) N⎜ ⎟
⎛
⎝

⎞
⎠= ∈

−
g k

k

k
klog

!

e
, ,

k k 0 (1.17)

and ( )� g1  is the vector space of functions →Z Rh :  with ∥ ∥ ( ) ( )( ) N= ∑ | | <∞∈�h h k g kg k1
0

. For 
later use we note that

π= = + ∞−�g k g k g k k O k k0 0, is strictly increasing,
1

2
log 2 , .1( ) ( )      ( ) ( ) ( ) →

 
(1.18)

Theorem 1.1. Subject to (1.13), (1.14) and (1.16), the specific relative entropy equals

∥ ∥ ( )= >∞ �s f 0.g1 (1.19)

Thus, when we constrain the degrees we break the ensemble equivalence.
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Remark 1.2. It is known that 
→∗
k  is graphical if and only if ∑ =

∗ki
n

i1  is even and

⩽ ( ) ( )∑ ∑− + = … −
=

∗

= +

∗k j j j k j n1 min , , 1, , 1.
i

j

i
i j

n

i
1 1

 (1.20)

In [3], the case where ∗ki , N∈i , are i.i.d. with probability distribution f is considered, and it is 
shown that

( )           
→

⎛

⎝
⎜

⎞

⎠
⎟∑⊗ … =

∞

∗ ∗

=

∗f k k klim , , is graphical is even 1
n

n
n

i

n

i1
1

 (1.21)

as soon as f satisfies ( )<∑ <f k0 1k even  and ( )→ ⩾∑ =∞n f klim 0n k n . (The latter condition is 
slightly weaker than the condition ( )N∑ <∞∈ kf kk 0

.) In what follows we do not require the 
degrees to be drawn in this manner, but when we let →∞n  we always implicitly assume that 
the limit is taken within the class of graphical degree sequences.

Remark 1.3. A different yet similar definition of sparse regime, replacing (1.14), is given 
in van der Hofstad [36, chapter 7]. This condition is formulated in terms of bounded second 
moment of the empirical degree distribution fn in the limit as →∞n . Theorem 1.1 carries over.

Constraints on the total number of links only. We now relax the constraints, and fix only the 

total number of links ( ) ( )= ∑ =L kG Gi
n

i
1

2 1 . The constraint therefore becomes
→
=∗ ∗C L . (1.22)

It should be note that in this case, the canonical ensemble coincides with the Erdős-Rényi 
random graph model, where each pair of nodes is independently connected with the same 
probability. As shown in [1, 55], in this case the usual result that the ensembles are asymptoti-
cally equivalent holds.

Theorem 1.4. Subject to (1.22), the specific relative entropy equals =∞s 0.

1.3.2. Two layers: bi-partite graphs. The second class of random graphs we consider are bi-
partite graphs. Here M  =  2 and nodes are placed on two (non-overlapping) layers (say, top 
and bottom), and only links across layers are allowed. Let Λ1 and Λ2 denote the sets of nodes 
in the top and bottom layer, respectively. The set of all bi-partite graphs consisting of =|Λ |n1 1  
nodes in the top layer and =|Λ |n2 2  nodes in the bottom layer is denoted by ⊂=G G G�

n n n n,1 2 . 
Bi-partiteness means that, for all ∈ GG n n,1 2, we have ( ) =g G 0i j,  if ∈Λi j, 1 or ∈Λi j, 2.

In a bipartite graph ∈ GG n n,1 2, we define the degree sequence of the top layer as 

→ ( ) ( ( ))
→

= ∈Λk kG Gi i1 2 1, where ( ) ( )= ∑ ∈Λk gG Gi j i j,2
. Similarly, we define the degree sequence 

of the bottom layer as → ( ) ( ( ))
→

= ′ ∈Λk kG Gi i2 1 2, where ( ) ( )= ∑′ ∈Λk gG Gi j i j,1
. The symbol →s t 

highlights the fact that the degree sequence of layer s is built from links pointing from Λs to Λt  
(s, t  =  1, 2). The degree sequences → ( )

→
k G1 2  and → ( )

→
k G2 1  are related by the condition that they 

both add up to the total number of links ( )L G :

( ) ( ) ( )∑ ∑= = ′
∈Λ ∈Λ

L k kG G G .
i

i
j

j
1 2

 (1.23)

Constraints on the top and the bottom layer. We first fix the degree sequence on both layers, 
i.e. we constrain → ( )

→
k G1 2  and → ( )

→
k G2 1  to the values → ( )

→
=

∗ ∗
∈Λk ki i1 2 1 and → ( )

→
′=

∗ ∗
∈Λk k i i2 1 2 

respectively. The constraints are therefore

D Garlaschelli et alJ. Phys. A: Math. Theor. 50 (2017) 015001
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{ → → }
→ → →
=∗

∗ ∗
C k k, .1 2 2 1 (1.24)

As mentioned before, we allow n1 and n2 to depend on n, i.e. ( )=n n n1 1  and ( )=n n n2 2 . In 
order not to overburden the notation, we suppress the dependence on n from the notation.

We abbreviate

∑ ∑

′

δ δ

= =

= =

′

′

∗

∈Λ

∗ ∗

∈Λ

∗

−

∈Λ

−

∈Λ

∗ ∗

m k m k

f n f n

max , max ,

, ,

i
i

j
j

n

i
k

n

j
k1 2 1

1
2 1 2

1
i j

1 2

1

1

2

2

→ →
( ) ( ) 

(1.25)

and assume the existence of

→ →
=

+
=

+∞ ∞
A

n

n n
A

n

n n
lim , lim .

n n
1

1

1 2
2

2

1 2
 (1.26)

(This assumption is to be read as follows: choose ( )=n n n1 1  and ( )=n n n2 2  in such a way 
that the limiting fractions A1 and A2 exist.) The sparse regime corresponds to

( ) →/′ = ∞∗ ∗ ∗m m o L n, .2 3 (1.27)

We further assume that there exist → → ( )N∈Pf f,1 2 2 1 0  such that

∥ → → ∥ ∥ → → ∥
→

( )
( )

→

( )
( )− = − =

∞ ∞
� �f f f flim 0, lim 0.

n

n
g

n

n
g1 2 1 2 2 1 2 1

1
1

2
1 (1.28)

The specific relative entropy is

( )
=

|
+

+
+s

S P P

n n
.n n

n n mic can

1 2
1 2

1 2 (1.29)

Theorem 1.5. Subject to (1.24) and (1.26)–(1.28),

( )
∥ → ∥ ∥ → ∥

→
( ) ( )=

|
+

= +∞
∞

+
� �s

S P P

n n
A f A flim .

n

n n
g g

mic can

1 2
1 1 2 2 2 1

1 2
1 1 (1.30)

Since + =A A 11 2 , it follows that >∞s 0, so in this case ensemble equivalence never holds.

Constraints on the top layer only. We now partly relax the constraints and only fix the degree 
sequence → ( )

→
k G1 2  to the value

→ ( )
→ →
= =∗ ∗ ∗

∈ΛC k k ,i i1 2 1
 (1.31)

while leaving → ( )
→
k G2 1  unspecified (apart for the condition (1.23)). The microcanonical  

number of graphs satisfying the constraint is

→
→

⎛
⎝
⎜

⎞
⎠
⎟∏Ω =

∈Λ
∗

∗
n

k
.

k
i i

2

1 2
1

 (1.32)

The canonical ensemble can be obtained from (1.5) by setting

θ θ= ⋅H kG G, .1 2( ) → ( )
→ → →

 (1.33)

Setting 
→ →
θ θ= ∗ in order that equation (1.5) is satisfied, we can write the canonical prob-

ability as

( ) ( ) ( )( ) ( )∏= −
∈Λ

∗ ∗ −P p pG 1
i

i
k

i
n kG G

can
i i

1

2

 (1.34)
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with =∗
∗

pi
k

n
i

2
. Let

( )N∑ δ= ∈−

∈Λ

∗ Pf n .n
i

k2
1

0i1

2
 (1.35)

Suppose that there exists an ( )N∈Pf 0  such that

∥ ∥
→

( )− =
∞

�f flim 0.
n

n g1
1 (1.36)

The relative entropy per node can be written as

( )
∥ ∥ ( )=

|
+

=
+

+
+

�s
S P P

n n

n

n n
f ,n n

n n
n g

mic can

1 2

1

1 2
n1 2

1 2

1
1

2
 (1.37)

with

( ) ( ) ⩽ ⩽I N
⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦
⎥= − ∈g k n

k

n
k klog Bin , , ,n k n2

2
0 02 2 (1.38)

and ( )( )( ) ( ) ( )= − −n kBin , k

n

n

k

k

n
k n k

k
n k

2
2

2

2

2 2  for = …k n0, , 2 and equals to 0 for k  >  n2. We fol-

low the convention ( ) =0 log 0 0.
In this partly relaxed case, different scenarios are possible depending on the specific reali-

sation of the thermodynamic limit, i.e. on how n n,1 2 tend to infinity. The ratio between the 

sizes of the two layers →= =∞c limn
n

n

A

A
2

1

2

1
 plays an important role.

