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ABSTRACT
We consider the problem of finding the graph on which an
epidemic spreads, given only the times when each node gets
infected. While this is a problem of central importance
in several contexts – offline and online social networks, e-
commerce, epidemiology – there has been very little work,
analytical or empirical, on finding the graph. Clearly, it is
impossible to do so from just one epidemic; our interest is
in learning the graph from a small number of independent
epidemics.

For the classic and popular “independent cascade” epi-
demics, we analytically establish sufficient conditions on the
number of epidemics for both the global maximum-likelihood
(ML) estimator, and a natural greedy algorithm to succeed
with high probability. Both results are based on a key ob-
servation: the global graph learning problem decouples into
n local problems – one for each node. For a node of degree
d, we show that its neighborhood can be reliably found once
it has been infected O(d2 logn) times (for ML on general
graphs) or O(d logn) times (for greedy on trees). We also
provide a corresponding information-theoretic lower bound
of Ω(d logn); thus our bounds are essentially tight.

Furthermore, if we are given side-information in the form
of a super-graph of the actual graph (as is often the case),
then the number of epidemic samples required – in all cases
– becomes independent of the network size n.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; G.3 [Probability
and Statistics]: Stochastic processes

General Terms
Epidemics, cascades, graph structure learning, theory

1. INTRODUCTION
Epidemic cascades: Initially developed as a way to study

disease propagation, epidemic cascades have recently emerged
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as popular and useful models in a wide range of application
areas. Examples include
(a) peer-to-peer networks: epidemic protocols, where users
sending and receiving (pieces of) files in a random uncoordi-
nated fashion, form the basis for many popular peer-to-peer
content distribution, caching and streaming networks [9, 1].
(b) social networks: epidemic cascades provide natural mod-
els for understanding both the consumption of online me-
dia (e.g. viral videos, news articles[8]) and spread of ideas
and opinions (e.g. trending of topics and hashtags on Twit-
ter/Facebook[16], keywords on blog networks[4])
(c) e-commerce: understanding epidemic cascades (and, in
this case, finding influential nodes) is crucial to viral market-
ing [5], and predicting/optimizing uptake on social buying
sites like Groupon, LivingSocial etc.
(d) security and reliability: epidemic cascades model both
the spread of computer worms and malware [6], and cascad-
ing failures in infrastructure networks [7, 15] and complex
organizations [12].

Structure Learning: The vast majority of work on epi-
demic cascades has focused on understanding how the graph
structure of the network (e.g. power laws, small world, ex-
pansion etc.) affects the spread of epidemics. We focus on
the inverse problem: if we only observe the states of nodes
as the cascades spread, can we infer the underlying graph
? Structure learning is the crucial first step before we can
use network structure; for example, before we find influen-
tial nodes in a network (e.g. for viral marketing) we need
to know the graph. Often however we may only have crude,
prior information about what the graph is, or indeed no in-
formation at all.
For example, in online social networks like Twitter or Face-
book, we may have access to a nominal graph of all the
friends of a user. However, clearly not all of them have an
equal effect on the user’s behavior; we would like to find the
sub-graph of important links. In several other settings, we
may have no a-priori information; examples include infor-
mation forensics that study the spread of worms, and offline
settings like real-world epidemiology and social science. The
standard practice seems to be to use crude/nominal sub-
graphs if they exist (e.g. Twitter), or find graphs by other
means (e.g. surveys). We propose to take a data-driven
approach, finding graphs from observations of the epidemic
cascades themselves.

While structure learning from cascades is an important
primitive, there has been very little work investigating it (we
summarize below). There are two related issues that need
to be addressed: (a) algorithms: what is the method, and
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its complexity, and (b) performance: how many observations
are needed for reliable graph recovery? The main intellectual
contribution of this paper is characterizing the performance
of two algorithms we develop, and a lower bound showing
they perform close to optimal. Ours is the first paper (that
we know of) to do any performance analysis for graph learn-
ing for epidemics.

1.1 Summary of Our Results
We present two algorithms, and information-theoretic lower

bounds, for the problem of learning the graph of an epidemic
when we are given prior information of a super-graph. It is
not possible to learn the graph from a single epidemic; we
study the number of epidemics required for reliable learn-
ing. Key outcomes of our results are that (i) epidemic graph
learning can be done in a fast, distributed fashion, (ii) with
a number of samples that is close to the lower bound.

Our results:
(a) Maximum Likelihood: We show that, via a suitable change
of variables, the problem of finding the graph most likely to
generate the epidemics we observe decouples into n convex
problems – one for each node, and requiring as input only
the infection times of that nodes’ super-neighborhood (i.e.,
its neighborhood in the super-graph). Our main result here
is to establish that for this efficient algorithm, the number
of times a node i needs to be infected to find its size-di true
neighborhood from size-Di super-neighborhood with proba-
bility greater than 1− δ is O(d2i log Di

δ
), for a general graph.

(b) Greedy algorithm: We also consider a natural greedy
algorithm which iteratively adds to the estimated neighbor-
hood nodes that provide the best incremental explanation
for the infections of a node. We show that if the graph is
a tree, then this is able to find the true neighborhood with
probability greater than 1−δ with only O(d log D

δ
) samples.

(c) Lower bounds: We establish an information-theoretic
lower bound on the number of epidemics needed in a general
setting, and specialize it to show that reliable recovery needs
at least Ω(d log D

d
) samples.

A nice feature of our results is that both the algorithms,
and the lower bounds, work on a node by node basis. Thus
for recovering the neighbors of a node we only need informa-
tion about its super-neighborhood, and solve a local prob-
lem. Similarly, the number of samples required to recover
the neighborhood of a node depends only on the sizes of
its own neighborhood and super-neighborhood. We can use
union bound along with the node by node guarantees above
to obtain sufficient conditions on the number of samples re-
quired for recovering the entire graph correctly. In the full
version of this paper[11], we also establish the relationship
between the graph of an epidemic and its Markov random
field. Due to lack of space, we do not provide proofs of all the
results in this paper. For complete proofs of all the results
in this paper, please refer [11].

Directly related work: While structure learning from epi-
demics is an important primitive, there has been very little
work investigating it:
(a) algorithms: A recent paper [14] investigates learning
graphs from infection times for the independent cascade
model (similar setting as our paper). However, they take
an approach that results in an NP-hard combinatorial op-
timization problem, which they show can be approximated.
Another paper [10] shows max-likelihood estimation in the
independent cascade model can be cast as a decoupled con-

vex optimization problem (albeit a different one from ours).
Another recent paper [13] shows that the likelihood func-
tion for the entire graph decouples into n likelihood func-
tions, one for each node and that it is convex for some gen-
eral models of epidemics. Though the paper shows that the
maximum likelihood estimator is consistent, it does not an-
alytically investigate the number of infections required for
consistent estimation. (b) performance: On this, there has
been no work we are aware of; indeed, this is the main focus
of our paper.

