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Simulating from distributions with intractable normalizing constants has
been a long-standing problem in machine learning. In this letter, we pro-
pose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH)
algorithm, for tackling this problem. The MCMH algorithm is a Monte
Carlo version of the Metropolis-Hastings algorithm. It replaces the un-
known normalizing constant ratio by a Monte Carlo estimate in simula-
tions, while still converges, as shown in the letter, to the desired target
distribution under mild conditions. The MCMH algorithm is illustrated
with spatial autologistic models and exponential random graph mod-
els. Unlike other auxiliary variable Markov chain Monte Carlo (MCMC)
algorithms, such as the Møller and exchange algorithms, the MCMH al-
gorithm avoids the requirement for perfect sampling, and thus can be
applied to many statistical models for which perfect sampling is not
available or very expensive. The MCMH algorithm can also be applied to
Bayesian inference for random effect models and missing data problems
that involve simulations from a distribution with intractable integrals.

1 Introduction

In scientific computation, one often encounters problems of making infer-
ence for a model whose likelihood function contains an intractable normal-
izing constant. Examples of such models include the autologistic model
used in ecology study (Wu & Huffer, 1997), the Potts model used in im-
age analysis (Hurn, Husby, & Rue, 2003), the autonormal model used in
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agriculture experiments (Besag, 1974), and the exponential random graph
model used in social network study (Snijders, Pattison, Robins, & Hand-
cock, 2006), among others. Under the Bayesian framework, the problems
can be posed as follows. Suppose we have a data set X generated from a
statistical model with the likelihood function

f (x|θ ) = g(x, θ )

κ(θ )
, x ∈ X , θ ∈ �, (1.1)

where θ is the parameter and κ(θ ) is the normalizing constant that depends
on θ and is not available in closed form. Let π(θ ) denote the prior density
imposed on θ . The posterior density of θ is then given by

π(θ |x) ∝ 1
κ(θ )

g(x, θ )π(θ ). (1.2)

Since the closed form of κ(θ ) is not available, inference for θ poses a great
challenge on the current statistical methods.

The Metropolis-Hastings (MH) algorithm cannot be applied to simulate
from π(θ |x), because the acceptance probability would involve an unknown
ratio κ(θ )/κ(ϑ), where ϑ denotes the proposed value. To circumvent this
difficulty, various approximation methods to the likelihood function or
the normalizing constant function have been proposed in the literature.
Besag (1974) proposed to approximate the likelihood function by a pseudo-
likelihood function that is tractable. The method is easy to use, but it typi-
cally performs less well for the models for which neighboring dependence
is strong. Geyer and Thompson (1992) proposed an importance sampling–
based approach to approximation κ(θ ), which can be briefly described as
follows. Let θ∗ denote an initial guess of θ . Let y1, . . . , ym denote random
samples simulated from f (y|θ∗), which can be obtained via a Markov chain
Monte Carlo (MCMC) simulation. Then

log fm(x|θ ) = log(g(x, θ )) − log(κ(θ∗)) − log

(
1
m

m∑
i=1

g(yi, θ )

g(yi, θ
∗)

)
(1.3)

approaches log f (x|θ ) as m → ∞. The estimator θ̂ = arg maxθ log fm(x|θ ) is
called the MCMLE of θ . It is known that the performance of the method
depends on the choice of θ∗. If θ∗ is too far from the true MLE, the method
typically does not produce a good estimate of θ . Liang (2007) proposed
an alternative Monte Carlo approach to approximate κ(θ ), where κ(θ ) is
viewed as a marginal density function of the unnormalized distribution
g(x, θ ) and estimated using an adaptive kernel smoothing approach with
Monte Carlo samples.
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Toward Bayesian analysis for the model, equation 1.1, a significant step
was made by Møller, Pettitt, Reeves, and Berthelsen (2006), who propose
augmenting the distribution f (x|θ ) by an auxiliary variable such that the
normalizing constant ratio κ(θ )/κ(ϑ) can be canceled in simulations. This
algorithm was improved by Murray, Ghahramani, and MacKay (2006), who,
based on the idea of parallel tempering (Geyer, 1991), proposed the follow-
ing algorithm:

Exchange Algorithm

� Propose a candidate point ϑ from a proposal distribution denoted by
Q(θ, ϑ ).

� Generate an auxiliary variable y ∼ f (y|ϑ) using a perfect sampler
(Propp & Wilson, 1996).

� Accept ϑ with probability min{1, r(θ, y, ϑ )}, where

r(θ, y, ϑ )

= π(ϑ) f (x|ϑ) f (y|θ )Q(ϑ, θ )

π(θ ) f (x|θ ) f (y|ϑ)Q(θ, ϑ )
= π(ϑ)g(x, ϑ )g(y, θ )Q(ϑ, θ )

π(θ )g(x, θ )g(y, ϑ )Q(θ, ϑ )
.

Since a swapping operation between (θ, x) and (ϑ, y) is involved, the al-
gorithm is called the exchange algorithm. Both the Møller and the exchange
algorithm are called auxiliary variable MCMC algorithms in the literature.
The exchange algorithm generally improves the performance of the Møller
algorithm. As Murray et al. (2006) reported, the exchange algorithm tends to
have a higher acceptance probability than the Møller algorithm. Although
the Møller and exchange algorithms work well for some discrete models,
such as the Ising and autologistic models, they cannot be applied to many
other models for which perfect sampling is not available. In addition, even
for the Ising and autologistic models, perfect sampling may be very expen-
sive when the temperature is near or below the critical point. To tackle this
difficulty, Liang (2010) proposed replacing the exact sample by MH sample
in the exchange algorithm, but the ergodicity of the algorithm is hard to
establish.

Another way for conducting Bayesian inference of θ is to approximate
the normalizing constant function κ(θ ) in an offline way and then substitute
it into equation 1.1 as a known function for posterior simulations. For ex-
ample, Green and Richardson (2002) estimated κ(θ ) at a number of discrete
points, and Liang (2007) estimated the function κ(θ ) as a marginal of the
unnormalized distribution g(x, θ ). However, these methods usually work
only for the case that the dimension of θ is low.

In this letter, we propose a new algorithm, the Monte Carlo Metropolis-
Hastings (MCMH) algorithm, for sampling from distributions with in-
tractable normalizing constants. The MCMH algorithm is a Monte Carlo
version of the Metropolis-Hastings algorithm. At each iteration, it replaces
the unknown normalizing constant ratio κ(θ )/κ(ϑ) by a Monte Carlo
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estimate. Under mild conditions, we show that the MCMH algorithm can
still converge to the desired stationary distribution π(θ |x). Unlike the Møller
and exchange algorithms, the MCMH algorithm avoids the requirement
for perfect sampling and thus can be applied to many statistical models for
which perfect sampling is unavailable or very expensive.

The remainder of this letter is organized as follows. In section 2, we de-
scribe the MCMH algorithm and study its convergence theory. In section 3,
we test the MCMH algorithm on spatial autologistic models. In section 4,
we test the MCMH algorithm on social network models. In section 5, we
discuss the relation between MCMH and the group independence MH al-
gorithm introduced by Beaumont (2003), and the potential applications of
MCMH in marginal inference. We conclude in section 6.

2 The Monte Carlo Metropolis-Hastings Algorithm

2.1 The Algorithm. Consider the problem of sampling from the distri-
bution, equation 1.2. Let θt denote the current draw of θ by the algorithm.
Let y(t)

1 , . . . , y(t)
m denote the auxiliary samples simulated from the distribu-

tion f (y|θt ), which can be drawn by either an MCMC algorithm or an exact
sampling algorithm. The MCMH algorithm works by iterating between the
following steps:

Monte Carlo MH Algorithm-I

1. Draw ϑ from a proposal distribution Q(θt, ϑ ).
2. Calculate the Monte Carlo MH ratio:

2a. Estimate the normalizing constant ratio R(θt, ϑ ) = κ(ϑ)/κ(θt )

by

R̂m(θt, yt, ϑ ) = 1
m

m∑
i=1

g(y(t)
i , ϑ )

g(y(t)
i , θt )

,

where yt = (y(t)
1 , . . . , y(t)

m ) denotes the collection of auxiliary
samples.

2b. Calculate

r̃m(θt, yt, ϑ ) = 1

R̂m(θt, yt, ϑ )

g(x, ϑ )π(ϑ)

g(x, θt )π(θt )

Q(ϑ, θt )

Q(θt, ϑ )
.

3. Set θt+1 = ϑ with probability α̃(θt, yt, ϑ ) = min{1, r̃m(θt, yt, ϑ )}, and
set θt+1 = θt with the remaining probability.

4. If the proposal is rejected in step 3, set yt+1 = yt . Otherwise draw
samples yt+1 = (y(t+1)

1 , . . ., y(t+1)
m ) from f (y|θt+1) using either an

MCMC algorithm or an exact sampling algorithm.