Theorem 1.6. Subject to (1.31) and (1.36):

 (1) If → → ∞∞n n
2  with n1 fixed ( = ∞c ), then →= =∞ ∞ +s slim 0n n n1 2 .

 (2) If → → ∞∞n n, n
1 2  with = ∞c , then →= =∞ ∞ +s slim 0n n n1 2 .

 (3) If → → ∞∞n n
1  with n2 fixed (c  =  0), then

= =∞
∞

+ �s s flim .
n

n n gn1 2 1
2

∥ ∥
→

( ) (1.39)

 (4) If → → ∞∞n n, n
1 2  with [ )∈ ∞c 0, , then

∥ ∥ ( )=
+

∞ �s
c

f
1

1
.g1 (1.40)

Constraints on the total number of links only. We now fully relax the constraints and only fix 
the total number of links, i.e.

→
=∗ ∗C L . (1.41)

In analogy with the corresponding result for the uni-partite case (theorem 1.4), in this case 
ensemble equivalence is restored.

Theorem 1.7. Subject to (1.41), the specific relative entropy equals =∞s 0.

1.3.3. Multiple layers. We now come to our most general setting where we fix a finite number 
N∈M  of layers. Each layer s has ns nodes, with ∑ == n ns

M
s1 . Let ( )vi

s  denote the ith node of 

layer s, and { }( ) ( )Λ = …v v, ,s
s

n
s

1 s
 denote the set of nodes in layer s. We may allow links both 

within and across layers, while constraining the numbers of links among different layers sepa-
rately. But we may as well switch off links inside or between (some of the) layers. The actual 
choice can be specified by a superstructure, which we denote as the master graph Γ, in which 
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self-loops are allowed but multi-links are not. The nodes set of Γ is { }… M1, ,  and the associ-
ated adjacency matrix has entries

( )                ⎧⎨
⎩γ Γ = s t1 if a link between layers and exists

0 otherwise.s t, (1.42)

The chosen set of all multi-layer graphs with given numbers of nodes, layers, and admis-
sible edges (we admit edges only between layers connected in the master graph) is 

( )⊆Γ= …G G G�
n n n n, , M1 . In section 2.2 we discuss various empirically relevant choices of Γ 

explicitly, while here we keep our discussion entirely general.
Given a graph G, for each pair of layers s and t (including s  =  t) we define the t-targeted 

degree sequence of layer s as → ( ) ( ( ))
→

= ∈Λk kG Gs t i
t

i s, where ( ) ( )= ∑ ∈Λk gG Gi
t

j i j,t
 is the num-

ber of links connecting node i to all other nodes in layer t. For each pair of layers s and t such 
that ( )γ Γ = 1s t, , we enforce the value → ( )

→
=

∗ ∗
∈Λk ks t i

t
i s as a constraint for the t-targeted degree 

sequence of layer s. For ( )γ Γ = 0s t,  we have →
→ →

=
∗

k 0s t , but this constraint is automatically 
enforced by the master graph. Thus, the relevant constraints are

{ →    ( ) }
→ →

γ Γ= = … =∗ ∗
C k s t M: , 1, , 1 .s t s t, (1.43)

We abbreviate

∑ ∑ ∑ δ= = = =∗

∈Λ

∗

∈Λ

∗ ∗

∈Λ

∗ −

∈Λ

∗L k k m k f n, max , ,s t
i

i
t

j
j
s

s t
i

i
t

s t
n

s
i

k,
1

s t
s

s

s

i
t→ →

( ) 
(1.44)

where ∗Ls t,  is the number of links between layers s and t (note that ∗Ls s,  is twice the number of 
links inside layer s), and assume the existence of

→
= ∀

… ∞
A

n

n
slim ,s

n n

s

, , M1
 (1.45)

where ∑ == A 1s
M

s1 . (As before, this assumption is to be read as follows: choose ( )=n n ns s , 
⩽ ⩽s M1 , in such a way that the limiting fractions As, ⩽ ⩽s M1 , exist.) The sparse regime 

corresponds to

→ → ( ) →

→ ( ) →

/

/

= ∞ ∀ ≠

= ∞ ∀

∗ ∗ ∗

∗

m m o L n n s t

m o n n s

, , ,

, .
s t t s s t s t

s s s s

,
2 3

1 2 (1.46)

We further assume that there exists → ( )N∈Pfs t 0  such that

∥ → → ∥ ∥ → → ∥
→

( )
( )

→

( )
( )− − =

∞ ∞
� �f f f flim , lim 0.

n
s t
n

s t g
n

s s
n

s s g
s

s

s

s
1 1 (1.47)

Theorem 1.8. Subject to (1.43) and (1.45)–(1.47),

∥ → ∥

( )

( )∑=

γ Γ

∞
=
=

�s A f .
s t

M

s s t g
, 1

1s t,

1
 (1.48)

The above result shows that, unless As  =  0 whenever ( )γ Γ = 1s t,  (i.e. unless only the nodes 
of the master graph that have no links or self-loops contribute a finite fraction of nodes in the 
corresponding layers), ensemble equivalence does not hold.

1.3.4. Relaxing constraints in the multilayer case. We next study the effects of relaxing con-
straints. This deserves a separate discussion, since in the multi-partite setting there are more 
possible ways of relaxing the constraints than in the uni-partite and bi-partite settings.
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One class of layers. We first fix two kinds of constraints: (1) the total number of links 
between some pairs of layers; (2) the degree sequence between some other pairs of layers. 
We define the set of the edges of the master graph as {( ) ( ) ( ) }γ Γ= ∈ × =E s t M M, : 1s t, . 
Then, we partition E into two parts, namely ⊆D L E, , with ∩ = ∅D L , D and L symmetric, 
by requiring that ( )∈Ds t,  (∈ L) when ( )∈Dt s,  (∈ L). For each pair of layers ( )∈Ds t,  we 

fix the degree sequence →
→ ∗
ks t of every node of Λs linking to Λt. As before, we impose that 

∑ = ∑∈Λ
∗

∈Λ
∗k ki i

t
j j

s
s t

. For each pair of layers ( )∈Ls t,  we fix the total number of links ∗Ls t,  
( =∗ ∗L Ls t t s, , ).

The effect of relaxing some constraints affects the specific relative entropy: this will 
decrease because the pairs of layers with relaxed constraints (i.e. the pairs in L) no longer 
contribute.

Theorem 1.9. Subject to the above relaxation,

∥ → ∥
( )

( )∑=∞
∈

�
D

s A f .
s t

s s t g
,

1 (1.49)

In particular, equivalence holds if and only if = ∅D  or As  =  0 for all s endpoints of ele-
ments in E. Note that, if = ∅D , then we have a finite number of constraints (at most M2), and 
this implies equivalence of the ensembles.

Two classes of layers. We may further generalise theorem 1.8 as follows. Suppose that we 
have two classes of layers, M1 and M2. For every pair of layers ∈Ms t, 1 such that ( )γ Γ = 1s t, , 

we fix the degree sequences →
→ ∗
ks t and →

→ ∗
kt s. For every pair of layers ∈Ms 1, ∈Mt 2, ( )γ Γ = 1s t,  

we fix the degree sequence →
→ ∗
ks t from the layer in M1 to the layer in M2 (but not vice versa). 

We show that the resulting specific relative entropy is a mixture of the one in theorem 1.8 and 

the one in theorem 1.6. For = …s M1, ,  we set →= … ∞A lims n n n
n

n, , , M

s

1 2
.