2. SYSTEM MODEL
Most of the analytical results of this paper are for the

classic and popular independent cascade model; in particular
we will consider the simple one-step model first proposed
in [3] and recently popularized by Kempe, Kleinberg and
Tardos [5].

Standard independent cascade epidemic model [5]:
The network is assumed to be a directed graph G = (V,E);
for every directed edge (i, j) we say i is a parent and j is
a child of the corresponding other node. Let Vi := {j :
(j, i) ∈ E} denote the set of parents of each node i. Epi-
demics proceed in discrete time; all nodes are initially in the
susceptible state. At time 0, each node tosses a coin and
independently becomes active, with probability pinit. This
set of initially active nodes are called seeds. In every time
step each active node probabilistically tries to infect its sus-
ceptible children; if node i is active at time t, it will infect
each susceptible child j with probability pij , independently.
Correspondingly, a node j that is susceptible at time t will
become active in the next time step, i.e. t+ 1, if any one of
its parents infects it. Finally, a node remains active for only
one time slot, after which it becomes inactive: it does not
spread the infection, and cannot be infected again. Thus
some nodes remain forever susceptible because the epidemic
never reaches them, while others transition according to:
susceptible → active for one time step → inactive.

Observation model: For a cascade u that spreads over a
graph, we observe for each node i the time tui when i became
active. If i is one of the seed nodes of epidemic u then tui = 0,
and for nodes that are never infected in u we set tui = ∞.
Let tu denote the vector of infection times for epidemic u.
We observe more than one epidemic on the same graph;
let U be the set of cascades, and m = |U| be the number,
which we will often refer to as the sample complexity. Each
cascade is assumed to be generated and observed as above,
independent of all others.

(possible) Super-graph information: In several ap-
plications, we (may) also have prior knowledge about the
network, in the form of a directed super-graph1 of G. We
find it convenient to represent super-graph information as
follows: for each node i, we are given a set Si ⊂ V of nodes
that contain its true parents; i.e. Vi ⊂ Si for all i. In terms
of edge probabilities, this means that pji > 0 (strictly) for
j ∈ Vi, and pji = 0 for j ∈ Si\Vi. Of course if no super-
graph is available we can set Si = V , the set of all nodes; so
from now on we assume a Si is always available.

Problem description: Using the vectors of infection
times {tu} we are interested in finding the parental neigh-

1For example, on social networks like Facebook or Twitter,
we may know the set of all friends of a user, and from these
we want to find the ones that most influence the user.
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borhood Vi, for some or all of the nodes i. Clearly, this
is not possible when we only observe a single epidemic; we
will thus be interested in learning the graph from as few
epidemics as possible.

Note that multiple seeds begin each epidemic u ∈ U ; thus,
for a single epidemic even at time step 1 we will not be able
to say with surety which seed infected which individual.

Correlation decay: Loosely speaking, random processes
on graphs are said to have “correlation decay” if far away
nodes have negligible effects. For our problem, this means
that the epidemic from each seed does not travel too far.
Formally, all the results in this paper assume that there
exists a number α > 0 such that for every node i, the sum
of all probabilities of incoming edges satisfies

∑
k pki < 1−α.

The following lemma clarifies what this assumption means
for the infection times of a node.

Lemma 1. For any node i and time t, we have

P [Ti = t] ≤ (1− α)t−1 pinit

Thus, the probability P[Ti <∞] that a node is infected sat-
isfies pinit < P[Ti < ∞] < pinit

α
. Also, the average distance

from a node to any seed that infected it is at most 1
α

. We
discuss the case where there is no correlation decay in the
Discussion section.

Interpreting the results: Each epidemic we observe
provides some information about the graph. Suppose we
want to infer the presence, or absence, of the directed edge
(i, j) (i.e. if pij > 0 or not). Note that if the parent i
is not infected in an epidemic, then that epidemic provides
no information about (i, j): since the parent was never in-
fected, no infection attempt was made using that edge; the
“edge activation variable” was never sampled. While our
theorems are in terms of the total number m of epidemics
needed for graph estimation, for a meaningful interpretation
of this number one needs to realize that the expected num-
ber of times we get useful information about any edge is, on
average, between mpinit and mpinit/α.

We provide both upper bounds (via two learning algo-
rithms), and (information theoretic) lower bounds on the
sample complexity. Note that the execution of our algo-
rithms does not require knowledge of these parameters like
pinit, α etc.; these are defined only for the analysis.

3. MAXIMUM LIKELIHOOD
The graph learning problem can be interpreted as a pa-

rameter estimation problem: for each epidemic, the vector
T of infection times is a set of random variables that has a
joint distribution which is determined by a set of parameters
pji ≥ 0 for every i and j ∈ Si. We want to find these param-
eters, or more specifically the identities of the edges where
they are non-zero, from samples tu, u ∈ U . Each choice
of parameters has an associated probability, or likelihood,
of generating the infection times we observe. The classical
Maximum-likelihood (ML) estimator advocates picking the
parameter values that maximize this likelihood.

Our crucial insight in this section is that, with an ap-
propriate change of variables the likelihood function has a
particularly nice (decoupled, convex) form, enabling both
efficient implementation and analysis. In particular, define
θij := − log(1− pij) ; note that pij = 0⇔ θij = 0.

Further, for each node i let θ∗i := {θji ; j ∈ Si} be the
set of parameters corresponding to the possible parents Si

of node i. Let θ be the set of all parameters of the graph.
Note that θ ≥ 0 (i.e. every parameter is positive or zero).
Finally, we define the log-likelihood of a vector t of samples
to be

L(t; θ) := log (Prθ[T = t])

The proposition below shows how L decouples into convex
functions with this change of variables.

Proposition 1 (convexity & decoupling). For any
vector of parameters θ, and infection time vector t, the log-
likelihood is given by

L(t; θ) = log(psinit(1− pinit)n−s) +
∑
i

Li(tSi ; θ∗i)

where s is the number of seeds (i.e. nodes with ti = 0), and
the node-based term

Li(tSi ; θ∗i) := −
∑

j:tj≤ti−2

θji + log

1− exp

− ∑
j:tj=ti−1

θji


Furthermore, Li(t; θ∗i) is a concave function of θ∗i, for any
fixed t.

Proof: Please see appendix.
Remark: The overall log-likelihood L(t; θ) has now de-

coupled because it is the sum of n terms of the form Li(tSi ; θ∗i)
(which will hence forth be referred to as Li(t; θ∗i) for ease
of notation), each of which depend on a different set of vari-
ables θ∗i. Thus each one can be optimized, and analyzed, in
isolation.