Since the unknown normalizing constant ratio is estimated using the
Monte Carlo method, this algorithm is termed Monte Carlo MH. Clearly
the samples {(θt, yt )} form a Markov chain whose transition kernel is given
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by

P̃m(θ, y; dϑ, dz) = α̃(θ, y, ϑ )Q(θ, dϑ) f m
ϑ (dz) + δθ,y(dϑ, dz)

×
[

1 −
∫

�×Y

α̃(θ, y, ϑ ′)Q(θ, dϑ ′) f m
ϑ ′ (dz′)

]

= α̃(θ, y, ϑ )Q(θ, dϑ) f m
ϑ (dz) + δθ,y(dϑ, dz)

×
[

1 −
∫

�

α̃(θ, y, ϑ ′)Q(θ, dϑ ′)
]

, (2.1)

where f m
θ (y) = f (y1, . . . , ym|θ ) denotes the joint density of y1, . . . , ym, and

Y = Xm denotes the sample space of y. It is interesting to note that if m = 1
and the sample is drawn using an exact sampling algorithm, MCMH-I is
reduced to the exchange algorithm.

The goal of this letter is to study the convergence of {θt}, a marginal chain
of {(θt, yt )}. In general, if {(Xt,Yt )} forms a Markov chain, then the marginal
path {Xt} forms an adaptive Markov chain for which each state depends on
all of its past states; that is, Xt depends on Xt−1, . . . , X1, X0 for all t ≥ 1. For
the MCMH-I algorithm, the transition kernel of the marginal chain {θt} is
given by

P̃m(θt, dϑ) =
∫

Y

∫
Y

P̃m(θt, yt; dϑ, dz) f m
θt

(dyt )

=
∫

Y

α̃(θt, yt, ϑ )Q(θt, dϑ) f m
θt

(dyt ) + δθt
(dϑ)

×
[

1 −
∫

�×Y

α̃(θt, yt, ϑ
′)Q(θt, dϑ ′) f m

θt
(dyt )

]
. (2.2)

It is easy to see that P̃m(θt, dϑ) is independent of {θt−1, . . . , θ0}. This implies
that the ergodicity of {θt} can be analyzed as a Markov chain. Note that the
independence of P̃m(θt, dϑ) on past states is not generally true for marginal
Markov chains. It is true for MCMH-I as for which yt is generated from
fθt

(y); that is, yt is independent of θ0, . . . , θt−1 conditioned on θt .
The central issue of MCMH-I is to use the auxiliary samples y(t+1)

1 ,

. . . , y(t+1)
m generated from a short run of MCMC to estimate the normal-

izing constant ratio R(θt, ϑ ). For convenience, we call the Markov chain
used for generating auxiliary samples an auxiliary Markov chain. In prac-
tice, the auxiliary sample size m is not necessarily very large. For example,
a value between 20 and 50 has been very good for the examples studied in
this letter. The auxiliary samples can be generated by the auxiliary Markov
chain in m consecutive or thinned iterations. Considering the general depen-
dence of MCMC samples, multiple auxiliary Markov chains are generally
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preferred. Since the multiple chains can be run on a parallel architecture,
the computational time can then be significantly reduced.

To shorten the burn-in period of auxiliary Markov chains, we propose
an importance resampling-based initialization procedure for creating their
starting values. The initialization procedure can be described as follows:

1. Resample z(t+1)

0 from yt = (y(t)
1 , . . . , y(t)

m ) by setting z(t+1)

0 = y(t)
i with

a probability proportional to the importance weight given by

wi = g(y(t)
i , θt+1)/g(y(t)

i , θt ), i = 1, 2, . . . , m. (2.3)

2. Run an MCMC procedure for m0 iterations and set the initial point
y(t+1)

0 = z(t+1)
m0

, where the MCMC procedure starts with z(t+1)

0 and
admits f (z|θt+1) as the invariant distribution.

The value of m0 should be chosen large enough such that z(t+1)

0 and z(t+1)
m0

are independent. In practice, m0 can be determined through some pilot runs
of the auxiliary Markov chain at different values of θ . To save computational
time, we may set m0 = 0, setting y(t+1)

0 = z(t+1)

0 by omitting step (2) of the
initialization procedure. This may introduce to yt+1 a slight dependence on
yt , but the dependence vanishes when m is large.

2.2 Some Variants of the MCMH Algorithm. The MCMH algorithm
can have many variants. A simple one is to draw auxiliary samples at each
iteration, regardless of acceptance or rejection of the last proposal. This
variant can be described as follows:

Monte Carlo MH Algorithm-II

1. Draw ϑ from some proposal distribution Q(θt, ϑ ).
2. Calculate the Monte Carlo MH ratio:

2a. Draw auxiliary samples yt = (y(t)
1 , . . . , y(t)

m ) from f (y|θt ) using
an MCMC algorithm or an exact sampling algorithm.

2b. Estimate the normalizing constant ratio R(θt, ϑ ) = κ(ϑ)/κ(θt )

by

R̂m(θt, yt, ϑ ) = 1
m

m∑
i=1

g(y(t)
i , ϑ )

g(y(t)
i , θt )

.

2c. Calculate

r̃m(θt, yt, ϑ ) = 1

R̂m(θt, yt, ϑ )

g(x, ϑ )π(ϑ)

g(x, θt )π(θt )

Q(ϑ, θt )

Q(θt, ϑ )
.

3. Set θt+1 = ϑ with probability α̃(θt, yt, ϑ ) = min{1, r̃m(θt, yt, ϑ )}, and
set θt+1 = θt with the remaining probability.
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MCMH-II has a different Markovian structure from MCMH-I. In
MCMH-II, {θt} forms a Markov chain with the transition kernel given by

P̃m(θ, dϑ) =
∫

Y

α̃(θ, y, ϑ )Q(θ, dϑ) f m
θ (dy) + δθ (dϑ)

×
[

1 −
∫

�×Y

α̃(θ, y, ϑ ′)Q(θ, dϑ ′) f m
θ (dy)

]
, (2.4)

which is identical to the marginal transition kernel, equation 2.4, except
for notations. Hence, the two algorithms will have the same convergence
rate for {θt}. Intuitively, one may expect that MCMH-I converges more
slowly than MCMH-II, as MCMH-I recycles the auxiliary samples when
rejection occurs and thus the successive samples generated by it may have
significantly higher correlation than those generated by MCMH-II. In fact,
the random error of R̂m(θt, yt, ϑ ) depends mainly on θt and ϑ instead of
yt when m is large. This may help us to understand why MCMH-I and
MCMH-II show the same convergence rate in numerical examples.

Similar to MCMH-II, we can propose another variant of MCMH, which,
in step 2, draws auxiliary samples from f (y|ϑ) instead of f (y|θt ). Then

R̂∗
m(θt, yt, ϑ ) = 1

m

m∑
i=1

g
(
y(t)

i , θt

)
g
(
y(t)

i , ϑ
) ,

forms an unbiased estimator of the ratio κ(θt )/κ(ϑ), and the Monte Carlo
MH ratio can be calculated as

r̃∗
m(θt, yt, ϑ ) = R̂∗

m(θt, yt, ϑ )
g(x, ϑ )π(ϑ)

g(x, θt )π(θt )

Q(ϑ, θt )

Q(θt, ϑ )
.

This algorithm is called MCMH-III in this letter. It has a similar Markovian
structure to MCMH-II; that is, {θt} forms a Markov chain with the transition
kernel given by

P̃′
m(θ, dϑ) =

∫
Y

α̃∗(θ, y, ϑ )Q(θ, dϑ) f m
ϑ (dy) + δθ (dϑ)

×
[

1 −
∫

�×Y

α̃∗(θ, y, ϑ ′)Q(θ, dϑ ′) f m
ϑ ′ (dy)

]
, (2.5)

where α̃∗
m(θ, y, ϑ ) = min{1, r̃∗

m(θt, y, ϑ )}. We may expect that when m is
small, MCMH-III performs a little better than MCMH-II as R̂∗

m(θt, yt, ϑ )

forms an unbiased estimator of κ(θt )/κ(ϑ) while 1/R̂(θt, yt, ϑ ) does not;
when m is large, these two algorithms perform similarly. This is consistent
with our numerical results as shown in Table 1. In appendix B, we calculate
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Table 1: Computational Results for the U.S. Cancer Mortality Data.