Theorem 1.10. Subject to the above relaxation,

∥ → ∥
 
( )

( )∑=

γ Γ

∞
∈ ∈ ∪

=

�
M M M

s A f .
s t

s s t g
,

1s t

1 1 2

,

1

 (1.50)

In particular,

γ Γ= = ∀ ∈ ∈ ∃ ∈ ∪ =∞ M M Ms A s u t0 0 : with 1 .s u t1 1 2 ,{ }⟺     ( )
 

(1.51)

Another way for relaxing constraints. We may think about another way for relaxing the con-
straints. We assume that ( )γ Γ = 1s t,  for all = …s t M, 1, 2, ,  and we fix →

→ →
= ∑
∗

=
∗

k ks t
M

s t1  for 
each = …s M1, 2, , . This means that for each node we fix its degree sequence (no matter 
to which target layer, possibly its own layer). In this case we lose the multi-layer structure: 
constraints are no longer involving pairs of layers and the graphs are effectively uni-partite. 
This is the same case described in the configuration model of theorem 1.1. There are still an 
extensive number of local constraints, and the ensembles are nonequivalent.

2. Discussion

In this section  we discuss various important implications of our results. We first consider 
properties that are fully general, and afterwards focus on several special cases of empirical 
relevance.
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2.1. General considerations

2.1.1. Poissonisation. The function g in (1.17) has an interesting interpretation, namely,

( ) ( [ ] [ ] )δ= |g k S k kPoisson (2.1)

is the relative entropy of the Poisson distribution with average k w.r.t. the Dirac distribution 
with average k. The specific relative entropy in (1.1) for the uni-partite setting can therefore be 
seen as a sum over k of contributions coming from the nodes with fixed, respectively, average 
degree k. The microcanonical ensemble forces the degree of these nodes to be exactly k (which 
corresponds to [ ]δ k ), while the canonical ensemble, under the sparseness condition in (1.14), 
forces their degree to be Poisson distributed with average k. The same condition ensures that 
in the limit as →∞n  the constraints act on the nodes essentially independently.

The same interpretation applies to theorems 1.5–1.6 and 1.8–1.10. The result in theorem 
1.6(3) shows that in the bi-partite setting, when one of the layers tends to infinity while the 
other layer does not, Poissonisation does not set in fully. Namely, we have

( ) ( ) ( ) [ ] ( )
⎛

⎝
⎜

⎞

⎠
⎟∑ δ= = |

=

s f k g k g k S k n
k

n
, Bin , .n

k

n

n n
1

 (2.2)

In words, the canonical ensemble forces the nodes in the infinite layer with average degree k 
to draw their degrees towards the n nodes in the finite layer essentially independently, giving 
rise to a binomial distribution. Only in the limit as →∞n  does this distribution converge to 
the Poisson distribution with average k.

2.1.2. Additivity versus non-additivity. In all the other examples known so far in the litera-
ture, the generally accepted explanation for the breaking of ensemble equivalence is the pres-
ence of a non-additive energy, induced e.g. by long-range interactions [15, 16]. However, in 
the examples considered in the present paper, nonequivalence has a different origin, namely, 
the presence of an extensive number of local constraints. As we now show, this mechanism 
is completely unrelated to non-additivity and is therefore a novel mechanism for ensemble 
nonequivalence.

Intuitively, the energy of a system is additive when, upon partitioning the units of the system 
into non-overlapping subunits, the ‘interaction’ energy between these subunits is negligible 
with respect to the internal energy of the subunits themselves. The ‘physical’ size of the sys-
tems considered in this paper is given by the number n of nodes, i.e. we are defining the net-
work to become ‘twice as large’ when the number of nodes is doubled. Think, for instance, of 
a population of n individuals and the corresponding social network connecting these individu-
als: we say that the size of the network doubles when the population doubles. Consistently, in 
(1.9) we have defined the specific relative entropy sn by diving Sn by n. In accordance with this 
reasoning, in order to establish whether in our systems ensemble equivalence has anything to 
do with energy additivity, we need to define the latter node-wise, i.e. with respect to partition-
ing the set of nodes into nonoverlapping subsets. Note that, in the presence of more than one 
layer, we have allowed for the number of nodes in some layer(s) to remain finite (in general, 
to grow subextensively) as the total number of nodes goes to infinity (see for instance theorem 
1.6). In such a situation it makes sense to study additivity only with respect to the nodes in 
those layers that are allowed to grow extensively in the thermodynamic limit.

Formally, if we let I  denote the union of all layers for which As  >  0 (see (1.45)), then we 
say that the energy is node-additive if the Hamiltonian (1.6) can be written as

( ) ( )
→ →

∑θ θ= ∀ ∈
∈

G
I

�H HG G G, , ,
i

i n (2.3)
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where the { } ∈IHi i  do not depend on common subgraphs of G (i.e. each of them can be restricted 
to a distinct subgraph of G), and are therefore independent random variables.

The case of uni-partite graphs with fixed degree sequence (theorem 1.1) is an example 
of ensemble nonequivalence with non-additive Hamiltonian, because the latter is defined 

as ( ) ( )
→
θ θ= ∑ =H kG G, i

n
i i1  and cannot be rewritten in the form of (2.3) with independent 

{ ( )}
→
θH G,i : the degrees ( )k Gi  and ( )k Gj  of any two distinct nodes i and j depend on a common 

subgraph of G, i.e. the dyad ( )g Gi j, . In the example of uni-partite graphs with a fixed total num-

ber of links (see (1.22)), the energy has the form ( ) ( ) ( )
→
θ θ θ= = ∑ =H L kG G G, i

n
i

1

2 1 , which is 

still non-additive. However, the ensembles are in this case equivalent (see theorem 1.4).
By contrast, the case of bi-partite graphs with fixed degree sequence on the top layer and 

the nodes in the other layer growing subextensively (case (3) of theorem 1.6) is an exam-
ple of ensemble nonequivalence with an additive Hamiltonian. Indeed, from (1.33) we see 
that ( )

→
θH G,  is now a linear combination of the n1 degrees of the nodes in layer Λ1, each of 

which depends only on the (bi-partite) subgraph obtained from the corresponding node of 
the top layer and all the nodes of the bottom layer. Here, unlike the uni-partite case, all these 
subgraphs are disjoint. Despite being node-additive, when A1  =  1 (c  =  0) this Hamiltonian 
leads to nonequivalence, as established in (1.39). Similar examples can be engineered using 
some of the relaxations in section  1.3.4. Finally, the case of bi-partite graphs with fixed 
total number of links (theorem 1.7) is an example of ensemble equivalence with an additive 
Hamiltonian.

The four examples above show that additivity or non-additivity of the Hamiltonian does 
not influence the breaking of ensembles equivalence in the examples considered here. What 
matters is the extensiveness of the number of constraints. This observation was already made 
in [55], and is confirmed in full generality for the multi-layer setting treated in the present 
paper. Indeed, our results indicate that, whenever the number κ of constraints on the degrees is 
subextensive, i.e. ( )κ = o n  where n is the number of nodes, ensemble equivalence is restored.

Note that the above notion of node additivity should not be confused with that of edge 
additivity, i.e. the fact that the Hamiltonian can be written as a sum over independent pairs of 
nodes. Due to the linearity of the chosen (local) constraints on the entries { } =gi j i j

n
, , 1 of the adja-

cency matrix of the graph G, our examples are always edge-additive (irrespective of whether 
they are ensemble-equivalent), while they may or may not be node-equivalent, as we have 
seen. In either case, there is no relation between additivity and equivalence.

We stress again that the extensivity of the (local) constraints is, with respect to the mech-
anisms for nonequivalence already explored in the literature so far, an additional (and previ-
ously unrecognised) sufficient mechanism. It is obviously not the only one, and definitely not 
a necessary one, as exemplified by the fact that, in dense networks, nonequivalence has been 
found even in the presence of only two constraints, such as the total numbers of edges and 
triangles [18, 50–52]. However, while in the previous examples the breaking of equivalence 
arises from the nonlinearity (with respect to {gi,j}) of some constraint and is typically found 
in a specific (usually critical) region of the parameter space separating phases where ensemble 
equivalence still applies, in our setting ensemble nonequivalence arises from the extensiveness 
of the number of (linear) constraints and extends to the entire space of parameters of the mod-
els. In this sense it is a stronger form of nonequivalence. Moreover, while the nonequivalence 
of network ensembles with a finite number of constraints was previously reported only for 
dense graphs, we are documenting it for the unexplored regime of sparse graphs.

2.1.3. A principled choice of ensembles. Ensembles of random graphs with constraints are 
used for many practical purposes. Two important examples are pattern detection and network 
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reconstruction. For concreteness, we briefly illustrate these examples before we emphasize 
the implications that our results have for these and other applications.