The algorithmic implications of this proposition are:
(a) if we are only interested in a small subset of nodes, we
can find their parental neighborhood by solving a separate
|Vi|-variable convex program for each one,
(b) even if we want to find the entire graph, the decoupling
allows for parallelization, and speedup: solving n convex
programs with n variables each is much faster than solving
one program with n2 variables.
(c) The function Li is fully determined by the times tSi of
the node’s super-neighborhood; it does not need knowledge
of the infection times of other nodes.

Proposition 1 is equally crucial analytically, as it enables
us to derive bounds on the number of epidemics required for
us to reliably select the neighborhood, via analysis of the
first-order optimality conditions of the convex program. In
particular, we will see that complementary slackness condi-
tions from convex programming, and concentration results,
are key to proving our results on the sample complexity of
the ML procedure.

The ML algorithm for finding the parental neighborhood
of node i is formally stated below. it involves solving the
convex program corresponding to the max-likelihood, and
setting small values of θji to 0. The threshold for this cut-
off is η, which is an input to the procedure.

Our main analytical result of this section is a character-
ization of the performance of this ML algorithm, in terms
of the number of epidemics it needs to reliably estimate the
parental neighborhood of any node i.

Theorem 1. Consider a node i with true parental de-
gree di := |Vi|, and super-graph degree Di := |Si|. Let
pi,min = minj∈Vi pji be the strength of the edge from the
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Algorithm 1 ML Algorithm for Node i

1: Find

θ̂∗i := arg max
θ∗i

∑
u

Li(tu; θ∗i)

where Li(t; θ∗i) is as defined in Prop. 1.
2: Estimate the parental neighborhood to be

V̂i := {j : θ̂ji ≥ η}

3: Output V̂i.

weakest parent. Assume dipinit <
1
2

. Then, for any δ > 0,
if the number of epidemics m = |U| satisfies

m >
c

pinit

(
1

α7η2p2i,min

)
d2i log

(
Di
δ

)
(1)

Then, with probability greater than 1 − δ, the estimate V̂i
from the ML algorithm with threshold η will have
(a) no false neighbors, i.e. V̂i ⊂ Vi, and
(b) all strong enough neighbors: if j ∈ Vi and pji >

8
α

(e2η−
1), then j ∈ V̂i as well.
Here c is a number independent of any other system param-
eter.

Remarks:
(a) This is a non-asymptotic result that holds for all values

of the system variables di, pinit, α, pi,min, η and δ. Appro-
priate asymptotic results can be derived as corollaries, if
required. Note that this result on finding the nodes that
influence node i does not depend on n.

(b) We can learn the entire neighborhood, i.e. V̂i = Vi, by
choosing the threshold η ≤ 1

2
log(1 +

αpi,min
8

) low enough,
and the corresponding number of epidemic samples m ac-
cording to (1). Thus, the number of times node i needs to
be infected before we can reliably (i.e. with a fixed small er-
ror probability) learn its neighborhood scales as O(d2i logDi)
(for fixed values of other system variables). Our result allows
for learning stronger edges with fewer samples.

(c) If we want to learn the structure of the entire graph
with probability greater than ε, we can set δ = ε/n and then
take a union bound over all the nodes. So, for example, if
every node has true degree at most |Vi| ≤ d, and super-graph
degree |Si| ≤ D, then the number of samples needed to learn
the entire graph (with probability at least 1 − ε) scales as
O(d2 log Dn

ε
) (for fixed values of other system variables).

(d) The average number of parents of i that are seeds is
dipinit. If this is large, then in every epidemic there will be
a reasonable probability of one of them being seeds, and in-
fecting i in the next time slot. This makes it hard to discern
the neighborhood of i; the (mild) assumption dipinit <

1
2

is
required to counter this effect. Indeed, in most applications
pinit is likely to be quite small.

4. GREEDY ALGORITHM
We now analyze the sample complexity of a simple iter-

ative greedy algorithm – for the case when the graph is a
tree2. The algorithm is of course defined for general graphs.
2We believe (especially since we have correlation decay) that
our results can be easily extended to the case of “locally
tree-like” graphs; e.g. random graphs from the Erdos-Renyi,
random regular or several other popular models.

The idea is as follows: suppose we want to find the parents
of node i from a given set of epidemics U . In each epidemic
u, the set of nodes that could have possibly infected i is
the set of nodes j for which tuj = tui − 1. In the first step,
the algorithm thus picks the j which has tuj = tui − 1 for the
largest number of observed epidemics. It then removes those
epidemics from further consideration (since they have been
“accounted for”) and proceeds as before on the remaining
epidemics, stopping when all epidemics are exhausted.

Algorithm 2 Greedy Algorithm for Node i

1: Initialize unaccounted epidemics U = U
2: Initialize V̂i = ∅
3: while U 6= ∅ do
4: Find k = arg maxj∈Si |{u ∈ U : tuj = tui − 1}|
5: Add it : V̂i ← V̂i ∪ k
6: Remove epidemics : U ← U \ {u : tuk = tui − 1}
7: end while
8: Output V̂i

Our main result for this section is below.

Theorem 2. Suppose the graph G is a tree, and the de-

gree of node i is di := |Vi|. Suppose also that pinit <
α2pmin
16edi

.

If Algorithm 2 is given a super-neighbhorhood of size Di :=
|Si|, then for any δ > 0 if the number of samples satisfies

m >
c

pinit

(
1

pmin

)
di log

Di
δ

then with probability at least 1 − δ the estimate from the
greedy algorithm will be the same as the true neighborhood,

i.e. V̂i = Vi. Here c is a constant independent of any other
system parameter.

5. LOWER BOUNDS
We now turn our attention to establishing lower bounds

on the number of epidemics that need to be observed for
even approximately learning graph structure, using any al-
gorithm. Clearly, we now cannot focus on learning just
one graph, since in that case we could come up with an
“algorithm” tailored to find precisely that one graph. In-
stead, as is standard practice in information-theoretic lower
bounds, we need to consider a collection (or “ensemble”) of
graphs, and study how many epidemics are needed to (ap-
proximately) find any one graph from this collection.

We first state a lower bound in a general setting, for any
pre-defined ensemble and notion of approximate recovery.
We then provide two corollaries specializing it to our inde-
pendent cascade epidemic model, edit distance approxima-
tion, and two natural graph ensembles.

General Setting: Consider any general epidemic process
generating infection times {Ti}. Let G be a fixed collection
of graphs and corresponding edge probabilities, and let G
be a graph chosen uniformly at random from this collection.
We then generate a set U , with |U| = m, of independent

epidemics, and observe infection times TU . Let Ĝ(TU ) be a
graph estimator that takes the observations as an input and
outputs a graph. Finally, we say that a graph G′ approxi-
mately recovers graph G if G ∈ B(G′), where B(G′) ⊆ G is
any pre-defined set of graphs, with one such set defined for
every G′.
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So for example, if we are interested in exact recovery, we
would have B(G′) = {G′}, i.e. the singleton. If we were
interested in edit distance of s, we would have B(G′) be the
set of all graphs within edit distance s of G′.