Algorithm Setting α̂ β̂ CPU RE(%)

MCMH I m = 20 −0.3020 (3.54 × 10−4) 0.1230 (1.73 × 10−4) 11 100
m = 50 −0.3015 (2.93 × 10−4) 0.1231 (1.44 × 10−4) 24 66.2
m = 100 −0.3022 (2.61 × 10−4) 0.1228 (1.29 × 10−4) 46 43.0

MCMH II m = 20 −0.3016 (3.64 × 10−4) 0.1233 (1.82 × 10−4) 26 38.2
m = 50 −0.3016 (3.05 × 10−4) 0.1230 (1.56 × 10−4) 63 21.5
m = 100 −0.3018 (2.44 × 10−4) 0.1229 (1.21 × 10−4) 129 17.4

MCMH III m = 20 −0.3020 (2.81 × 10−4) 0.1229 (1.42 × 10−4) 26 62.8
m = 50 −0.3013 (2.37 × 10−4) 0.1231 (1.31 × 10−4) 63 30.5
m = 100 −0.3015 (2.64 × 10−4) 0.1231 (1.25 × 10−4) 129 16.3

DMH m = 20 −0.3018 (3.47 × 10−4) 0.1228 (1.80 × 10−4) 18 56.5
m = 50 −0.3015 (3.18 × 10−4) 0.1230 (1.65 × 10−4) 43 28.1
m = 100 −0.3019 (3.54 × 10−4) 0.1225 (1.81 × 10−4) 86 11.7

Exchange — −0.3013 (3.08 × 10−4) 0.1230 (1.60 × 10−4) 33 39.0

Notes: The numbers in the parentheses denote the standard (Monte Carlo) error of the
estimates, which are evaluated based on 100 repeated runs. CPU: CPU time in seconds
cost by a single run on a 3.0 GHz personal computer. RE (relative efficiency): Calculated
in (σ1/σ2)2 ∗ T1/T2 × 100%, where σi and Ti (i = 1, 2) denote the standard Monte Carlo
error of β̂ produced and the CPU time cost by method i, and MCMH-I (with m = 20) is
used as the standard (method 1) in the calculation.

the asymptotic variances of R̂∗
m(θt, yt, ϑ ) and 1/R̂(θt, yt, ϑ ). Our results show

that there is no a fixed ordering for their asymptotic variances, depending
on the values of θt and ϑ .

In addition to f (y|θt ) and f (y|ϑ), the auxiliary samples can be generated
from a third distribution, which has the same support set as f (y|θt ) and
f (y|ϑ). In this case, the ratio importance sampling method (Torrie & Val-
leau, 1997; Chen & Shao, 1997) can be used for estimating the normalizing
constant ratio, κ(θt )/κ(ϑ). The existing normalizing constant ratio estima-
tion techniques, such as bridge sampling (Meng & Wong, 1996) and path
sampling (Gelman & Meng, 1998), are also applicable to MCMH with an
appropriate strategy for generating auxiliary samples.

2.3 Convergence. In this section, we first prove the ergodicity of
MCMH-II, showing

P̃k
m(θ0, ·) − π(·|x)‖ → 0, as m → ∞ and k → ∞,

where k denotes the number of iterations, π(·|x) denotes the target distri-
bution defined in equation 1.2, and ‖ · ‖ denotes the total variation norm
as specified in Tierney (1994). Then, we extend the results to MCMH-I
and MCMH-III. The main results are presented below (the proofs are in
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appendix A). Define

γm(θ, y, ϑ ) = R(θ, ϑ )

R̂(θ, y, ϑ )
. (2.6)

In the context where confusion is impossible, we denote γm = γm(θ, y, ϑ ).
Define λm = | log(γm(θ, y, ϑ ))|, and define

ρ(θ ) = 1 −
∫

�×Y

α̃m(θ, y, ϑ )Q(θ, dϑ) f m
θ (dy), (2.7)

which represents the mean rejection probability of an MCMH-II transition
from θ .

To show the convergence of MCMH-II, we also consider the transition
kernel,

P(θ, ϑ ) = α(θ, ϑ )Q(θ, ϑ ) + δθ (dϑ)

[
1−

∫
�

α(θ, ϑ ′)Q(θ, ϑ ′)dϑ ′
]

, (2.8)

which is induced by the proposal Q(·, ·). In addition, we assume the fol-
lowing conditions:

A1: Assume that P defines an irreducible and aperiodic Markov
chain such that π(·|x)P = π(·|x). Therefore, for any θ0 ∈ �,
limk→∞ ‖Pk(θ0, ·) − π(·|x)‖ = 0.

A2: For any (θ, ϑ ) ∈ � × �,

0 < γm(θ, y, ϑ ) < ∞, f m
θ (·) − a.s.

A3: For any θ ∈ � and any ε > 0,

lim
m→∞ Q

(
θ, f m

θ (λm(θ, y, ϑ ) > ε)
) = 0,

where Q
(
θ, f m

θ (λm(θ, y, ϑ ) > ε)
) = ∫

{(ϑ,y):λm(θ,y,ϑ )>ε} f m
θ (dy)Q(θ, dϑ).

Condition A1 can be simply satisfied by choosing an appropriate
proposal distribution Q(·, ·), following from the standard theory of the
Metropolis-Hastings algorithm (Tierney, 1994). Condition A2 is equivalent
to assuming 0 < R̂(θ, y, ϑ ) < ∞, which ensures the MCMH ratio to be well
defined in simulations. Condition A3 is equivalent to assuming that for any
θ ∈ � and any ε > 0, there exists a positive integer M such that for any
m > M,

Q
(
θ, f m

θ (λm(θ, y, ϑ ) > ε)
) ≤ ε.
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That is, it requires that R̂(θ, y, ϑ ) is a consistent estimator of R(θ, ϑ ) and
the step size of the proposal Q(θ, ϑ ) is reasonably small (i.e., ϑ lies in a
small neighborhood of θ ). Note that conditions A2 and A3 have implicitly
incorporated into our consideration the approximation caused by selection
of the initial auxiliary sample at each iteration. It follows from the standard
theory of MCMC that when m is large, conditions A2 and A3 can still hold
even if y(t)

0 is not an exact sample from the distribution f (y|θt ).
Lemma 1 states that the marginal kernel P̃m has a stationary distribution.

It is proved in a similar way to theorem 1 of Andrieu and Roberts (2009). (The
relation between this work and Beaumont, 2003, and Andrieu & Roberts,
2009, is discussed in section 5.)

Lemma 1. Assume conditions A1 and A2 hold. Then for any m ∈ N such that for
any θ ∈ Θ , ρ(θ ) > 0, P̃m is also irreducible and aperiodic, and hence there exists a
stationary distribution π̃m(θ |x) such that for any θ0 ∈ Θ ,

lim
k→∞

‖P̃k
m(θ0, ·) − π̃m(·|x)‖ = 0.

Lemma 2 concerns the distance between the kernel P̃m and the kernel P.
It states that the two kernels can be arbitrarily close to each other, provided
that m is large enough:

Lemma 2. Assume condition A3 holds. Let ε ∈ (0, 1]. Then for any θ ∈ Θ , there
exists M(θ ) ∈ N such that for any ψ : Θ → [−1, 1] and any m > M(θ ),

|P̃mψ(θ ) − Pψ(θ )| ≤ 4ε.

Theorem 1 concerns the ergodicity of MCMH-II. It states that the kernel
P̃m asymptotically shares the same stationary distribution with the MH
kernel P:

Theorem 1. Assume conditions A1, A2, and A3 hold for MCMH-II. Then for
any ε ∈ (0, 1] and any θ0 ∈ Θ , there exist M(ε, θ0) ∈ N and K (ε, θ0, m) ∈ N such
that for any m > M(ε, θ0) and k > K (ε, θ0, m)

‖P̃k
m(θ0, ·) − π (·|x)‖ ≤ ε,

where π(·|x) denotes the posterior density of θ .

Theorem 2. Assume conditions A1, A2, and A3 hold for MCMH-I. Then the
marginal chain {θt} induced by MCMH-I has the same stationary distribution as
the Markov chain {θt} induced by MCMH-II.
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To study the ergodicity of MCMH-III, we define

γ ′
m(θ, y, ϑ ) = R̂∗(θ, y, ϑ )

R(ϑ, θ )
, λ′

m(θ, y, ϑ ) = | log(γ ′
m(θ, y, ϑ ))|

and

ρ ′(θ ) = 1 −
∫

�×Y

α̃∗
m(θ, y, ϑ )Q(θ, dϑ) f m

ϑ (dy),

where α̃∗
m(θ, y, ϑ ) = min{1, r̃∗

m(θt, y, ϑ )}. If we assume that condition A1 and
the following two conditions hold:

A′
2: For any (θ, ϑ ) ∈ � × �,

0 < γ ′
m(θ, y, ϑ ) < ∞, f m

θ (·) − a.s.,

A′
3: For any θ ∈ � and any ε > 0,

lim
m→∞ Q

(
θ, f m

ϑ (λ′
m(θ, y, ϑ ) > ε)

) = 0,

where Q
(
θ, f m

ϑ (λ′
m(θ, y, ϑ ) > ε)

) = ∫
{(ϑ,y):λ′

m(θ,y,ϑ )>ε} f m
ϑ (dy)Q(θ, dϑ),

then the ergodicity of MCMH-III can be established in a similar way to that
of MCMH-II. In summary, we have the following theorem:

Theorem 3. Assume conditions A1, A′
2, and A′

3 hold for MCMH-III. Then the
Markov chain {θt} induced by MCMH-III has the same stationary distribution as
that induced by MCMH-II.

Although theorems 1 through 3 are established under the condition that
m0 > 0, that is, y(t+1)

0 is independent of yt , they may still hold for the case
m0 = 0. This is because these theorems are all established for large values
of m, while the dependence of z(t+1)

0 on yt vanishes when m is large.
Theorems 1 through 3 imply, by standard MCMC theory (see, e.g., Tier-

ney, 1994), that for an integrable function h(θ ), the path-averaging estimator∑n
k=1 h(θk)/n will converge to its posterior mean almost surely; that is, as

k → ∞,

1
n

n∑
k=1

h(θk) →
∫

h(θ )π(θ |x)dθ, a.s.,
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provided that
∫ |h(θ )|π(θ |x)dθ < ∞ and m has been sufficiently large so

that the error in replacing π̃m(θ |x) by π(θ |x) is ignorable. Here π̃m denotes
the stationary distribution established in lemma 1 for a fixed value of m.