Pattern detection is the identification of nontrivial structural properties in a real-world net-
work, through the comparison of such network with a suitable null model [53]. For instance, 
community detection is the identification of groups of nodes that are more densely connected 
with each other than expected under a null model [26, 49] (in section 2.2 we discuss the rela-
tion between our models and community detection in more detail). A null model is a random 
graph model that preserves some simple topological properties of the real network (typically 
local, like the degree sequence) and is otherwise completely random. So, maximum-entropy 
ensembles of graphs with given degrees are a key tool for pattern detection.

Network reconstruction employs purely local topological information to infer the higher-
order structural properties of a real-world network [42]. This problem arises whenever the 
complete structure of a network is not known (for instance, due to confidentiality or privacy 
issues), but local properties are. An example relevant for the epidemiology of sexually trans-
mitted diseases is the network of sexual contacts among people, for which only aggregate 
information (the total number of contacts with different partners) can be typically surveyed in 
a population. In such cases, optimal inference about the network can be achieved by maximis-
ing the entropy subject to the known (local) constraints, which again leads to the ensembles 
with fixed degrees considered here.

The aforementioned applications, along with similar ones, make use of random graphs with 
local constraints. Our proof of nonequivalence of the corresponding ensembles have the fol-
lowing important implication. While for ensemble-equivalent models it makes practically no 
difference whether a microcanonical or canonical implementation is applied to large networks, 
for nonequivalent models different choices of the ensemble lead to asymptotically different 
results. As a consequence, while for applications based on ensemble-equivalent models the 
choice of the working ensemble can be arbitrary or be done on mathematical convenience (as 
usually done), for those based on nonequivalent models the choice should be principled, i.e. 
dictated by a theoretical criterion that indicates a priori which ensemble is the appropriate one.

Among the possible criteria, we suggest one that we believe appropriate whenever the 
available data are subject to (even small) errors, i.e. when the measured value 

→∗
C  entering as 

input in the construction of the random graph ensemble is, strictly speaking, the best avail-
able estimate for some unknown ‘true’ (error-free) value 

→×
C . In this situation, we want that 

possible small deviations of 
→∗
C  from 

→×
C  result in small devations of ∗Pmic and ∗Pcan from the 

corre sponding ×Pmic and ×Pcan. Now, if 
→ →
≠∗ ×

C C  (no matter how ‘small’ and in which norm this 
difference is taken), then ∗Pmic will attach zero probability to any graph ×G  that realises the 
‘true’ constraint 

→×
C : ( ) =∗ ×P G 0mic , while ( )≠× ×P G 0mic . Indeed, ∗Pmic and ×Pmic will have non-

overlapping supports, so they will sample distinct sets of graphs. This means that even small 
initial errors in the knowledge of the constraints will be severely propagated to the entire 
microcanonical ensemble, and inference based on the latter will be highly biased. In par-
ticular, the ‘true’ network will never be sampled by ∗Pmic. On the other hand, if the difference 
between 

→∗
C  and 

→×
C  is small, then the difference between ∗Pcan and ×Pcan will also be small. So, 

even though 
→×
C  is unknown, any graph ×G  that realises this value will be given a probability 

( )∗ ×P Gcan  that is nonzero and not very different from the probability ( )× ×P Gcan  that would be 
obtained by knowing the true value 

→×
C . In general, small deviations of 

→∗
C  from 

→×
C  imply that 

( )∗P Gcan  is not very different from ( )×P Gcan  for any graph G, as desired. This implies that even if 
→∗
C  is affected by small errors, then a principled choice of ensembles is the canonical one. So, 
besides being the mathematically simpler option, we argue that canonical ensembles are also 
the most appropriate choice in the presence of ‘noise’. A similar claim was already made in 
[54], and is here strengthened by our proof of nonequivalence.
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2.2. Special cases of empirical relevance

Different choices of the master graph Γ induce different structural features in the graphs of the 
ensemble G�n. Convenient choices allow us to consider certain classes of graphs that have been 
introduced recently to study appropriate types of real-world networks of empirical relevance. 
We discuss some of these choices below. The full generality of our results in section 1.3.3 
allows us to immediately draw conclusions about the (non)equivalence of the corresponding 
ensembles in each case of interest. As an important outcome of this discussion, all the empiri-
cally relevant ensembles of graphs turn out to be nonequivalent. In line with our general obser-
vation at the end of the previous section, this implies that a principled choice of ensembles is 
needed in all practical applications.

2.2.1. Scale-free uni-partite networks. Clearly, the trivial case when the master graph has a 
single node (M  =  1) with a self-loop, i.e. ( )γ Γ = 111 , corresponds to the class of uni-partite 
graphs we considered in section 1.3.1. Many real-world networks, at least at a certain level of 
aggregation, admit such uni-partite representation. Examples include the Internet, the World 
Wide Web and many biological, social and economic networks. A common property displayed 
by most of these real-world networks is the presence of a ‘broad’ empirical degree distri-
bution, often consistent with a power-law distribution with an upper cut-off [12]. Networks 
with a power-law degree distribution are said to be scale-free [14]. This empirical observa-
tion implies that real-world networks are very different from Erdős-Rényi random graphs 
(which have a much narrower degree distribution) and are more closely reproduced by a con-
figuration model with a truncated power-law degree distribution fn (see (1.15)) of the form 

( ) ⩽ ⩽ ( )I= γ
γ−f k A kn n k k n, 1 c  with γ> 1, γA n,  the normalisation constant, and ( )→ = ∞∞ k nlimn c  

and ( ) ( )=k n o nc . The so-called structural cut-off kc(n) makes the networks sparse, as in 
condition (1.14) [12]. Since ∥ ∥→ ( )− =∞ �f flim 0n n g1  with ( ) / ( )ζ γ= γ−f k k  for ⩾k 1 and 0 
elsewhere, where ζ is the Riemann zeta-function, our result in (1.19) tells us that

( ) ( )
( )

( )
N N
∑ ∑ζ γ

= = γ
∞

∈ ∈

−s g k f k g k k
1

.
k k

 (2.4)

Since ( ) ( ) ( )π= + −g k k O klog 21

2
1  as →∞k , we find that ∞s  tends to 1 as →γ ∞ and diverges 

like / ( )γ∼ −1 2 1  as γ ↓ 1. This result shows that the simplest random graph ensemble con-
sistent with the scale-free character of real-world networks is nonequivalent. Interestingly, 
as the tail exponent γ decreases, the degree distribution becomes broader and the degree of 
nonequivalence increases. A similar conclusion was drawn in [55].

Remark 2.1. Suppose that for each N∈n  the degrees are drawn in an i.i.d. manner from 
the truncated degree distribution fn. Suppose further that ( )N∑ <∞∈ kf kk 0

, i.e. γ> 2. Then, 
because ( ) ( )N N N∑ = ∑ <∞∈ ∈ ∈kf k kf ksupn k n k0 0

, conditional on the sum of the degrees being 
even, the degree sequence is graphical with a probability tending to one as →∞n . This fact 
is the analogue of the result in [3] mentioned in remark 1.2, and its proof is a straightforward 
extension of the argument in [3]. Truncation improves the chance of being graphical.

2.2.2. Multipartite networks. The case when the master graph has only M  =  2 interconnected 
nodes and no self-loops, i.e. ( ) ( )γ γΓ Γ= = 11,2 2,1  and ( ) ( )γ γΓ Γ= = 01,1 2,2 , coincides with 
the class of bi-partite graphs discussed in section 1.3.2. Popular real-world examples relevant 
to economics, ecology and scientometrics are bank-firm, plant-pollinator and author-paper 
networks, respectively. In this case as well, empirical evidence shows that real-world bi-partite 

D Garlaschelli et alJ. Phys. A: Math. Theor. 50 (2017) 015001



16

networks have broad degree distributions (at least on one of the two layers, and typically 
on both). Random graph models with only a global constraint on the total number of links 
(as in theorem 1.7) are therefore unrealistic. The minimal ensemble that is consistent with 
the properties of most real-world bi-partite networks requires the specification of the degree 
sequence(s) as constraint(s) and is therefore nonequivalent.