We define the probability of error of a graph estimator

Ĝ(·) to be

Pe(Ĝ) := P[G /∈ B(Ĝ(TU ))]

where the probability is calculated over the randomness in
the choice of G itself, and the generation of infection times
in this G. Note that the definition defines error to be when
approximate recovery (as defined by the sets B) fails.

Theorem 3. In the general setting above, for any graph
estimator to have a probability of error of Pe, we need

m ≥
(1− Pe) log |G|

supG′ |B(G′)|
− 1∑

i∈V H(Ti)

where H(·) is the entropy function.

Proof. To shorten notation, we will denote Ĝ(TU ) sim-

ply by Ĝ. The proof uses several basic information-theoretic
inequalities, which can be found e.g. in [2]. In the following
H(·) denotes entropy and I(·; ·) denotes mutual information.

We can see that the following diagram forms a Markov
chain

G←→ TU ←→ Ĝ

We have the following series of inequalities:

H(G) = I(G; Ĝ) +H(G | Ĝ)

(ς1)

≤ I(G;TU ) +H(G | Ĝ)

(ς2)

≤ H(TU ) +H(G | Ĝ)

(ς3)

≤ mH(T ) +H(G | Ĝ)

(ς4)

≤ m
∑
i∈V

H(Ti) +H(G | Ĝ)

where (ς1) follows from the data processing inequality, (ς2)
follows from the fact that the mutual information between
two random variables is less than the entropy of either of
them, (ς3) and (ς4) follows from the subadditivity of entropy.
Since G is sampled uniformly at random from G, we have
that H(G) = log |G|. We now use Fano’s inequality to bound

H(G | Ĝ).

H(G | Ĝ)
(ς1)

≤ H(G,Err | Ĝ)

(ς2)
= H(Err | Ĝ) +H(G | Err, Ĝ)

(ς3)

≤ H(Err) +H(G | Err, Ĝ)

(ς4)

≤ 1 + Pe log |G|+ (1− Pe) log sup
Ĝ

|Bs(Ĝ)|

where Err is the error indicator random variable (i.e., is 1

if G /∈ B(Ĝ) and 0 otherwise), so that Pe = E [Err]. (ς1)
follows from the monotonicity of entropy, (ς2) follows from
the chain rule of entropy, (ς3) follows from the monotonicity
of entropy with respect to conditioning and (ς4) follows from

Fano’s inequality[2]. Combining the above two results, we
obtain

m
∑
i∈V

H(Ti) ≥ (1− Pe) log
|G|

supĜ |B(Ĝ)|
− 1

⇒ m ≥
(1− Pe) log |G|

sup
Ĝ
|B(Ĝ)|

− 1∑
i∈V H(Ti)

(2)

To apply this result to a particular ensemble G and notion
of approximation B, we need to find a lower bound on |G|,
and upper bounds on |B(G′)| for all G′ and H(Ti) for all i.
The following lemma states an upper bound on H(Ti) for
our independent cascade model when we have correlation
decay coefficient α. Both our corollaries assume this is the
case for all graphs in their respective ensembles.

Lemma 2. For any graph with correlation decay coeffi-
cient α, for any node i, and when pinit <

1
e

, we have that

H(Ti) ≤ pinit
1− α

(
log

1

pinit
+

(
1− α
α

)2

log
1

1− α

)
−
(

1− pinit
α

)
log
(

1− pinit
α

)
=: pinitH(α, pinit)

Note that the edit distance between two graphs is the number
of edges present in only one of the two graphs but not the
other (i.e. the number of edges in the symmetric difference of
the two graphs). Our first corollary is for the case when there
is no super-graph information, and we want to approximate
in global edit distance.

Corollary 1. Let Gd denote the set of all graphs with
in-degrees bounded by d, and Bγ(G′) be the set of all graphs
within edit distance γ of G′. Let pinit <

1
e

. Then for any
algorithm to have a probability of error of Pe, we need

m >
(1− Pe)
pinit

1− α
H(α, pinit)

(
d log

n

d
− γ

n
log

n2

γ

)
− 1

Proof. We have that

log |Gd| = log

(
n

d

)n
= (1 + o(1))nd log

n

d

log |Bγ(G′)| ≤ log

((
n
2

)
γ

)
≤ γ log

n2

γ

Using the above two equations along with Theorem 3 and
Lemma 2 gives us the result.

Note that the number of times a node is infected thus needs
to be Ω((d − 2γ

n
) logn) (since it is of the same order as

mpinit). For exact recovery, i.e. γ = 0, we see that our
result on the performance of our ML algorithm – specialized
to the no prior information case D = n – is off by just a
factor d in terms of the number of samples required.

The second corollary is for the case when we do have prior
supergraph information. In particular, we assume that we
are given sets Si, of size |Si| = D, for each node i. We
consider the ensemble GD,d of all in-degree-d subgraphs of
this fixed supergraph. Thus for each node, we need to learn
the d parents it has, from a given super-set of size D. Fi-
nally, for each node i we allow si errors; let Bs(G′) be the
corresponding set of all subgraphs of the given supergraph.
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Corollary 2. For any estimator to have a probability of
error of Pe in the setting above, the number of samples m
must be bigger than[

(1− Pe)
pinit

1− α
H(α, pinit)

×(
d log

D

d
− 1

n

∑
i

si log
eD

si
+ log max(si, 1)

)]
− 1

Remark: Specializing this result to exact recovery (i.e.
si = 0) removes dependence on n, and again shows us that
the ML algorithm is within a factor d of optimal for the case
when we have a super-graph.

Proof. We have the following bound on the size of the
ensemble:

log |Gd| = log

(
D

d

)n
= (1 + o(1))nd log

D

d

Similarly,

log |Bs(Ĝ)| ≤ log
∏
i∈V

(
si∑
l=0

(
D

l

))

≤ log
∏
i∈V

(
max(1, si)

(
D

si

))

≤
∑
i∈V

log

(
max(1, si)

(
De

si

)si)
=
∑
i∈V

log max(1, si) +
∑
i∈V

si log
De

si
(3)

where

Bs(Ĝ) = {G̃ ∈ Gd : Ṽi M V̂i ≤ si ∀ i ∈ V }

Note that in the second inequality we assume si ≤ D
2

be-

cause otherwise if d < D
2

, we can choose V̂i = Φ and if

d ≥ D
2

, we can choose V̂i = Vi. Using Theorem 3, (3) and
Lemma 2 gives us the first part of the result.