3 Bayesian Analysis for Spatial Autologistic Models

The autologistic model (Besag, 1974) has been widely used for spatial data
analysis (see Preisler, 1993; Wu & Huffer, 1997; Sherman, Apanasovich, &
Carroll, 2006). Let x = {xi : i ∈ D} denote the observed binary data, where
xi ∈ {−1, 1} is called a spin and D is the set of indices of the spins. Let
|D| denote the total number of spins in D, and let n(i) denote the set of
neighbors of spin i. The likelihood function of the model is

f (x|α, β)= 1
Z(α, β)

exp

⎧⎨
⎩α

∑
i∈D

xi + β

2

∑
i∈D

xi

⎛
⎝ ∑

j∈n(i)

x j

⎞
⎠
⎫⎬
⎭, (α, β) ∈ �,

(3.1)

where the parameter α determines the overall proportion of xi = +1, the
parameter β determines the intensity of interaction between xi and its neigh-
bors, and Z(α, β) is the intractable normalizing constant defined by

Z(α, β) =
∑

for all possible x

exp

⎧⎨
⎩α

∑
j∈D

xj + β

2

∑
i∈D

xi

( ∑
j∈n(i)

x j

)⎫⎬⎭ .

An exact evaluation of Z(α, β) is prohibited even for a moderate system.
To conduct a Bayesian analysis for the model, a uniform prior on

(α, β) ∈ � = [−1, 1] × [0, 1]

is assumed for the parameters. Then MCMH can be applied to simulate
from the posterior distribution π(α, β|x). The proposal distribution Q(·, ·)
we used here is a gaussian random walk proposal N2((αt, βt )

T , s2I2), where
s is the step size and I2 is the 2 × 2 identity matrix. Each auxiliary sample
is generated by a single cycle of Gibbs updates. The acceptance rate of the
MCMH moves can be controlled by the value of s. In this section, we set
s = 0.03 for all examples, although it may not be optimal.

3.1 U.S. Cancer Mortality Data. U.S. cancer mortality maps have been
compiled by Riggan et al. (1987) for investigating the possible association
of cancer with unusual demographic, environmental, industrial character-
istics, or employment patterns. Figure 1a shows the mortality map of liver
and gall bladder (including bile ducts) cancers for white males during the
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Figure 1: U.S. cancer mortality data. (Left) Mortality map of liver and gall blad-
der cancers (including bile ducts) for white males, 1950–1959. Black squares
denote counties of high cancer mortality rate, and white squares denote coun-
ties of low cancer mortality rate. (Right) Estimated cancer mortality rates using
the autologistic model with the model parameters being replaced by its approxi-
mate Bayesian estimates. The cancer mortality rate of each county is represented
by the gray level of the corresponding square.

decade 1950 to 1959, which indicates some apparent geographic clustering.
(See Sherman et al., 2006, for more descriptions of the data.) Following Sher-
man et al. (2006), we modeled the data by a spatial autologistic model. The
total number of spins is |D| = 2293. A free boundary condition is assumed
for the model, under which the boundary points have fewer neighboring
points than the interior points. This assumption is natural to these data, as
the boundary of the lattice has an irregular shape, as shown in Figure 1.

The MCMH algorithms were first applied to this example with m0 = 0
and different choices of m = 20, 50, and 100. For each value of m, each
algorithm was run 100 times independently. Each run started with a ran-
dom point drawn uniformly on the region [−1, 1] × [0, 1] (independent of
other runs) and consisted of 5000 iterations, with the first 1000 iterations
being discarded for the burn-in process and 4000 samples of θ were col-
lected from the remaining iterations. The overall acceptance rates of the
MCMH-I moves are 0.41, 0.37, and 0.36 for the runs with m = 20, m = 50,
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and m = 100, respectively. For MCMH-II, they are 0.42, 0.38, and 0.36, re-
spectively, and for MCMH-III, they are 0.28, 0.29, and 0.29, respectively.
This implies that our implementations for all the three MCMH algorithms
are efficient. A diagnosis based on the Gelman-Rubin statistic (Gelman &
Rubin, 1992) showed that for each value of m, the simulations converged
very fast, usually within a few hundred iterations. The details of the diag-
nosis are omitted here. The numerical results were summarized in Table 1.
MCMH-I and MCMH-II produced very similar results for this example,
while MCMH-I cost less than 50% CPU times than MCMH-II. As expected,
MCMH-III costs the same CPU time as MCMH-II but produced more ac-
curate estimates than MCMH-II when m is small. A common feature of the
MCMH algorithms is that they can produce more accurate estimates with
a larger value of m, although at the price of longer CPU times. It is worth
noting that the MCMH estimator seems unbiased even with a value of m as
small as 20.

To assess the validity of the MCMH algorithms, the exchange algorithm
was applied to this example. This algorithm is an auxiliary variable MCMC
algorithm, which requires a perfect sampler for generating auxiliary vari-
ables but can sample correctly from the posterior distribution when the
number of iterations becomes large. Hence, the estimates produced by the
exchange algorithm can be used as a test standard for assessing whether
the results produced by MCMH are correct. The perfect sampler used here
is the summary state algorithm (Childs, Patterson, & MacKay, 2001), which
is known to be suitable for high-dimensional binary spaces. The exchange
algorithm was also run 100 times independently, and each run consisted
of 5000 iterations. The first 1000 iterations were discarded for the burn-in
process, and the remaining 4000 iterations were used for estimating θ . The
overall acceptance rate was 0.2, which indicates that the algorithm has been
implemented efficiently. The numerical results were summarized in Table
1. The comparison indicates that the MCMH algorithms are valid. To cali-
brate the efficiency of these algorithms, we calculate their relative efficiency
based on their CPU cost and their estimates of β produced in 100 runs.
The results were reported in Table 1, which indicate that among the four
algorithms, MCMH-I is the most efficient for this example. The exchange
algorithm is only about 40% efficient as MCMH-I, and MCMH-III is only
about 60% efficient as MCMH-I.

Furthermore, we compare MCMH with the double Metropolis-Hastings
(DMH) algorithm (Liang, 2010). DMH can be viewed as an approximate
exchange algorithm, which replaces at each iteration the exact sample by
a sample simulated from a short run of the MH algorithm. To simulate
an auxiliary sample from f (y|ϑ), DMH initializes the MH algorithm at
the observation x (i.e., setting y(t)

0 = x) and then iterates for m steps. Table 1
reported the results of DMH produced with m = 20, 50, and 100. It is easy to
see that DMH is inferior to the MCMH algorithms in efficiency. Compared
to MCMH, a significant disadvantage of DMH is that its performance is
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Table 2: Variance Comparison for MCMH Stationary Distributions.

Algorithm Setting σ 2
α

σ 2
β

σ
αβ

MCMH-I m = 20 1.80 × 10−3 6.21 × 10−4 6.99 × 10−4

m = 50 1.46 × 10−3 5.14 × 10−4 6.36 × 10−4

m = 100 1.40 × 10−3 4.07 × 10−4 5.22 × 10−4

Exchange — 9.21 × 10−4 2.90 × 10−4 4.05 × 10−4

Note: σ 2
α

: Variance corresponding to the component α. σ 2
β

: Variance corresponding to the
component β; and σ

αβ
: the covariance corresponding to the components α and β.

bounded by the exchange algorithm; DMH cannot produce more accurate
parameter estimates than the exchange algorithm even with a large value of
m. However, MCMH can do so. As shown in Table 1, MCMH-I and MCMH-
II can produce more accurate estimates than the exchange algorithm with
m = 100, and MCMH-III can do so even with m = 20.

The estimates produced by the MCMH algorithms, the exchange algo-
rithm, and DMH are also very close to those reported in the literature.
Liang (2007) analyzed these data using contour Monte Carlo and produced
the estimate (−0.3008, 0.1231). Contour Monte Carlo first approximates the
normalizing constant function on a given region and then estimates the
parameters based on the approximated normalizing constant function. As
Liang (2007) reported, the algorithm took hours of CPU time to approx-
imate the normalizing constant function. Sherman et al. (2006) analyzed
the data using the Monte Carlo maximum likelihood algorithm (Geyer &
Thompson, 1992) and produced the estimate (−0.304, 0.117), which is a
bit far from the estimate of the exchange algorithm. This may reflect the
difference between the posterior mode and the posterior mean. Since the
uniform prior is used for θ , the posterior mode coincides with the MLE for
this example.

To assess the effect of m on the stationary distribution π̃m(θ |x), we com-
pare the variances of π̃m(θ |x) for m = 20, 50, and 100 and the variance of
π(θ |x). The latter was estimated using the exchange algorithm. Each of the
MCMH-I and exchange algorithms was run 50 times for each value of m.
Each run consisted of 5000 iterations, with samples collected at every 200th
iteration after the first 1000 burn-in iterations. A total of 1000 samples were
collected from 50 runs for value of m. The autocorrelation plots (omitted
here) indicate that the samples collected in this way are approximately
independent. The resulting variance estimates are given in Table 2. The nu-
merical results imply that as m increases, π̃m(θ |x) gets closer and closer to
π(θ |x).