A direct generalisation of the bi-partite case is when Γ is an M-dimensional matrix with 
zeroes along the diagonal and ones off the diagonal: ( )γ Γ = 0s s,  ∀ s and λ for all ≠s t. The 
induced graphs in G�n have an ‘all-to-all’ multipartite structure (i.e. links are allowed between 
all pairs of distinct layers, but not inside layers). From our theorem 1.8 it follows that if the 
t-targeted degree sequences are specified as a constraint, then the relative entropy in the all-
to-all multipartite case is

∥ → ∥ ( )∑= >∞
=
≠

�s A f 0,
s t
s t

M

s s t g
, 1

1 (2.5)

which proves again ensemble nonequivalence.

2.2.3. Stochastic block-models. Another important example is when the master graph is a 
complete graph with all self-loops realised, i.e. ( )γ Γ = 1s t,  for all s,t. This prescription gen-
erates the class of so-called stochastic block-models, which are very popular in the social 
network analysis literature [27, 37, 39]. The earliest and simplest stochastic block-model [37] 
is one where only the total numbers of links between all pairs of blocks (including within 
each block) are specified. When we identify blocks with layers, this model coincides with our 
relaxed model considered in theorem 1.9, with = ∅D . It follows as a corollary that this model 
is ensemble equivalent:

=∞s 0. (2.6)

However, this model predicts that, within each block, the expected topological properties of 
the network are those of an Erdős-Rényi random graph, a property that is contradicted by 
empirical evidence. So, unless the number of blocks is chosen to be comparable with the 
number of nodes (which in our case is contradicted by the requirement that M is finite), the 
traditional block-model is not a good model of real-world networks.

More recently, emphasis has been put on the more realistic degree-corrected stochastic 
block-model [39], where an additional constraint is put on the degree of all nodes. An even 
more constrained variant of this model has been proposed in [27], where the constraints coin-
cide with the t-targeted degree sequences { → }

→
ks t s t,  among all pairs of blocks. To distinguish 

this model from the ‘generic’ degree-corrected block-model, we call it the targeted degree-
corrected block-model. This coincides with our model in section 1.3.3, with the block structure 
given by the (complete) master graph. From theorem 1.8 we calculate the relative entropy as

∥ → ∥ ( )∑= >∞
=

�s A f 0.
s t

M

s s t g
, 1

1 (2.7)

We can therefore conclude that, unlike the traditional block-model considered above, the 
targeted degree-corrected model is ensemble nonequivalent. We also note that, unlike stated 
in [27], the targeted degree-corrected block-model is not just a reparametrisation of the untar-
geted degree-corrected model. While fixing the targeted degree sequences automatically real-
ises the constraints of the untargeted model, the converse is not true. Being a relaxation of 
the targeted model, we expect the untargeted model to have a relative entropy smaller than in 
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(2.7), further illustrating the difference between the two models. Yet, we expect the relative 
entropy in the untargeted model to be strictly positive for, every choice of the degree sequence, 
since there is still an extensive number of active constraints. This would support the claim 
made in [48] that, for small values of the degrees, the degree-corrected block-models with soft 
and hard constraints are not equivalent in the thermodynamic limit. At the same time, it would 
contradict the claim made in the same reference that, if all degrees become large (but still in 
the sparse regime), the two ensembles become equivalent. Indeed, from the behaviour of g(k) 
for large k (see (1.18)) and the normalisation by n in (1.9), we expect a finite specific relative 
entropy in that case as well.

2.2.4. Networks with community structure. Another very important class of graphs that are 
studied intensively in the literature are graphs with community structure [26, 49]. This class is 
related to the block-models described above, but is in general different. Community structure 
is loosely defined as the presence of groups of nodes that are more densely interconnected 
internally than with each other. One of the possible ways to quantitatively define the pres-
ence of communities in a real-world network is in terms of a positive difference between the 
realised number of intra-community links and the corresponding expected number calculated 
under a certain null hypothesis. This definition can be made more explicit by introducing the 
concept of modularity [26, 49]. For a graph with n nodes, a non-overlapping partition of nodes 
into M communities can be specified by the n-dimensional vector ( )H y , where the i-th entry 

{ }σ ∈ … M1, ,i  is an integer number labelling the community to which node i is assigned by 
that particular partition. For a given real-world graph ∗G , the modularity is a function on the 
space of possible partitions, defined as

( ) ( ( ) ⟨ ⟩)
⩽ ⩽

→ ∑σ δ= − σ σ
<

∗∗ ∗Q K g gG ,
i j n

ij ijG G
1

,i j (2.8)

where ∗KG  is an (inessential) normalisation constant (independent of the partition →σ) intended 
to have the property [ ]∈ − +∗Q 1, 1G , and ⟨ ⟩gij  is the expected value of ( )g Gij  under the null 
hypothesis. The null hypothesis leads to a null model for the real-world network ∗G . The most 
popular choice for this null model is the canonical configuration model in the sparse regime, 
which gives ⟨ ⟩ /= ∗ ∗ ∗g k k L2ij i j  for ≠i j and ⟨ ⟩ =g 0ii , where ∗ki , 

∗k j and L* are all calculated on ∗G  
(see (3.7) in the proof of theorem 1.1).

Now, if the real-world network ∗G  is indeed composed of communities, then the partition 
†→σ  that encodes these communities will be such that σ >∗Q 0G ( )†→ , i.e. the total number of 

links inside communities will be larger than the expected number under the null model. More 
stringently, the ‘optimal’ partition into communities can be defined as the one that maximises 

( )→σ∗QG , provided that the corresponding value ( )→
→ σσ ∗Qmax G  is positive. Indeed, one of the 

most popular ways in which communities are looked for in real-world networks is through the 
process of modularity maximisation. The higher the value of the maximised modularity, the 
sharper the community structure. In practice, the problem of community detection is compli-
cated by the possible existence of many local minima of ( )→σ∗QG  and by the fact that ( )†→σ∗QG  
may be positive even for ‘noisy communities’, i.e. communities induced by chance only out 
of randomness in the data.

In our setting, community structure can be easily induced in the multilayer graph ensemble 
( )Γ= …G G�

n n n, , M1  through a convenient choice of the master graph Γ and of the constrained 
t-targeted degree sequences { → }

→∗
ks t . First, we identify the M layers { }Λs  with the desired com-

munities and define the corresponding partition †→σ  through †σ = Λi s if =D mm0.01 . Next, we 
require that the master graph Γ has all possible self-loops, plus a desired number of additional 
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edges that need not be maximal (pairs of distinct communities are not necessarily connected 
in real-world networks). Finally, we need to require that the t-targeted degree sequences 
induce an excess of intra-community links with respect to the null model, so that the modu-
larity is at least positive, i.e. ( )†→σ >∗Q 0G , and at best maximised by the desired partition, i.e. 

( )†→
→

→σ σ= σ ∗Qargmax G . To this end, we rewrite

( ) ( ( ) ⟨ ⟩)

( ( ) ⟨ ⟩)

( )

†

⩽ ⩽

⩽ ⩽

→
† †

† †

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

∑

∑

∑ ∑

∑ ∑

∑ ∑

σ δ

δ

= −

= −

= −

= −

= −
∑

σ σ

σ σ

<

∗

∗

= ∈Λ

∗
∗ ∗

∗

=

∗
∗
∈Λ

∗

=

∗

=
∗

=

∗

∗ ∗

∗

∗

∗

∗

Q K g g

K
g g

K
g

k k

L

K
L

L
k

K
L

L
L

G

G

G

2

2 2

2

1

2

2

1
,

i j n
ij ij

i j n
ij ij

s

M

i j
ij

i j

s

M

s s
i

i

s

M

s s
s t
M

s t t

M

s t

G G

G

G

G

G

1
,

1 ,
,

1 ,

1
,

2

1
,

, 1 , 1
,

2

i j

i j

s

s

 

(2.9)

where we use ( ) ⟨ ⟩= =∗g gG 0ii ii , = ∑∗
=

∗k ki t
M

i
t

1  and = ∑∗
=

∗L L2 s t
M

s t, 1 , . So, the weaker condition 

( )†→σ >∗Q 0G  is realised by requiring that { → }
→∗
ks t  satisfies the inequality

( )
∑ >

∑ ∑

∑=

∗ = =
∗

=
∗L
L

L
,

s

M

s s
s
M

t
M

s t

s t
M

s t1
,

1 1 ,
2

, 1 ,

 (2.10)

where = ∑∗
∈Λ

∗L ks t i i
t

, s
. The above inequality explicitly states that the number of realised intra-

community edges counted in the left-hand side should be larger than the expected number 
calculated in the right-hand side. The stronger condition ( )†→

→
→σ σ= σ ∗Qargmax G  should instead 

be enforced by looking for the specific { → }
→∗
ks t  that maximises (2.9).