6. EXPERIMENTS
In this section, we will present experimental evaluations

of both the ML and Greedy algorithms on synthetic and real
world graphs.

6.1 Synthetic graphs
Grids: First, we present the results of both ML and

Greedy algorithms on grids. For each grid size, edge param-
eters are chosen so as to satisfy the assumptions of Theorem
1. Using these parameters, independent infections are gen-
erated by simulating the independent cascade model on the
graph. Both ML and Greedy algorithms are given these in-
fections as input to obtain an estimate of the grid. A graph
is said to be recovered if the output parent set of each node is
the same as the parent set of that node in the original graph.
Given m infections, a trial executes the algorithm with those
infections. The probability of recovery for m infections is
calculated empirically as the fraction of trials which recover
the parent set of every node of the graph exactly out of a
total of 20 trials. Figure 1 shows the probability of recovery
of a graph versus the total number of infections. We can

see that as the number of infections increases, both the al-
gorithms recover the graph exactly with higher probability.
We also note that the number of infections needed to obtain
a given probability of exact recovery increases as the graph
size increases. On the other hand, Figure 2 shows the proba-
bility of recovery versus the average number of times a node
is infected. One remarkable fact to note is that the plots
for recovery almost line up on top of each other for various
problem sizes. This indicates that in a grid, the probability
of recovery is dependent only on the average number of in-
fections experienced by a node irrespective of the problem
size.
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Figure 1: Recovery of grids with total number of
infections: This plot shows the probability of recov-
ery versus the total number of infections for various
grid sizes.
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Figure 2: Recovery of grids with average infections
per node: This plot is from the same experiment as
Figure 1. The only (and crucial) difference is that
the x-axis in this plot denotes the average number
of times a node is infected.

Random Regular Graphs: We now present the results
of ML and Greedy algorithms on random regular graphs of
degree 4. A random regular graph is first sampled and ap-
propriate values are chosen for the edge parameters. Inde-
pendent infections are then sampled by simulating the in-
dependent cascade model. Figure 3 shows the plot of prob-
ability of recovery versus the average number of infections
per node for different sizes of graphs for both the ML and
Greedy algorithms. Figure 4 shows the comparison between
the ML and Greedy algorithms when there is a super graph
as opposed to when there is no super graph. The underly-
ing graph is a random 4-regular 200 node graph. Both the
ML and Greedy algorithms are run on varying number of
infections. For each number of infections, two versions of
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Figure 3: Random 4-regular graph: This figure plots
the probability of recovery versus the average num-
ber of infections per node for both the ML and
Greedy algorithms for different sizes of random reg-
ular graphs.

each algorithm were executed - one that has a super graph
and the other that does not have a super graph. The y-
axis denotes the fraction of those graphs that the algorithm
recovered exactly. The x-axis denotes the average number
of times a node is infected. Our analytical results suggest
that the non availability of a super graph does not affect the
sample complexity drastically. We can see that the above
plot corroborates this claim.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Average number of infections per node

P
ro

b
a

b
ili

ty
 o

f 
re

c
o

v
e

ry

 

 

Greedy

ML

Greedy, no supergraph

ML, no supergraph

Figure 4: Super graph/No super graph: comparison
between the ML and Greedy algorithms when there
is a super graph as opposed to when there is no
super graph.

6.2 Twitter Graph
We present the results of two experiments on Twitter

graph. In the first experiment, a connected 1000 node sub-
graph of the Twitter follower-following graph was extracted.
Even on this small subgraph, some nodes have high in-degree
and/or out-degree. To emulate people who “officially” fol-
low many other people but are really influenced by a few
of them, for each node, only a few of the in-edges of that
node were assigned positive edge parameters (corresponding
to those who actually influence the current node) and the
rest are assigned an edge parameter of zero. Infections were
then sampled by simulating the independent cascade model
using the above assignment of edge parameters. Both the
ML and Greedy algorithms were given infections and the
entire 1000 node graph as a super graph. Figure 5 shows
the plot of fraction of nodes recovered versus the average
number of infections of a node.

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average number of infections per node

F
ra

c
ti
o

n
 o

f 
n

o
d

e
s
 r

e
c
o

v
e

re
d

 

 

Greedy

ML

Figure 5: Twitter sub-graph with a few important
parents.

In the second experiment, a 300 node subgraph of the
Twitter graph was extracted. As was the case in the 1000
node sub graph, even in the 300 node subgraph, there were
nodes of high in-degree and/or out-degree. For each node,
all parents were assigned equal edge parameters. Infections
were sampled according to the independent cascade model
using these edge parameters. Both the ML and Greedy algo-
rithms were given these infections as input without any su-
per graph information. Figure 6 shows a scatter plot of the
number of infections taken by a node for its neighborhood to
be estimated correctly versus the degree of that node. Each
scatter point corresponds to a node in the graph - the value
of the x-axis is the degree of that node and the value of the
y-axis is the number of infections of that node so that the
algorithm estimated its neighborhood correctly. Note that
the sample complexity increases super-linearly with degree
for the ML algorithm where as the dependence of the sam-
ple complexity on the degree is almost linear for the Greedy
algorithm.
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Figure 6: Twitter sub-graph with high degree: Com-
plexity of learning the neighborhood vs degree of the
node

7. ACKNOWLEDGMENTS
This research was supported by NSF grants 0954059 (CA-

REER) and 1017525.

8. REFERENCES
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[9] L. Massoulié and A. Twigg. Rate-optimal schemes for
peer-to-peer live streaming. Performance Evaluation,
65(11-12):804 – 822, 2008.

[10] S. A. Myers and J. Leskovec. On the convexity of
latent social network inference. In Proc. Neural
Information Processing Systems (NIPS), 2010.

[11] P. Netrapalli and S. Sanghavi. Finding the graph of
epidemic cascades, 2012.
http://arxiv.org/abs/1202.1779.

[12] C. Perrow. Normal Accidents: Living with High-Risk
Technologies. Princeton University Press, updated
edition, Sept. 1999.

[13] M. G. Rodriguez, D. Balduzzi, and B. Schölkopf.
Uncovering the temporal dynamics of diffusion
networks. In L. Getoor and T. Scheffer, editors,
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages
561–568, New York, NY, USA, June 2011. ACM.

[14] M. G. Rodriguez, J. Leskovec, and A. Krause.
Inferring networks of diffusion and influence. In Proc.
16th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’10, pages
1019–1028, New York, NY, USA, 2010. ACM.

[15] M. L. Sachtjen, B. A. Carreras, and V. E. Lynch.
Disturbances in a power transmission system. Phys.
Rev. E, 61:4877–4882, May 2000.

[16] Z. Zhou, R. Bandari, J. Kong, H. Qian, and
V. Roychowdhury. Information resonance on Twitter:
watching Iran. In Proc. 1st Workshop on Social Media
Analytics, SOMA ’10, pages 123–131, New York, NY,
USA, 2010. ACM.