Finally, we assess the effect of m0. Figure 2 shows the autocorrelation
plots of the sufficient statistics (

∑
i∈D xi,

∑
i∈D xi(

∑
j∈n(i) x j) for the sam-

ples generated by the Gibbs sampler at (α, β) = (−0.3, 0.123) during 50,000
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Figure 2: Autocorrelation plots of the samples generated by the Gibbs sam-
pler for the autologistic model at α = −0.3 and β = 0.123. (Left) Autocor-
relation for the statistic S1 = ∑

i∈D xi. (Right) Autocorrelation for the statistic
S2 = ∑

i∈D xi

∑
j∈n(i) xj.

Table 3: Assessment of the Effect of m0 for the MCMH-I Algorithm.

Setting α̂ β̂ CPU RE(%)

m = 20 −0.3016 (3.32 × 10−4) 0.1232 (1.62 × 10−4) 17 73.8
m = 50 −0.3019 (3.15 × 10−4) 0.1230 (1.55 × 10−4) 29 47.3
m = 100 −0.3015 (2.33 × 10−4) 0.1232 (1.23 × 10−4) 50 43.5

Notes: The numbers in the parentheses denote the standard (Monte Carlo) error of the
estimates, which are evaluated based on 100 repeated runs. CPU: CPU time in seconds
cost by a single run on a 3.0 GHz personal computer. RE is calculated as in Table 1.

consecutive iterations. It indicates that the samples have a short correlation
length, and an independent sample can be generated with about 5 itera-
tions. To ensure the condition y(t+1)

0 is independent of yt and holds for all
points near (−0.3, 0.123), we set m0 = 20 and then rerun MCMH-I with
m = 20, 50, and 100. The results were summarized in Table 3. For compari-
son, the relative efficiency of the respective settings is also calculated as in
Table 1 with the result of MCMH-I (m0 = 0, m = 20) as the standard. When
we Compare with the results of MCMH-I given in Table 1, it is easy to see
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that the effect of m0 decays as m increases; that is, when m is large, the two
settings of m0 will lead to about the same results.

The exchange algorithm works very well for this example. In section 3.2,
we present a simulated example, where the exchange algorithm does not
work well in some cases, while the MCMH algorithms still work well.

3.2 Simulation Studies. To assess the general accuracy of the estimates
produced by MCMH, we simulated 50 independent samples for the U.S.
cancer mortality data under each setting of (α, β) given in Table 4. All sim-
ulations were done using the summary state algorithm (Childs et al., 2001).
Since the boundary of the lattice is irregular, the free boundary condition
was again assumed in the simulations. We then reestimated the parame-
ters using the MCMH-I and MCMH-III algorithms (with m = 20) and the
exchange algorithm. All the three algorithms were run as for the previ-
ous example. The computational results are summarized in Table 4. Since
MCMH-II always performs similar to MCMH-I but costs longer CPU times,
its results are omitted in Table 4.

Table 4 indicates that the MCMH-I and MCMH-III algorithms can pro-
duce almost the same results as the exchange algorithm, but with much
shorter CPU time for most cases. The variation of the CPU times of MCMH-I
is due to the variation of its acceptance rate. MCMH-I has the lowest ac-
ceptance rate 0.35 at θ = (0, 0.4) and the highest acceptance rate 0.68 at
θ = (0.5, 0.5). This variation can be easily smoothed by a fine tune of the
step size s at different values of θ . For the exchange algorithm, the CPU
time increases exponentially as β increases. Childs et al. (2001) studied the
behavior of the exact sampler for the Ising model, a simplified autologistic
model with α being constrained to 0. For the Ising model, they fitted an ex-
ponential law for the convergence time and reported that the exact sampler
may diverge at a value of β lower than the critical value (≈0.44). Childs
et al.’s finding is consistent with the results reported in Table 4. Under the
setting (0, 0.4), the exchange algorithm took an extremely long CPU time
to produce an estimate of θ . Under the setting (0.5, 0.5), it failed to produce
an estimate of θ even with more than 45 hours of CPU time on a 3.0 GHz
personal computer. Finally, we note that due to the effect of α, it usually
takes more CPU time for the exact sampler to generate a sampler under the
setting (0, β) than under the setting (α, β).

For a thorough exploration of the performance of the MCMH algorithms,
we calculate the integrated autocorrelation time (IAT) of β samples gener-
ated by them. The results for the α samples are similar. IAT is often used to
compare the efficiency of Monte Carlo algorithms. The shorter the IAT is, the
larger number of independent samples the algorithm can generate per time
unit and thus the more efficient the algorithm is. IAT can be estimated by

� = 1 + 2
L∑

k=1

c(k), (3.2)
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where c(k) = Corr(βt, βt+k) is the autocorrelation coefficient of βt and
βt+k, and L can be determined by the self-consistent windowing approach
(Madras, 2000) as follows:

1. Determine the value of L1 = min{k : c(k) < 0} and set L = 2L1.
2. Calculate the current estimate � in equation 3.2.
3. If L > 5�, stop; otherwise, set L = 5� and return to step 2.

To calculate �, for each setting of (α, β) in Table 4, MCMH-I was run once
for one data set. The run has the same setting m = 20 as before except that
it is much longer, consisting of 50,000 iterations. The resulting estimates of
IAT were given in Table 4. We have tried different data sets, and the results
were similar. For comparison, MCMH-III and the exchange algorithm were
also run on the same data sets and each for 50,000 iterations; the results
are reported in Table 4. Table 4 shows a common pattern for all the three
algorithms. As expected, IAT increases as α or β increases. These results
suggest that when α or β increases, to maintain the same level of Monte
Carlo errors, MCMH may need a larger number of iterations or a larger
value of m; for the exchange algorithm, one may have to increase the number
of iterations.

For this example, the exchange algorithm has a longer autocorrelation
time than the MCMH algorithms, and MCMH-III has a longer autocorrela-
tion time than MCMH-I. This phenomenon is likely caused by the approx-
imation error of the normalizing constant ratio. As illustrated by Figure 3
(the plots are similar for other settings of (α, β)), the samples generated
by MCMH have larger variations and wider ranges than those generated
by the exchange algorithm, and thus the autocorrelation time is shorter.
The shorter autocorrelation time implies that MCMH can generate more
independent samples within the same number of iterations, and this fea-
ture compensates for its inefficiency caused by large sample variations. As
shown in Table 4, the overall results, the parameter estimates and standard
errors calculated over 50 different data sets, suggest that MCMHs are very
sound algorithms even when m is small. Note that the standard errors re-
ported in Table 4 have mixed the Monte Carlo error due to simulations and
the error due to different data sets. The highly consistent standard errors
from different algorithms imply that the Monte Carlo errors from different
algorithms are similar.

For a thorough comparison, the MCMLE method was also applied to
this example. To resolve the difficulty in choosing the initial point θ∗ in
equation 1.3, a recursive procedure, originally suggested by Geyer and
Thompson (1992), was used:

0. Initialize θ (0) with the maximum pseudo-likelihood estimator, and
set k = 0.

1. Simulate m = 10,000 samples from f (x|θ (k)) using the Gibbs sampler.
2. Find θ (k+1) = arg maxθ log fm(x|θ (k)).
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Figure 3: Plots of β samples generated by MCMH and the exchange algorithm
for the case (α, β) = (0.1, 0.1). (Top) Time plot and histogram of β samples gen-
erated by MCMH-I. (Middle) Time plot and histogram of β samples generated
by MCMH-III. (Bottom) Time plot and histogram of β samples generated by the
exchange algorithm.

The algorithm iterates between steps 1 and 2 for 10 times such that a
total of 100,000 auxiliary samples were generated in each run. This ap-
proximately matches with the CPU cost of the MCMH-III algorithm. The
numerical results are shown in Table 4. MCMLE failed to converge for 7
data sets generated under the setting θ = (0, 0.4) due to difficulty in find-
ing appropriate initial points. The overall performance of MCMLE on this
example is good, but there is a clear pattern that its performance deterio-
rates as β increases. Comparing to MCMLE, the performance of the MCMH
algorithms is less affected by the value of β. Geyer and Thompson (1992)
also suggest increasing the value of m with the number of iterations. Since
m has been set to a large value for this example, our implementation should
be effective for assessing the performance of MCMLE.

4 Bayesian Analysis for Exponential Random Graph Models

Social network analysis has emerged as a key technique in modern sociol-
ogy. The exponential family of random graphs is among the most widely
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used, flexible models in social network analysis, which includes edge and
dyadic independence models, Markov random graphs (Frank & Strauss,
1986), exponential random graphs (also known as p∗ models; Snijders et al.,
2006), and many other models. The model of particular interest is the expo-
nential random graph model (ERGM), which allows one to include various
network dependent structures in the analysis and thus improves goodness
of fit for various social networks. (see Robins, Pattison, Kalish, & Lusher,
2007, for an overview of ERGMs.)