Independently of how communities are induced in our framework, our results show that 
ensembles of random graphs with community structure (according to the definition above) 
are nonequivalent, with a relative entropy given by (1.48) where the degree distributions 
{ → }fs t  are induced by suitable t-targeted degree sequences that realise (2.10) and possibly 
also σ σ= σ ∗Qargmax G ( )†→

→
→

.

2.2.5. Multiplex networks and time-varying graphs. Two other important classes of graphs 
that have recently gained attention are those of multiplex networks [11] and time-varying 
graphs [38].

Multiplex networks are networks where the same set of nodes can be connected by M 
different types of links [11]. Two examples, both studies in [32], are the multiplex of inter-
national trade in different products (where nodes are world countries and links of different 
type represent international trade in different products) and the multiplex of flights by dif-
ferent airlines (where nodes are airports and links of different type represent flights operated 
by different companies). An equivalent and widely used representation for a multiplex is one 
where a number M of layers is introduced, the same nodes are replicated in each layer, and 
inside each layer an ordinary graph is constructed, specified by all links of a single type. Links 
only exist within layers, and not across layers. Indeed, what ‘couples’ the different layers and 
makes a real-world multiplex different from a collection of independent layers is the empirical 
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fact that the topological properties of the layer-specific networks are typically strongly (either 
positively or negatively) correlated. For instance, networks of trade in different products have 
a similar structure, and most notably countries that are ‘hubs’ in one layer are likely to be 
hubs in other layers as well. By contrast, airports that are hubs for a domestic airline are likely 
not to be hubs for other domestic airlines [32]. This means that, for each node i in real-world 
networks, the M numbers of intra-layer links (i.e. the intra-layer degrees) are in general (anti)
correlated.

Time-varying graphs are collections of temporal snapshots of the same network [38]. If 
the set of nodes in the network does not change with time, then a time-varying graph can be 
represented as a multiplex where each temporal snapshot is a single layer. (Note that multi-
plex networks themselves can vary over time [46].) Again, while not interacting directly via 
links, the different layers are mutually dependent because of empirical correlations between 
the properties of the same physical network across its temporal snapshots. Therefore this type 
of time-varying graphs can be treated in a way formally similar to that used for multiplex 
networks, the only difference being that a natural temporal ordering can be defined for the 
snapshots of time-varying graphs, while this is in general not true for the layers of a multiplex.

In our framework, a multiplex or time-varying network can be introduced by identifying 
each link type with a layer Λs and by requiring that the only edges of the master graph Γ are 
self-loops, i.e. ( )γ Γ = 1s s,  for s  =  1, M and ( )γ Γ = 0s t,  for ≠s t. Note that this specification, 

which implies →
→ →

=
∗

k 0s t  for ≠s t, is somehow ‘dual’ to the one defining all-to-all multipartite 
networks (see above). The fact that nodes in different layers are replicas of the same set of 
n nodes implies that |Λ |s  is the same for all s, i.e. ns  =  n/M. Finally, the ‘coupling’ between 
the topological properties of different layers can be introduced by assigning (anti)correlated 

t-targeted degree sequences, i.e. by choosing (anti)correlated entries for every pair of vectors 

→
→∗
ks s and →

→∗
kt t, ≠s t. Real-world multiplexes, including the two examples made above, are 

well reproduced by such a model [32]. Our results imply that the relevant ensembles are non-
equivalent. In particular, as a corollary of theorem 1.8 we have

∥ → ∥ ( )∑=∞
=

�s
M

f
1

.
s

M

s s g
1

1 (2.11)

So, the relative entropy between the microcanonical and canonical distributions is the average 
of the relative entropy of all layers, where for each layer s the relative entropy is the same as 

that obtained for a uni-partite network with n/M nodes and limiting degree distribution →fs s 

(see theorem 1.1). Moreover, the presence of correlations between →
→∗
ks s and →

→∗
kt t translate 

into dependencies between ∥ → ∥ ( )�fs s g1  and ∥ → ∥ ( )�ft t g1 . In particular, in case of perfect cor-
relation ( → →

→ →
=

∗ ∗
k ks s t t for all s, t), all the degree distributions are equal to a common one 

→ =f fs s  ∀ s, and we get

∥ ∥ ( )=∞ �s f .g1 (2.12)

In this case, the degree of nonequivalence is the same as that obtained for a single uni-partite 
network with n/M nodes and limiting degree distribution f (see theorem 1.1).

2.2.6. Interdependent multilayer networks. Finally, we discuss the class of interdependent 
multilayer networks, which are multiplex networks with the addition of inter-layer links [11]. 
Nodes in different layers are still replicas of the same set of nodes, so we still have ns  =  n/M 
for all s. Similarly, the topological properties of different intra-layer networks are still (anti)
correlated, which can be again realised by choosing (anti)correlated entries for every pair of 

vectors →
→∗
ks s and →

→∗
kt t, ≠s t. However, while we still require ( )γ Γ = 1s s,  for s  =  1, M, now 
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we no longer require ( )γ Γ = 0s t,  for ≠s t. Therefore the degree of nonequivalence can only 
increase with respect to (2.11). Indeed, theorem 1.8 now leads to

∥ → ∥

( )

( )∑=

γ Γ

∞
=
=

�s
M

f
1

,
s t

M

s t g
, 1

1s t,

1
 (2.13)

which shows that the relative entropy is no longer only an average over the layer-specific rela-
tive entropies, since inter-layer relative entropies give additional contributions.

2.2.7. Networks of networks. A final class of graphs worth mentioning is the so-called net-
works of networks, sometimes constructed by different ‘micro-networks’ that are coupled 
together into a ‘macro-network’ where each node is a micro-network itself [22]. This class is 
similar to the interdependent multilayer networks considered above, but here there is no iden-
tification of the nodes in different layers to the same physical entity. An example is provided 
by multi-scale transport networks, where different cities are internally characterised by their 
local urban transport networks and at the same time are coupled through a long-distance inter-
city transport network (like highways or flights). In our framework, this class of network can 
be induced by identifying the master graph Γ with the macro-network, and the M intra-layer 
subgraphs with the micro-networks. To have all micro-networks non-empty, the master graph 
must have all self-loops realised. This case is similar to the block-model mentioned above, 
but now the master graph itself can be chosen to have nontrivial structural properties, such as 
community structure, to resemble the specific properties of real-world networks of networks.

If the t-targeted degree sequences { → }
→∗
ks t  (s, t  =  1, M) are all enforced as constraints, then 

the relative entropy is given by (1.48) with ( )γ Γ = 1s s,  for all s. However, in this class of 

models it is often more natural to assume that the internal degree sequence →
→∗
ks s of each 

micro-network (layer) s is enforced (in order to get realistic micro-network topologies), while 
between every pair s, t ( ≠s t) of micro-networks only the number of links ∗Ls t,  is fixed (because 
the topology of the master graph is already chosen in order to replicate the empirical macro-
network). This leads to the relaxed model in theorem 1.9 with {( ) }= =D s s s M, : 1, . The 
relative entropy is therefore

∥ → ∥ ( )∑=∞
=

�s A f
s

M

s s s g
1

1 (2.14)

and is still positive, even though the links among micro-networks do not contribute to it.