APPENDIX
A. CORRELATION DECAY

Proof of Lemma 1. We establish this by induction on
n. If n = 1, the lemma is clearly true. Suppose that the
lemma is true for all graphs which have upto n − 1 nodes.
Consider now a graph G that has n nodes. Consider any
node i. The statement of the proposition is clearly true for
t = 1. For t > 1, consider the probability that i is infected by
a parent k ∈ Si at time step t. This can be upper bounded
as follows:

PG [k infects i at time t] ≤ PG̃ [Tk = t− 1] pki

≤ (1− α)t−2 pinitpki

where G̃ := G \ i is the graph without node i, PG denotes
the probability when the graph is G, and similarly for PG̃.
The second inequality follows from the induction assump-
tion, and the fact that if α is the decay coefficient for G, it

is also for G̃. Taking a union bound over k ∈ Si, we get:

PG [Ti = t] =
∑
k∈Si

PG [k infects i at time t]

≤ (1− α)t−2 pinit
∑
k∈Si

pki

≤ (1− α)t−1 pinit

Bounds on P[Ti <∞] follow from summing this series.

B. MAXIMUM LIKELIHOOD

B.1 Proof of Prop. 1
Let Xi(τ) = 0 if i is susceptible at time τ , 1 if i is active at

time τ and 2 if i is inactive at time τ . Let X(τ), τ = 0, · · · , n
be the corresponding vector process. Note that X(τ) is a
Markov process, and there is a one to one correspondence
between the set of infection times t and sample path x(τ) of
the process X(τ).

Given t, let x0(τ) be the corresponding vector process. In
particular,

x0i (τ) =


0 if τ < ti

1 if τ = ti

2 if τ > ti.

Then,

Pθ [T = t] = Pθ
[
X(τ) = x0(τ) for τ = 0, · · · , n

]
= Pθ

[
X(0) = x0(0)

]
×

n∏
τ=1

Pθ
[
X(τ) = x0(τ)

∣∣X(τ − 1) = x0(τ − 1)
]

Now, Pθ
[
X(0) = x0(0)

]
= psinit (1− pinit)n−s. Also,

Pθ
[
X(τ) = x0(τ)

∣∣X(τ − 1) = x0(τ − 1)
]

=
∏
i∈V

Pθ
[
Xi(τ) = x0i (τ)

∣∣X(τ − 1) = x0(τ − 1)
]

because each node gets infected independently from each of
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its currently active neighbors. Thus we have that

P [T = t] = psinit (1− pinit)n−s
∏
i∈V

(
n∏
τ=1

ai(τ)

)
(4)

where ai(τ) = Pθ
[
Xi(τ) = x0i (τ)

∣∣X(τ − 1) = x0(τ − 1)
]
. It

is clear that for τ > ti, ai(τ) = 1. For τ = ti, ai(τ) is the
probability that at least one of its active nodes at time ti−1
infected node i. Thus,

ai(ti) = 1−
∏

j:tj=ti−1

exp (−θji) (5)

Finally, for each τ < ti, ai(τ) is the probability that active
nodes at time τ − 1 failed to infect node i. The set of all
nodes that were active but failed to infect susceptible node
i is {j : tj ≤ ti − 2}. So we have∏

τ<ti

ai(τ) =
∏

j:tj≤ti−2

exp (−θji) (6)

Putting (4), (5) and (6) together and taking log gives the
result.

Concavity follows from the fact that log(1− exp(−x)) is a
concave function of x, and the fact that if any function f(x)
is a concave function of x then f(

∑
i θi) is jointly concave

in θ. �

B.2 Proof of Theorem 1
For brevity, we denote θ∗i by θ, Vi by V and Si by S. Let

θ∗ be the true parameter values. Define

L̂(θ) : =
1

m

∑
u

Li(tu; θ)

Note that the ML algorithm finds θ̂ = argmaxθ L̂(θ). Also
let L(θ) : = Eθ∗ [Li(T, θ)].

Idea : Note that as m increases, L̂ → L. Also, we know
that θ∗ = arg minθ L(θ); this is just stating that the ex-
pected value of the likelihood function is maximized by the
true parameter values, a simple classical result from ML esti-

mation. Thus when L̂ ' L, θ∗ will approximately minimize

L̂ as well. This means it will be close to θ̂.
Implementing the above roadmap involves showing con-

centration results and some tricks from convex analysis. Since
our analysis is based on first-order methods (i.e., using the
gradient), we prove a characterization of the gradient of the

log likelihood function. For any j, let 5jL̂(θ) be the partial

derivative of L̂(θ) with respect to θj .

Proposition 2.

5jL(θ∗) = −P [Ti > Tj ;Tk 6= Tj∀k ∈ V] (7)

Proof. Taking the derivative of L(·) with respect to θj ,
we obtain

5j L(θ) = E

−1{Tj≤Ti−2} +
1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θk
)
− 1


Let FTj be the σ-algebra with information up to the (ran-

dom) time Tj . By iterated conditioning, we obtain

5j L(θ∗)

= −E

E
1{Tj≤Ti−2} −

1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
k

)
− 1

∣∣∣∣∣∣ FTj


(8)

Since the event {Ti ≤ Tj} is measurable in FTj , we have

E

1{Tj≤Ti−2} −
1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
k

)
− 1

∣∣∣∣∣∣ FTj


= 0 if Ti ≤ Tj (9)

On the other hand, if {Ti > Tj}, we have

E

1{Tj≤Ti−2} −
1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
k

)
− 1

∣∣∣∣∣∣ FTj


= P
[
Ti ≥ Tj + 2

∣∣ FTj ]−
E

 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
k

)
− 1

∣∣∣∣∣∣ FTj


Considering the two terms above separately, we see that

P
[
Ti ≥ Tj + 2

∣∣ FTj ] = exp

− ∑
k : Tk=Tj

θ∗k


which follows from the fact that the probability that (active)
j failed to infect (susceptible) i is equal to the probability
that all the nodes that were active at Tj failed to infect i.
For the second term, we have

E

 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
k

)
− 1

∣∣∣∣∣∣ FTj


= E

 1{Tj=Ti−1}

exp
(∑

k : Tk=Tj
θ∗k

)
− 1

∣∣∣∣∣∣ FTj


(ς1)
=

1

exp
(∑

k : Tk=Tj
θ∗k

)
− 1

E
[
1{Tj=Ti−1}

∣∣ FTj ]
(ς2)
=

(
1− exp

(
−
∑
k : Tk=Tj

θ∗k

))
1{∃k∈V s.t. Tk=Tj}

exp
(∑

k : Tk=Tj
θ∗k

)
− 1

= exp

− ∑
k : Tk=Tj

θ∗k

1{∃k∈V s.t. Tk=Tj}

where (ς1) follows from the fact that {k : Tk = Tj} is mea-
surable in FTj and (ς2) follows from the fact that Ti = Tj+1
if and only if at least one of the parents of i were active at
Tj and succeeded in infecting i. Combining the above two
equations, we obtain

E

1{Tj≤Ti−2} −
1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
k

)
− 1

∣∣∣∣∣∣ FTj


= 1{Tk 6=Tj ∀ k∈V} if Ti > Tj (10)

219



Combining (8), (9) and (10)

5jL(θ∗) = −P [Ti > Tj ;Tk 6= Tk∀k ∈ V] (11)

An easy corollary of Proposition 2 is that if j is a parent of
i, then the gradient with respect to θj is zero since the prob-
ability above needs none of the parents of i to be infected at
the same time as j. On the other hand, if j is not a parent
of i, the gradient is strictly negative since the probability on
the right hand side is strictly positive.