Consider a social network with n actors. The network can be specified in
a matrix X , where Xi j = 1 if there is a network tie from i to j and 0 otherwise.
This matrix is known as the adjacency matrix. Note that the social network
can be directed or nondirected. The likelihood function of the ERGM is
given by

f (x|θ ) = 1
κ(θ )

exp

{∑
a∈A

θasa(x)

}
, (4.1)

where sa(x) denotes an explanatory statistic, θa is the corresponding coeffi-
cient, A denotes the set of network statistics considered in the model, and
κ(θ ) is an intractable normalizing constant, which makes equation 4.1 a
proper probability distribution.

In the literature, two methods are usually used for estimation of θ ; the
maximum pseudo-likelihood estimation (MPLE) method (Strauss & Ikeda,
1990) and the Monte Carlo maximum likelihood estimation (MCMLE)
method (Snijders, 2002; Hunter & Handcock, 2006). The MPLE method
analyzes ERGMs with a simplified, analytic form of the likelihood func-
tion under the assumption of dyadic independence. The properties of this
method have been studied by many authors (Corander, Dahmström, &
Dahmström, 1998; Wasserman & Robins, 2005; Lubbers & Snijders, 2007;
van Duijn, Gile, & Handcock, 2009). MPLE is intrinsically highly depen-
dent on the observed network. It usually works well for the networks with
a low dependence structure but may produce substantially biased estimates
for the networks with high dependency. The MCMLE method originates
in Geyer and Thompson (1992), whose idea we briefly described in section
1. The main difficulty with this method is in finding an appropriate initial
point. As Bartz, Blitzstein, and Liu (2008) pointed out, MCMLE often fails
to converge in ERGMs, because the initial point (MPLE is usually used as
the initial point) is often too far from the true MLE.

4.1 Exponential Random Graph Models. To define the ERGM explic-
itly, the explanatory statistics sa(x), a ∈ A, need to be specified. Since the
number of possible specifications is large, only a few key statistics are
considered here: the edge, degree distribution, and shared partnership
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distribution. The edge, denoted by e(x), counts the number of edges in
the network. The other two statistics are defined below.

4.1.1 Degree Distribution. Let Di(x) denote the number of nodes in the
network x whose degree, the number of edges incident to the node, equals i.
For example, Dn−1(x) = n when x is the complete graph and D0(x) = n when
x is the empty graph. Note that D0(x), . . . , Dn−1(x) satisfy the constraint∑n−1

i=0 Di(x) = n, and the number of edges in x can be expressed as

e(x) = 1
2

n−1∑
i=1

iDi(x).

The degree distribution statistic (Snijders et al., 2006; Hunter & Hand-
cock, 2006; Hunter, 2007) is defined as

u(x|τ ) = eτ

n−2∑
i=1

{
1 − (

1 − e−τ
)i}

Di(x), (4.2)

where the parameter τ specifies the decreasing rate of the weights put on the
higher-order terms. This statistic is also called the geometrically weighted
degree (GWD) statistic. Following Hunter, Goodreau and Handcock (2008),
τ is fixed to 0.25 throughout this section. Fixing τ to be a constant is sensible,
as u(x|τ ) plays a role of explanatory variables for the ERGMs.

4.1.2 Shared Partnership. Following Hunter and Handcock (2006) and
Hunter (2007), we define one type of shared partner statistics, the edgewise
shared partner statistics, denoted by EP0(x), · · ·, EPn−2(x). The EPk(x) is
the number of unordered pairs (i, j) such that Xi j = 1 and i and j have
exactly k common neighbors. The geometrically weighted edgewise shared
partnership (GWESP) statistic is defined as

v(x|τ ) = eτ

n−2∑
i=1

{
1 − (

1 − e−τ
)i}

EPi(x), (4.3)

where the parameter τ specifies the decreasing rate of the weights put on
the higher-order terms. Again, following Hunter et al. (2008), τ is fixed to
0.25.

Based on the statistics defined above, we consider three ERGMs with
respective likelihood functions given by

f (x|θ )= 1
κ(θ )

exp
{
θ1e(x) + θ2u(x|τ )

}
(Model 1),
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f (x|θ )= 1
κ(θ )

exp
{
θ1e(x) + θ2v(x|τ )

}
(Model 2),

f (x|θ )= 1
κ(θ )

exp
{
θ1e(x) + θ2u(x|τ ) + θ3v(x|τ )

}
(Model 3).

To conduct a Bayesian analysis for the models, the prior π(θ ) =
Nd(0, 102Id) was imposed on θ , where d is the dimension of θ and Id is
an identity matrix of size d × d. Then MCMH can be applied to simulate
from the posterior. The proposal distribution Q(·, ·) used here is a gaussian
random walk proposal Nd(θt, s2Id), and s is called the step size. In all simu-
lations of this section, s was fixed to 0.2. Each auxiliary sample is generated
through a cycle of Metropolis-within-Gibbs updates.

4.2 High School Student Friendship Network. The data were collected
during the first wave (1994–1995) of the National Longitudinal Study of
Adolescent Health(AddHealth) through a stratified sampling survey in the
U.S. schools containing grades 7 through 12. To collect the data, the school
administrator made a roster of all students and asked students to nomi-
nate five close male and female friends. Students were allowed to nominate
their friends who were not in their school. The students could choose not to
nominate if they did not have enough close male or female friends. The de-
tailed description of the data can be found in Resnick et al. (1997), Udry and
Bearman (1998), or online at http://www.cpc.unc.edu/projects/addhealth.
The full data set contains 86 schools and 90,118 students. In this letter, we
analyze only the subnetwork for school 10, which has 205 students, and
consider only the undirected network for the case of mutual friendship.

MCMH-I was applied to this network with m = 20. For each model,
MCMH-I was run five times independently. Each run started with a ran-
dom point and consisted of 5000 iterations, where the first 1000 iterations
were discarded for the burn-in process and the samples collected from the
remaining iterations were used for estimation. The results are summarized
in Table 5.

Since the exact sampler is not available for social networks, the MCMLE
was also applied to this example for comparison. The software we used
for MCMLE is an R package ergm by Hunter et al. (2008). MCMLE was
also run five times for each model of this example. Each run consisted of
25 iterations with 6500 auxiliary networks generated at each iteration. In
the ergm package, the auxiliary networks were simulated using the tie–no
tie sampler (Morris, Handcock, & Hunter, 2008) with both the number of
burn-in and the number of interval steps being set to 20,000. Under this
setting, 1.3 × 108(= 20,000 × 6,500) MH updates (each for one edge) are
needed for generating 6500 networks at each iteration of MCMLE. The
results, summarized in Table 5, indicate that MCMLE costs longer CPU
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Table 5: Parameter Estimation for the AddHealth School 10 Network.

Method Terms Model 1 Model 2 Model 3

MCMH Edge counts −3.922(7.0e − 3) −5.607(1.3e − 2) −5.507(3.7e − 2)

GWD −1.545(1.6e − 2) −0.101(3.7e − 2)

GWESP 1.889(1.2e − 2) 1.821(2.4e − 2)

CPU(m) 33.6 33.5 60.1
MCMLE Edge counts −3.977(5.3e − 2) −5.388(9.3e − 3) −5.170(1.5e − 2)

GWD −1.297(4.3e − 2) −0.227(6.1e − 3)

GWESP 1.711(7.8e − 3) 1.589(1.5e − 2)

CPU(m) 45.1 48.9 70.8

Notes: The estimates were calculated by averaging over five independent runs with the
standard Monte Carlo errors reported in the parentheses. CPU: CPU time (in minutes)
cost by a single run on a 3.0 GHz Intel Core 2 Duo computer.

times than MCMH-I for this example. All computations for this example
were done on a 3.0 GHz Intel Core 2 Duo computer.

To assess the accuracy of the MCMH estimates, the following procedure
was proposed in a spirit similar to that of the parametric bootstrap method
(Efron & Tibshirani, 1993), which calculated the root mean squared errors
(RMSEs) of the estimates of Sa(x)’s. Since the statistics {Sa(x) : a ∈ A} are suf-
ficient for θ , if an estimate θ̂ is accurate, then Sa(x)’s can be reverse-estimated
by simulated networks from the distribution f (x|θ̂ ). The procedure consists
of three steps:

1. Given the estimate θ̂ , simulate K networks, x1, . . . , xK, independently
using the Gibbs sampler.

2. Calculate the statistics Sa(x), a ∈ A for each of the simulated net-
works.

3. Calculate RMSE by the following equation,

RMSE(Sa) =
√√√√ K∑

i=1

[
Sa(xi) − Sa(x)

]2
/K, a ∈ A, (4.4)

where Sa(x) is the corresponding statistic calculated from the network
x.

In addition to RMSE, we calculate the absolute mean difference (AMD)
for each statistic,

AMD(Sa) =
∣∣∣∣∣ 1
K

K∑
i=1

Sa(xi) − Sa(x)

∣∣∣∣∣ .
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Table 6: RMSEs and AMDs of the MCMLE and MCMH Estimates for the
ADDHealth School 10 Network.