3. Proof of the theorems

3.1. Proof of theorem 1.1

Proof. The microcanonical number →Ω �
k

 is not known in general, but asymptotic results exist 
in the sparse regime defined by the condition (1.14). For this regime it was shown in [6, 43] that

Ω =
∏ =

∗
− + +∗

∗ ∗

∗ ∗ − ∗

k

2

!
e ,

k

L

e
L

i
n

i

k k o n k

2

1

2 1
4

2 2 1 3( )
( / ) ( )→ (3.1)

where = ∑∗ −
=

∗k n ki
n

i
1

1  (average degree), /=∗ ∗L nk 2 (number of links), = ∑∗ −
=

∗k n ki
n

i
2 1

1
2 

(average square degree). The canonical ensemble has Hamiltonian ( ) ( )
→
θ θ= ∑ =H kG G, i

n
i i1 , 
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where G is a graph belonging to Gn, and ( ) ( )= ∑ ≠k gG Gi j i i j,  is the degree of the node i. The 
partition function equals

( )

( )

( )

⩽ ⩽

( )

⩽ ⩽

( ) ( )

⩽ ⩽
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→

∑ ∑ ∏
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(3.2)

The canonical probability equals

( )
( )

⩽ ⩽
( ) ( )

⩽ ⩽

( ) ( )

( )
→

→ ∏θ
θ

| =
∏

=
+

θ θ θ θ
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<
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− +
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e e

1 e
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i j n
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i j n
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1

1

i j i j i j i j

i j

, ,

 (3.3)

Setting /( )≡ +θ θ θ θ∗ − − − −∗ ∗ ∗ ∗
p e 1 eij

i j i j , and 
→
θ ∗ such that

∑
+

= ∀
θ θ

θ θ
≠

− −

− −
∗

∗ ∗

∗ ∗ k i
e

1 ej i
i

i j

i j
 (3.4)

we have

( ) ( ) ( )
⩽ ⩽
∏= −
<

∗ ∗ −P p pG 1 .
i j n

ij
g

ij
g

can
1

1ij ij

 (3.5)

It is ensured by (1.14) that → ⩽ ⩽∑ =∞ <
∗�plim 0n n i j n ij

1
1

2 , a condition under which we can show 

that (3.5) has the same asymptotic behaviour as

∏= −
<

∗ ∗ −� ��P p pG 1 ,
i j n

ij
g

ij
g

can
1

1ij ij( ) ( ) ( )
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 (3.6)

with

= =θ θ∗ − −
∗ ∗

∗

∗ ∗
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L
e

2
.ij

i j
i j (3.7)

Indeed,
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This implies ( ) / ( )⩽ ⩽ ⩽ ⩽∑ − = −∑ +<
∗

<
∗ ∗ ∗p k k L o nln 1 2i j n ij i j n i j1 1 . Thus,
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( ) ( ) ( )∑= − − +∗

=

∗ ∗ ∗ ∗ ∗P k k L L L o nGln ln ln 2 .
i

n

i ican
1

 (3.11)

Combining (3.1) and (3.11), we obtain (recall (1.17))

( ) ( ) ( ) →∑| = + ∞
=

∗S P P g k o n n, ,n
i

n

imic can
1

 (3.12)

where ( )( ) = −g k log k

k

!

ek k , as defined in (1.17). With the help of (1.15) this reads

( ) ( ) ( ) ( ) ∥ ∥ ( )( )∑| = + = +−
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1
mic can

0

1 (3.13)

which together with (1.16) yields the claim. □

3.2. Proof of theorem 1.4

Proof. The microcanonical ensemble is easy: the number of graphs with a fixed fraction 
( )λ∈ 0, 1  of links is
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⎛
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n
,

2
.L

n

2
 (3.14)

The canonical ensemble has the Hamiltonian ( ) ( )θ θ=H LG G, , where G is a graph belonging 
to Gn, and ( ) ( )⩽ ⩽= ∑ <L gG Gi j n i j1 ,  is the number of links in G. The partition function equals

∑ ∑ ∏ ∏θ = = = +θ θ θ
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 (3.15)

The canonical probability equals

( )
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( )
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1
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(3.16)

with =
+

θ

θ

−

−p e

1 e
. We search for θ∗ such that

⩽ ⩽
∑= =

+

θ

θ
∗

<

∗ ∗
−

−

∗

∗L p p,
e

1 e
.

i j n1
 (3.17)

It follows that λ=∗p . Thus,

λ λ
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λ
λ
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This in turn implies that

( )
→

|
=

∞

S P P

n
lim 0.

n

n mic can
 (3.19)

 □

3.3. Proof of theorem 1.5

Proof. We start by describing the canonical ensemble. The Hamiltonian is

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

θ φ θ φ

θ φ θ φ
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′
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(3.20)

The partition function is

∑ ∏ ∏θ φ = = +
∑ ∑ θ φ

θ φ

∈

− +
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(3.21)

The canonical probability becomes

∏ ∏ ∏ ∏
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( ) ( )
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(3.22)

where 
( )

( )=
+

θ φ

θ φ

− +

− +pi j,
e

1 e

i j

i j
. We search for ( )

→ →
θ φ∗ ∗

,  that solves the system of equations
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 (3.23)

where 
( )

( )
=∗

+

θ φ

θ φ

− ∗+ ∗

− ∗+ ∗
pi j,

e

1 e

i j

i j
. If ∗G  is any graph in Gn n,1 2 such that ( ) =∗ ∗k kGi i  and ( )=′ ′∗ ∗k kGj j, then
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 (3.24)

Under the sparseness condition (1.27), we can replace ∗pi j,  with the following quantity. 

 Define = θ φ∗ − +∗ ∗
�p ei j,

i j( ) and consider the system of equations

∑

∑
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 (3.25)

This has solution
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′
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∗ ∗

∗
∗
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∗

∈Λ

∗�p
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L
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We define

( ) ( ) ( )( ) ( )∏ ∏= −
∈Λ ∈Λ

∗ ∗ −� ��P p pG 1 ,
i j

i j
g

i j
gG G
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 (3.27)

and note that
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The crucial point is to prove that →∑ ∑+ ∈Λ ∈Λ
∗�p 0

n n i j i j
1

,
2

1 2 1 2
. This allows us to write
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Indeed,
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(3.30)

because ′ =∗ ∗ ∗m m o L 2 3( )/  implies ( )′ =∗ ∗m m o n n1 2 .

Combining (3.24) and (3.29), we have
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(3.31)

which concludes our computation for the canonical ensemble.

Microcanonical probabilities come from the results in [34], where it is shown that, as →∞n , 
the number of bi-partite graphs with degree sequences 

→ →
′∗ ∗k k,  on the two layers is given by
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Hence
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From (3.31) and (3.33) we get
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(3.34)
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where in the last line we use ′= ∑ = ∑∗
∈Λ

∗
∈Λ

∗L k ki i j j1 2
 and Stirling’s approximation for 

∗Llog !( ). Since
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 (3.35)

we get, with the help of (1.28),
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which proves the claim. □

3.4. Proof of theorem 1.6

Proof. The number of bi-partite graphs with constraint 
→∗
k  on the top layer is

→
⎛
⎝
⎜

⎞
⎠
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 (3.37)

In order to calculate the canonical probability, we calculate the partition function:
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The canonical probability becomes

( )
( )

( )
( ) ( ) ( ) ( )→

→ ∏ ∏ ∏ ∏θ
θ

| = =
+

= −
θ θ

θ

−∑ ∑

∈Λ ∈Λ

−

−
∈Λ ∈Λ

−
∈Λ ∈Λ

P
Z

p pG
e e

1 e
1

g

i j

g

i j
i
g

i
g

G G
G G

can
1

i i j i j i i j

i

i j i j
1 2 ,

1 2

,

1 2

, ,

 
(3.39)

with =
+

θ
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e
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. We search for θ∗i  such that
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It follows that =
∗

pi
k

n
i

2
 (recall (1.34)). According to (1.11) we have
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Abbreviate ( )( ) ( )⎡
⎣
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For the relative entropy per node this gives
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3.4.1. Case (1). Recall (1.17). Note that ( ) ( )=�x z x eg x  is non-decreasing:
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It therefore follows that
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By (1.36) and dominated convergence, we may exchange limit and sum to obtain
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where we use that → =∞ +
lim 0n

n

n n
1

1 2
 and →
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3.4.2. Case (2). Using (3.45) and (1.36), we get
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3.4.3. Case (3). Estimate
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3.4.4. Case (4).
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Since →=
+ + +
n

n n c

1

1

1

1n
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1
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1

, the claim follows. □

3.5. Proof of theorem 1.7

Proof. The microcanonical ensemble is easy: the number of bi-partite graphs with a fixed 
fraction ( )λ∈ 0, 1  of links is
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The canonical ensemble has the Hamiltonian ( ) ( )θ θ=H LG G, , where G is a bi-partite graph 
belonging to Gn n,1 2, and ( ) ( )= ∑ ∑∈Λ ∈ΛL gG Gi j i j,1 2

 is the number of links in G. The partition 
function equals
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The canonical probability equals
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with =
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θ
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∑ ∑= =
+

θ

θ
∗

∈Λ ∈Λ

∗ ∗
−

−

∗

∗L p p,
e

1 e
.

i j1 2

 (3.53)

It follows that λ=∗p . Thus,
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This in turn implies that
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→

|
+

=
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mic can
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 □

3.6. Proof of theorem 1.8

Proof. The proof is based on the previous theorems. We start by looking at the Hamiltonian 
of the system. For each admitted pair of layers ( ( )γ Γ = 1s t, ) we define Lagrange multipliers 

→ ( )( ) ( )→
θ θ θ= …, ,s t

t
n
t

1 s
. The Hamiltonian equals
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
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where
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(3.57)

and ( )G st  ( ( )G ss ) is the bi-partite (uni-partite) graph between layers s and t (inside layer s) 
obtained from the multi-partite graph G. The ×n ns t matrix representing the bi-partite graph 

has, for each ∈Λi s and ∈Λj t, elements ( ) ( )( ) =g gG Gi j
st

i j, , . Note that ( → → )( ) → →
θ θ|H G ,s t

st
s t t s,  is 

the Hamiltonian of the bi-partite graph ( )G st  between layers s and t with constraints →
→ ∗
ks t, and 

θ|H Gs s
ss

s s, ( → )( ) →
 is the Hamiltonian of the uni-partite graph ( )G ss  of the layer s with constraints 

→
→ ∗
ks s.