5jL(θ∗) = 0 if j ∈ V (12)

5jL(θ∗) < 0 if j /∈ V (13)

We now state our concentration results. For j ∈ V, let

m1,j : =
∣∣{u : tuj = tui − 1 & tuk 6= tui − 1 ∀ k ∈ V \ j}

∣∣
be the number of epidemics where j is the sole infector of
node i and

m2,j : =
∣∣{u : tuj ≤ tui − 2}

∣∣
be the number of epidemics where j is infected at least two
time units before i.

Lemma 3. For m > c
pinit

(
1

α7η2p2i,min

)
d2i log

(
Di
δ

)
, we

have that

(a)
∣∣∣5jL̂(θ∗)

∣∣∣ < a for j ∈ V where a : = α3ηpinit
144d

(b) 5jL̂(θ∗) < −b for j /∈ V where b : = αpinit
16

(c) ξ1p
∗
j < m1,j < ξ1 for j ∈ V where ξ1 : = c

4
log D

δ
,

ξ1 : = 2c
α

log D
δ

and p∗j : = 1− exp(−θ∗j )

(d) ξ2 < m2,j < ξ2 for j ∈ V where ξ2 : = cα
4

log D
δ

and

ξ2 : = 2c
α

log D
δ

with probability greater than 1− δ.

Proof. For simplicity of notation we denote the num-

ber of samples as m =
C log D

δ
pinit

where C =
cd2i

α7η2p2i,min
and

D = Di. We will first prove (c). First, we note the follow-
ing bounds for independent Bernoulli random variables Xl
where µ is the mean of the sum of Xl.

P

[∑
l

Xl < (1− κ)µ

]
<

(
exp(−κ)

(1− κ)(1−κ)

)µ
(14)

P

[∑
l

Xl > (1 + κ)µ

]
<

(
e

κ
1+κ

1 + κ

)(1+κ)µ

(15)

So as to be able to use the above inequalities, we first estab-
lish bounds on the expected value of m1,j .

E [m1,j ] ≥ mpinit(1− pinit)dp∗j ≥ 2ξ1p
∗
j

where the bound uses the probability that j is infected at
time 0 and neither i nor any of its other neighbors are in-
fected at time 0 and j infects i at time 1. Similarly, we
have

E [m1,j ] ≤ mP [Tj <∞] ≤ ξ1
2

where we use Lemma 1. Now applying (14) to m1,j we
obtain

P
[
m1,j < (1− 1

2
)2ξ1p

∗
j

]
<

exp
(
− 1

2

)(
1
2

) 1
2

2ξ1p
∗
j

<
δ

8D

Similarly applying (15) to m1,j gives us

P
[
m1,j > (1 + 1)

ξ1
2

]
<

(√
e

2

)ξ1
<

δ

8D

This proves (c). The proof of (d) is similar.
We will now prove (a). Fix any j ∈ V. Let Uj = {u ∈ U :

Tuj <∞}. Since E [|Uj |] ≥ pinitm = C log D
δ

, using (14), we
obtain

P

[
|Uj | <

C log D
δ

2

]
<

δ

16D
(16)

Similarly since E [|Uj |] ≤ pinit
α
m = C

α
log D

δ
, using (15), we

obtain

P

[
|Uj | >

2C log D
δ

α

]
<

δ

16D
(17)

Define the random variable

Zj = −1{Tj≤Ti−2} +
1{Tj=Ti−1}

exp
(∑

k:Tk=Ti−1 θ
∗
k

)
− 1

Note that we have the following absolute bound on Zj

|Zj | < 1 +
1

exp(θ∗j )− 1
=

1

p∗j
(18)

where p∗j = 1− exp (−θj) and also

5jL̂(θ∗) =
1

m

∑
u∈U

Zuj =
1

m

∑
u∈Uj

Zuj

where Zuj is the realization of Zj on infection u.

P
[∣∣∣5jL̂(θ∗)

∣∣∣ ≥ a]
= P

[
1

m

∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ a
]

= P

[∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ ma
]

At this point we could apply Azuma-Hoeffding inequality to
bound the above probability. However, the scaling factor in
the exponent will be ma2 which gives us an extra pinit. To
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avoid this, we bound the above quantity as follows:

P

[∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ ma
]

≤ P

[
|Uj | >

2C log D
δ

α
or |Uj | <

C log D
δ

2

]

+

2C log D
δ

α∑
s=

C log D
δ

2

P

[
|Uj | = s;

∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ ma
]

(ς1)

≤ δ

8D
+

2C log D
δ

α∑
s=

C log D
δ

2

∑
Uj :|Uj |=s

P [Uj = Uj ]P

∣∣∣∣∣∣
∑
u∈Uj

Zuj

∣∣∣∣∣∣ ≥ ma
∣∣∣∣∣∣ Uj = Uj


(19)

where Uj varies over all the subsets of U and (ς1) follows
from (16) and (17). Focusing on the last term, we first note
that Zuj are still independent random variables for u ∈ Uj .
Since E [Zj ] = 0 from (12), we can apply Azuma-Hoeffding
inequality and using (18) we obtain

P

∣∣∣∣∣∣
∑
u∈Uj

Zuj

∣∣∣∣∣∣ ≥ ma
∣∣∣∣∣∣ Uj = Uj , |Uj | = s


≤ 2 exp

 −(ma)2

2s
(

1
p∗j

)2
 <

δ

16D
(20)

where (ς1) follows from the fact that s ≤ 2C log D
δ

α
. The proof

of (b) is on the same lines after noting that for any j /∈ V,

E [Zj ] = 5jL(θ∗)
(ς1)
= −P [Ti > Tj ;Tj 6= Tk ∀ k ∈ V]

(ς2)
< −pinit (1− pinit)d+1

(ς3)
< −pinit

2
(21)

where (ς1) follows from Proposition 2, (ς2) follows from the
fact that the probability when j is infected before i and
none of the parents of i are infected at the same time can
be lower bounded by the case where j is infected at time 0
and neither i nor any of its parents are infected at time 0.
(ς3) follows from the assumption that pinit <

1
2d

and hence

(1− pinit)d+1 > 1
2
. Using (21) and Lemma 1, we obtain

E [Zj | Tj <∞] =
E [Zj ]− E

[
Zj1{Tj=∞}

]
P [Tj <∞]

≤ −α
2

(22)

Using (19) it suffices to show that

P

∑
u∈Uj

Zuj ≥ −mb

∣∣∣∣∣∣ Uj = Uj , |Uj | = s

 < δ

16D

for
C log D

δ
2

≤ s ≤ 2C log D
δ

α
. An application of Azuma-

Hoeffding inequality gives us the required bound as follows.