Model 1 Model 2 Model 3

Method Terms RMSE AMD RMSE AMD RMSE AMD

MCMH Edge counts 32.449 2.672 26.998 2.252 22.993 10.821
GWD 16.222 0.357 12.519 3.518
GWESP 28.269 0.945 30.531 11.333

MCMLE Edge counts 50.046 42.151 41.305 29.599 87.158 76.948
GWD 26.964 24.497 27.609 25.277
GWESP 33.180 14.568 70.470 56.189

With simple manipulations, it is easy to show that the following equalities
hold at the MLE of θ :

Eθ [Sa(X)] = Sa(x), ∀ a ∈ A, (4.5)

where Eθ [·] denotes the expectation with respect to the distribution f (x|θ )

given in equation 4.1. Hence, AMD also provides a measure for the quality
of the estimate of θ .

For each of the estimates shown in Table 5, the RMSEs and AMDs were
calculated with K = 1000 and summarized in Table 6. The results indicate
that MCMH-I produced much more accurate estimates than MCMLE for
all three models. We note that Hunter et al. (2008) also applied MCMLE to
models 1 and 2 for this network. Their estimate for model 2 is similar to
ours, but their estimate for model 1 is not as close as ours. Hunter et al.
(2008) reported the estimate of model 1 as (−1.423,−1.305), for which the
RMSE values are 4577.2 for the edge count and 90.011 for GWD. MCMH-I
was also run with m = 50 for this network. The results were very similar.

Finally, we assessed the accuracy of the model estimates using the
goodness-of-fit (GOF) plots (Hunter et al., 2008). The GOF plot shows the
distribution (through box plots and confidence intervals) of three sets of
statistics—the degree distribution, the edgewise shared partnership distri-
bution, and the geodesic distance distribution—for the fitted model. If the
statistics of the observed network, which are represented by a solid line in
the GOF plots, fall into the confidence intervals of the fitted model, then
the fitting is considered good. The closer the solid line is to the center of
the box plots, the better the fitting is. Figure 4 compares the GOF plots for
the two estimates of model 3. It indicates that MCMH-I provides a better
fitting for the network than MCMLE. For the other two models, the GOF
plots (omitted here) also indicate that MCMH-I works better than MCMLE
for this example.
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5 MCMH, GIMH, and Marginal Inference

In the literature, there is one algorithm, grouped independence MH (GIMH)
(Beaumont, 2003), that is similar in spirit to the MCMH algorithm. GIMH
is designed for marginal inference from a joint distribution.

Let p(θ, y) denote a joint distribution, let p(θ ) denote the marginal distri-
bution of θ , and let p(y|θ ) = p(θ, y)/p(θ ) denote the conditional distribution
of y given θ . Suppose that we are interested in the marginal distribution
p(θ ). In Bayesian statistics, θ could represent a parameter of interest and y
a set of missing data or latent variables. As implied by the Rao-Blackwell
theorem (Bickel and Doksum, 2000), a basic principle in Monte Carlo com-
putation is to carry out analytical computation as much as possible. Mo-
tivated by this principle, Beaumont (2003) proposed replacing p(θ ) by its
Monte Carlo estimate in simulations when the analytical form of p(θ ) is not
available. Let y = (y1, . . . , ym) denote a set of independent and identically
distributed (i.i.d.) samples drawn from a trial distribution fθ (y). Note that
fθ (y) might not be equal to the conditional distribution p(y|θ ). It follows
from the standard theory of importance sampling that

p̃(θ ) = 1
m

m∑
i=1

p(θ, yi)

fθ (yi)
, (5.1)

forms an unbiased estimate of p(θ ). In simulations, GIMH treats p̃(θ ) as a
known target density, then simulates from it using the MH algorithm. Let
θt denote the current draw of θ , and let yt = (y(t)

1 , . . . , y(t)
m ) denote a set of

i.i.d. auxiliary samples drawn from fθ (y). One iteration of GIMH consists
of the following steps:

Group Independence MH Algorithm

� Generate a new candidate point ϑ from a proposal distribution
Q(θt, ϑ ).

� Draw m i.i.d. samples y′ = (y′
1, . . . , y′

m) from the trial distribution
fϑ (y).

� Accept the proposal with probability

min
{

1,
p̃(ϑ )

p̃(θt )

Q(ϑ, θt )

Q(θ, ϑ )

}
.

If it is accepted, set θt+1 = ϑ and yt+1 = y′. Otherwise, set θt+1 = θt
and yt+1 = yt .

The convergence of the GIMH algorithm has been studied by Andrieu
and Roberts (2009) under similar conditions to those assumed for MCMH
in this letter. In the context of marginal inference, MCMH-I can be described
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as follows. Let yt = (y(t)
1 , . . . , y(t)

m ) denote a set of auxiliary samples drawn
from the conditional distribution p(y|θt ).

MCMH-I Algorithm (for marginal inference)

� Generate a new candidate point ϑ from a proposal distribution
Q(θt, ϑ ).

� Accept the proposal with probability

min
{

1, R̃(θt, ϑ )
Q(ϑ, θt )

Q(ϑ, θt )

}
,

where R̃(θt, ϑ ) = 1
m

∑m
i=1 p(ϑ, y(t)

i )/p(θt, y(t)
i ) forms an unbiased esti-

mate of the marginal density ratio R(θt, ϑ ) = ∫
p(ϑ, y)dy/

∫
p(θt, y)dy.

If it is accepted, set θt+1 = ϑ ; otherwise, set θt+1 = θt .
� Set yt+1 = yt if a rejection occurs in the previous step. Otherwise, gen-

erate auxiliary samples yt+1 = (y(t+1)

1 , . . . , y(t+1)
m ) from the conditional

distribution p(y|θt+1). The auxiliary samples y(t+1)

1 , . . . , y(t+1)
m can be

generated using a MCMC simulation.

Taking a closer look at MCMH-I, we find that it is designed with a
different rule from GIMH. First, GIMH estimates the marginal distributions,
whereas MCMH-I directly estimates the ratio of marginal distributions. This
leads to an important use of MCMH for simulating from distributions with
intractable normalizing constants, the focus of this letter. Note that GIMH
cannot be directly applied to this problem. Second, GIMH requires drawing
samples from two distributions fθ (·) and fϑ (·), while MCMH-I requires
drawing samples from only a single distribution p(·|θ ). Thus, MCMH-I can
be more efficient than GIMH for marginal inference. In addition, MCMH-
I can recycle the auxiliary samples when a proposal is rejected, and this
further improves its efficiency.

MCMH can potentially be applied to many statistical models for which
marginal inference is of interest, such as generalized linear mixed models
(see, e.g., McCulloch et al., 2008) and hidden Markov random field models
(see, e.g., Rue & Held, 2005). MCMH can also be applied to Bayesian analy-
sis for the missing data problems that are traditionally treated with the EM
algorithm (Dempster, Laird, & Rubin, 1977) or the Monte Carlo EM algo-
rithm (Wei & Tanner, 1990). Since the EM and Monte Carlo EM algorithms
are local optimization algorithms, they tend to converge to suboptimal so-
lutions. MCMH may perform better in this respect. Note that one may run
MCMH under the framework of parallel tempering (Geyer, 1991) to help it
escape from suboptimal solutions.

6 Conclusion

In this letter, we have proposed the new Monte Carlo Metropolis-Hastings
algorithm for sampling from distributions with intractable normalizing
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constants. The MCMH algorithm is a Monte Carlo version of the Metropolis-
Hastings algorithm. At each iteration, it replaces the unknown normalizing
constant ratio by a Monte Carlo estimate constructed based on auxiliary
samples. Although the algorithm violates the detailed balance condition, it
still converges, as we show in the letter, to the desired target distribution
under mild conditions.

Unlike other auxiliary variable MCMC algorithms, such as the Møller
and exchange algorithms, the MCMH algorithm avoids the requirement
for perfect sampling and thus can be applied to many statistical models
for which perfect sampling is not available or very expensive. Another
advantage of the MCMH algorithm is that it can be easily run on a parallel
architecture. The m auxiliary samples can be drawn from multiple short
MCMC runs, with each running on a different node. For the problems for
which simulating auxiliary samples is time-consuming, this will lead to a
significant reduction of computational time.

As we discussed in section 5, the MCMH algorithm can also be applied
to Bayesian inference for the random effect models and the missing data
problems, which involve simulations from distributions with intractable
integrals. Compared to the existing GIMH algorithm, the MCMH algorithm
should be more efficient for these problems, as it recycles the auxiliary
samples in simulations.

Appendix A: Proof of Theorems

Proof of Lemma 1. Since P defines an irreducible and aperiodic Markov
chain, to show P̃m has the same property, it suffices to show that the ac-
cessible sets of P are included in those of P̃m. More precisely, we show by
induction that for any k ∈ N, θ ∈ �, and A ∈ B(�) such that Pk(θ, A) > 0,
then P̃k

m(θ, A) > 0. First, for any θ ∈ � and A ∈ B(�), it follows from equa-
tion 2.8 that

P(θ, A) =
∫

A
α(θ, ϑ )Q(θ, dϑ) + I(θ ∈ A)

[
1 −

∫
�

α(θ, ϑ ′)Q(θ, dϑ ′)
]

.