The partition function of the canonical ensemble equals

→     ( )
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(3.58)

where ( → → )( ) → →
θ θZ ,st

s t t s  is the partition function of the set of bi-partite graphs Gn n,s t with con-
straints →

→ ∗
ks t on the top layer and →

→ ∗
kt s on the bottom layer, and ( → )( ) →

θZ ss
s s  is the partition 

function of the set of graph Gns with constraint →
→ ∗
ks s. The canonical ensemble is

( ) ( ) ( )
⩽ ⩽

( )

( ) ( )

( )

( ) ( )∏ ∏=

γ γΓ Γ
<
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=
=

P P PG G G ,
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s

M
ss ss
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1

1
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1

1
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s t s s, ,

 
(3.59)

where ( )( ) ( )P Gst st
can  is the canonical probability of the bi-partite graph ( )G st  with constraints →

→ ∗
ks t 

on the top layer and →
→ ∗
kt s on the bottom layer, and ( )( ) ( )P Gss ss

can  is the canonical probability of 
the uni-partite graph ( )G ss  with constraint →

→ ∗
ks s.
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We can split the microcanonical probability as products of microcanonical probabilities for 
simpler cases. The number of graphs with constraints 
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(3.60)

This means the microcanonical probability can be factorised as

( ) ( ) ( )
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1
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s t s s, ,

 (3.61)

where ( )( ) ( )P Gst st
mic  is the microcanonical probability of the bi-partite graph ( )G st  with constraints 

→
→ ∗
ks t on the top layer and →

→ ∗
kt s on the bottom layer, and ( )( ) ( )P Gss ss

mic  is the microcanonical prob-
ability of the uni-partite graph ( )G ss  with constraint →

→ ∗
ks s.

Equations (3.59) and (3.61) imply that the relative entropy equals the sum
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 (3.62)

We can now apply theorems 1.1 and 1.5 to get the asymptotic relative entropy per nodes as
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(3.63)

 □
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3.7. Proof of theorem 1.9

Proof. We start by studying the Hamiltonian. For each pair (s,t) of layers in D, we de-

fine Lagrange multipliers → ( )
→
θ θ θ= …, ,s t

t
n
t

1 s
. For each pair (s,t) of layers in L, we define a  

Lagrange multiplier θs t, . The Hamiltonian is

θ θ

θ θ

| ∈ ∈

= | ∈ + | ∈
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Consequently, the canonical ensemble is

( ) ( ) ( )= D LP P PG G Gcan can can (3.66)

with
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 (3.67)

Here,

 • ( )G st  ( ( )G ss  ) is the bi-partite (uni-partite) graph between layers s and t (and itself) 
obtained from the multi-partite graph G. The ×n ns t ( ×n ns s) matrix representing this 
bi-partite (uni-partite) graph has, for each ∈Λi s and ∈Λj t (for each ∈Λi j, s), elements 

( ) ( )( ) =g gG Gi j
st

i j, ,  ( ( ) ( )( ) =g gG Gi j
ss

i j, , ).

 • ( )( ) ( )DP Gst st
can  ( ( )( ) ( )DP Gss ss

can ) is the canonical probability of the bi-partite (uni-partite) graph 
( )G st  ( ( )G ss ) with constraints →

→ ∗
ks t on the top layer and →

→ ∗
kt s on the bottom layer (with 

constraint →
→ ∗
ks s).

 • ( )( ) ( )LP Gst st
can  ( ( )( ) ( )LP Gss ss

can ) is the canonical probability of the bi-partite (uni-partite) graph 
( )G st  ( ( )G ss ) with constraint ∗Ls t,  ( ∗Ls s, ).

We can split the microcanonical probability as products of microcanonical probabilities of 
simpler cases. The number of graphs with such a type of constraints is

→ →( ) ( ) ( ) ( )→ →Ω = Ω Ω
∈ ∈ ∈ ∈∗ ∗ ∗
D L D L .

k L s t l m k s t L l m, ; , , , ; , ; ,
s t l m s t

l m
,

, (3.68)

This means that the microcanonical probability can be factorised as

( ) ( ) ( )= D LP P PG G Gmic mic mic (3.69)
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with
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 (3.70)

Here,

 • ( )( ) ( )DP Gst st
mic  ( ( )( ) ( )DP Gss ss

mic ) is the microcanonical probability of the bi-partite (uni-partite) 
graph ( )G st  ( ( )G ss ) with constraints →

→ ∗
ks t on the top layer and →

→ ∗
kt s on the bottom layer 

(with constraint →
→ ∗
ks s).

 • ( )( ) ( )LP Gst st
mic  ( ( )( ) ( )LP Gss ss

mic ) is the microcanonical probability of the bi-partite (uni-partite) 
graph ( )G st  ( ( )G ss ) with constraint ∗Ls t,  ( ∗Ls s, ).

The relative entropy becomes
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Using theorem 1.8 we get
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Moreover,
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Using theorems 1.4 and 1.7, we get
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which proves the claim. □
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3.8. Proof of theorem 1.10

Proof. The proof is based on the previous theorems. For each pair of layers ∈Ms t, 1 we 

define Lagrange multipliers → ( )
→
θ θ θ= …, ,s t

t
n
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1 s
 and → ( )
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s
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. For each pair of layers 
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1 s
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Consequently, the canonical ensemble is

( ) → ( ) → ( )= M M M MP P PG G Gcan can can
1 1 1 2 (3.78)

with
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Here,

 • ( )G st  ( ( )G ss ) is the bi-partite (uni-partite) graph between layers s and t (itself) obtained from 
the multi-partite graph G. The ×n ns t ( ×n ns s) matrix representing this bi-partite (uni-

partite) graph has, for each ∈Λi s and ∈Λj t (for each ∈i j s, ), elements ( ) ( )( ) =g gG Gi j
st

i j, ,  
( ( ) ( )( ) =g gG Gi j

ss
i j, , ).

 • ( )( ) ( )P Gst st
can

top,bot  is the canonical probability of the bi-partite graph ( )G st  with constraints 

→
→ ∗
ks t on the top layer and →

→ ∗
kt s on the bottom layer.

 • ( )( ) ( )P Gss ss
can  is the canonical probability of the uni-partite graph ( )G ss  with constraint →

→ ∗
ks s.

 • ( )( ) ( )P Gst st
can

top  is the canonical probability of the bi-partite graph ( )G st  with constraint →
→ ∗
ks t 

on the top layer.

We can split the microcanonical probability as products of microcanonical probabilities for 
simpler cases. The number of graphs with such a type of constraints is
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(3.80)
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This means that the microcanonical probability can be factorised as

( ) → ( ) → ( )= M M M MP P PG G Gmic mic mic
1 1 1 2

 (3.81)
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Here,

 • ( )( ) ( )P Gst st
mic

top,bot  is the microcanonical probability of the bi-partite graph ( )G st  with con-
straints →

→ ∗
ks t on the top layer and →

→ ∗
kt s on the bottom layer.

 • ( )( ) ( )P Gss ss
mic  is the microcanonical probability of the uni-partite graph ( )G ss  with constraint →

→ ∗
ks s.
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top  is the microcanonical probability of the bi-partite graph ( )G st  with constraint 

→
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ks t on the top layer.

The relative entropy becomes
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It follows that
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Using again theorem 1.8 we get
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From theorem 1.6 we get
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which concludes the proof. □
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