P

∑
u∈Uj

Zuj ≥ −mb

∣∣∣∣∣∣ Uj = Uj , |Uj | = s


(ς1)
= P

∑
u∈Uj

Zuj − sE [Zj ] ≥

−Cα log D
δ

16
− sE [Zj ]

∣∣∣∣∣ Uj = Uj , |Uj | = s

]
(ς2)

≤ P

∑
u∈Uj

Zuj − sE [Zj ] ≥
Cα log D

δ

8

∣∣∣∣∣∣ Uj = Uj , |Uj | = s


(ς3)

≤ exp


(
Cα log D

δ
8

)2
2
(

2C log D
δ

α

)(
1
p∗j

)2
 ≤ δ

16D

where (ς1) follows by subtracting sE [Zj ] from both sides of
the inequality for which we are bounding the probability,

(ς2) follows from the fact that s ≥ C log D
δ

2
and (22) and (ς3)

is an application of the Azuma-Hoeffding inequality using

(18) and the fact that s ≤ 2C log D
δ

α
.

We will use the quantities defined in Lemma 3 in what

follows. Recall we need to show θ̂j < η for j /∈ V and θ̂j > η
for j ∈ V and θ∗j > − log

(
1− 8

α
(e2η − 1)

)
.

Lemma 4. maxj∈V θ̂j <
ξ1
ξ2

Proof. Let k = argmaxj∈V θ̂j . If θ̂k = 0, we are done.

So assume θ̂k > 0. By the optimality of θ̂, we see that

5kL̂(θ̂) = 0 (23)

On the other hand, we have

5k L̂(θ̂)

=
1

m

−m2,k +
∑
u

1{tui <∞}

exp

 ∑
j:tuj =t

u
i −1

θ̂j

− 1

−1
(ς1)

≤ 1

m

(
−m2,k +

1

exp(θ̂k)− 1
m1,k

)
(ς2)

≤ 1

m

(
−ξ2 +

1

exp(θ̂k)− 1
ξ1

)
≤ 1

m

(
−ξ2 +

1

θ̂k
ξ1

)
(24)

where (ς1) follows from the definition of m1,k and the fact
that on the infections corresponding to m1,k, we have∑

j:tuj =t
u
i −1

θ̂j ≥ θ̂k

and (ς2) follows from Lemma 3. Putting (23) and (24) to-
gether, we obtain the result.

Lemma 5.
∑
j /∈V θ̂j ≤

ad
b

(
ξ1
ξ2

+ log 1
α

)
Proof. Since L̂(θ) is concave, the subgradient condition
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at θ∗ gives us the following

L̂(θ̂)− L̂(θ∗) ≤
〈
5L̂(θ∗), θ̂ − θ∗

〉
(ς1)
=
〈
5Vc L̂(θ∗), θ̂Vc

〉
+
〈
5V L̂(θ∗), θ̂V − θ∗V

〉
(ς2)

≤ −b||θ̂Vc ||1 + a||θ̂V − θ∗V ||1

≤ −b||θ̂Vc ||1 + ad
(
||θ̂V ||∞ + ||θ∗V ||∞

)
(25)

where (ς1) follows from the fact that θ∗Vc = 0 and (ς2) follows

from the fact that θ̂ > 0 and Lemma 3. The optimality of θ̂
gives us

L̂(θ̂)− L̂(θ∗) ≥ 0 (26)

Finally we have the following bound on ||θ∗V ||∞:

θ∗j = − log
(
1− p∗j

)
≤ log

1

α
(27)

Using (25), (26), (27) and Lemma 4 gives us the result.

Note that η > ad
b

(
ξ1
ξ2

+ log 1
α

)
and hence we have that θ̂j <

η for all j /∈ V. Turning now to j ∈ V, we have the following:

Lemma 6. θ̂j > log
(

1 +
p∗j ξ1

ξ2

)
−η where p∗j = 1−exp(θ∗j )

for every j /∈ V

Proof. Since θ̂j ≥ 0, by the optimality of θ̂ we have

5jL̂(θ̂) ≤ 0 (28)

On the other hand, we have the following bound on the
gradient

5j L̂(θ̂)

=
1

m

−m2,j −
∑
u

1{tui <∞}

exp

 ∑
k:tu
k
=tui −1

θ̂k

− 1

−1
(ς1)

≥ 1

m

−m2,j +
1

exp
(
θ̂j + ||θ̂Vc ||1

)
− 1

m1,k


(ς2)

≥ 1

m

−ξ2 +
1

exp
(
θ̂j + ||θ̂Vc ||1

)
− 1

p∗j ξ1

 (29)

where (ς1) follows from the fact that on the infections cor-
responding to m1,k, we have∑

k:tu
k
=tui −1

θ̂k ≤ θ̂j + ||θ̂Vc ||1

and (ς2) follows from Lemma 3. Combining (28), (29) and
Lemma 5 gives us the result.

Thus we see that if the true parameter θ∗j satisfies θ∗j >

− log
(
1− 8

α
(e2η − 1)

)
, then θ̂j > η and thus will be in the

estimated neighborhood N̂i. This completes the proof of
Theorem 1.

C. LOWER BOUNDS

Proof of Lemma 2. Recall from Lemma 1 that P [Ti = t] ≤
(1− α)t−1 pinit. The proof just involves using this to bound
H(Ti). Since pinit <

1
e
, we have the following

H(Ti) = −
n∑
t=1

P [Ti = t] log P [Ti = t]

−P [Ti =∞] log P [Ti =∞]

≤ −
n∑
t=1

(1− α)t−1 pinit log (1− α)t−1 pinit

−
(

1− pinit
α

)
log
(

1− pinit
α

)
(ς1)

≤ pinit
1− α

(
log

1

pinit
+

(
1− α
α

)2

log
1

1− α

)
−
(

1− pinit
α

)
log
(

1− pinit
α

)
where (ς1) follows from some algebraic manipulations.
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