Similarly, it follows from equations 2.4, 2.6, and 2.7 that

P̃m(θ, A) =
∫

A

∫
Y

(1 ∧ γmr(θ, ϑ )) f m
θ (dy)Q(θ, dϑ) + I(θ ∈ A)ρ(θ )

≥
∫

A

[∫
Y

(1 ∧ γm) f m
θ (dy)

]
(1 ∧ r(θ, ϑ ))Q(θ, dϑ) + I(θ ∈ A)ρ(θ )

=
∫

A

[∫
Y

(1 ∧ γm) f m
θ (dy)

]
α(θ, ϑ )Q(θ, dϑ) + I(θ ∈ A)ρ(θ ),
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where I(·) is the indicator function, a ∧ b = min(a, b), α(θ, ϑ ) = 1 ∧ r(θ, ϑ ),
and

r(θ, ϑ ) = 1
R(θ, ϑ )

g(x, ϑ )π(ϑ)

g(x, θ )π(θ )

Q(ϑ, θ )

Q(θ, ϑ )
.

Therefore, for any set A ∈ B(�), if θ /∈ A and P(θ, A) > 0, then∫
A α(θ, ϑ )Q(θ, dϑ) > 0 and thus P̃m(θ, A) > 0 by condition (A2). If θ ∈ A,

regardless of the value of P(θ, A), we have P̃m(θ, A) > 0 by the assumption
that ρ(θ ) > 0 for all θ ∈ �. The implication is that this true for k = 1.

Assume the induction assumption is true up to some k = n ≥ 1. Now,
for some θ ∈ �, let A ∈ B(�) be such that Pn+1(θ, A) > 0 and assume that

∫
�

P̃n
m(θ, dϑ)P̃m(ϑ, A) = 0,

which implies that P̃m(ϑ, A) = 0, P̃n
m(θ, ·)-a.s. and hence that P(ϑ, A) = 0,

P̃n
m(θ, ·)-a.s. from the induction assumption for k = 1. From this and the

induction assumption for k = n, we deduce that P(ϑ, A) = 0, Pn(θ, ·)-a.s.
(by contradiction), which contradicts the fact that Pn+1(θ, A) > 0.

Proof of Lemma 2. Let

S = Pψ(θ ) − P̃mψ(θ )

=
∫

�×Y

ψ(ϑ)
[
1 ∧ r(θ, ϑ ) − 1 ∧ γmr(θ, ϑ )

]
Q(θ, dϑ) f m

θ (dy)

−ψ(θ )

∫
�×Y

[
1 ∧ r(θ, ϑ ) − 1 ∧ γmr(θ, ϑ )

]
Q(θ, dϑ) f m

θ (dy).

We therefore focus on the quantity

S0 =
∫

�×Y

∣∣∣1 ∧ r(θ, ϑ ) − 1 ∧ γmr(θ, ϑ )

∣∣∣Q(θ, dϑ) f m
θ (dy)

=
∫

�×Y

∣∣∣1 ∧ r(θ, ϑ ) − 1 ∧ γmr(θ, ϑ )

∣∣∣I(λm > ε)Q(θ, dϑ) f m
θ (dy)

+
∫

�×Y

∣∣∣1 ∧ r(θ, ϑ ) − 1 ∧ γmr(θ, ϑ )

∣∣∣I(λm ≤ ε)Q(θ, dϑ) f m
θ (dy).

Since, for any (x, y) ∈ R
2,

|1 ∧ ex − 1 ∧ ey| = 1 ∧ |e0∧x − e0∧y| ≤ 1 ∧ |x − y|,
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we deduce that

S0 ≤ Q(θ, f m
θ (I(λm > ε))) + Q(θ, f m

θ (1 ∧ λmI(λm ≤ ε))).

Consequently, we have

|S| ≤ 2Q(θ, f m
θ (I(λm > ε))) + 2Q(θ, f m

θ (1 ∧ λmI(λm ≤ ε)))

≤ 2ε + 2ε = 4ε.

This completes the proof of lemma 2.

Proof of Theorem 1. For any k ≥ 1 and any ψ : � → [−1, 1], we have

P̃k
mψ(θ0) − π(ψ) = S1(k) + S2(k),

where π(ψ) = π(ψ(θ )) for notational simplicity, and

S1(k) = Pkψ(θ0) − π(ψ), S2(k) = P̃k
mψ(θ0) − Pkψ(θ0).

For the term S2(k), we can further decompose it as follows. For any k0
(1 ≤ k0 < k),

|S2(k)| ≤ |P̃k
mψ(θ0) − P̃

k0
m ψ(θ0)| + |P̃k0

m ψ(θ0) − Pk0ψ(θ0)|
+ |Pk0ψ(θ0) − Pkψ(θ0)|

=
∣∣∣∣∣∣
k0−1∑
l=0

[PlP̃
k0−l
m ψ(θ0) − Pl+1P̃

k0−(l+1)

m ψ(θ0)]

∣∣∣∣∣∣
+ |P̃k

mψ(θ0) − P̃
k0
m ψ(θ0)| + |Pkψ(θ0) − Pk0ψ(θ0)|

=
∣∣∣∣∣∣
k0−1∑
l=0

Pl(P̃m − P)P̃
k0−(l+1)

m ψ(θ0)

∣∣∣∣∣∣ + |P̃k
mψ(θ0) − P̃

k0
m ψ(θ0)|

+ |Pkψ(θ0) − Pk0ψ(θ0)|. (A.1)

For any ε > 0, by lemma 2, there exists an M(ε, θ0) such that for any m >

M(ε, θ0),

|S2(k)| ≤ 4k0ε + |P̃k
mψ(θ0) − P̃

k0
m ψ(θ0)| + |Pkψ(θ0) − Pk0ψ(θ0)|

= 4k0ε + S3(m, k, k0) + S4(k, k0),

where Lemma 2 has been applied to equation A.1 k0 times.
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The magnitudes of S1(k), S4(k, k0), and S3(m, k, k0) can be controlled
following from the convergence of the transition kernel P and lemma 1. For
any ε > 0, there exists k0 = k(ε, θ0, m) such that for any k > k0,

|S1(k)| ≤ ε, S3(m, k, k0) ≤ ε, S4(k, k0) ≤ ε.

Summarizing the results of S1(k) and S2(k), we conclude the proof by choos-
ing ε = ε/(4k0 + 3).

Proof of Theorem 2. This theorem can be proved as for theorem 1, as
MCMH-I and MCMH-II share the same transition kernel.

Proof of Theorem 3. This theorem can be proved in the same way as for
Theorem 1 except for some changes in notations.

Appendix B: Asymptotic Variances of Two Estimators of R

Suppose that we want to estimate the ratio R = κ(θ )/κ(ϑ) = Eϑ [ g(y,θ )

g(y,ϑ )
],

where Eϑ [·] denotes expectations with respect to f (y|ϑ) = g(y, ϑ )/κ(ϑ).
In this section, we calculate the asymptotic variances of two estimators of
R, which are given as follows:

R̂1 =
[

1
n

n∑
i=1

g(xi, ϑ )

g(xi, θ )

]−1

,

where x1, . . . , xn denote n i.i.d. samples drawn from f (x|θ ), and

R̂2 = 1
n

n∑
i=1

g(yi, θ )

g(yi, ϑ )
,

where y1, . . . , yn denote n i.i.d. samples drawn from f (y|ϑ).
If we define Zi = g(xi, θ )/g(xi, ϑ ), then R̂1 can be viewed as a harmonic

mean estimator of E(Zi). Under regularity conditions, it is easy to show

√
n(R̂1 − R) −→ N

(
0,

Var(Z−1
i )

(E(Z−1
i ))4

)
,

as n → ∞. Direct calculations yield E(Z−1
i ) = 1/R and

Var(Z−1
i ) = 1

R2 Eθ

(
f (x|ϑ) − f (x|θ )

f (x|θ )

)2

.
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Thus, the asymptotic variance of R̂1 is

σ 2
1 (θ, ϑ ) = R2Eθ

(
f (x|ϑ) − f (x|θ )

f (x|θ )

)2

= R2Varθ (Wx),

where Wx = f (x|ϑ)/ f (x|θ ) and Varθ (·) denotes the variance with respect to
the distribution f (x|θ ). Similarly, the asymptotic variance of R̂2 is

σ 2
2 (θ, ϑ ) = R2Eϑ

(
f (y|θ ) − f (y|ϑ)

f (y|ϑ)

)2

= R2Varϑ (Wy),

where Wy = f (y|θ )/ f (y|ϑ) and Varϑ (·) denotes the variance with respect
to the distribution f (y|ϑ). Hence, the ordering of σ 2

1 (θ, ϑ ) and σ 2
2 (θ, ϑ )

depends on the values of θ and ϑ .

Acknowledgments

We thank the editor, associate editor, and two referees for their comments,
which have led to significant improvement of this letter. F:L.’s research was
partially supported by grants from the National Science Foundation (DMS-
1007457 and DMS-1106494) and the award (KUS-C1-016-04) made by King
Abdullah University of Science and Technology (KAUST).

References

Andrieu, C., & Roberts, G. O. (2009). The pseudo-marginal approach for efficient
Monte Carlo computations. Annals of Statistics, 37, 697–725.

Bartz, K., Blitzstein, J., & Liu, J. S. (2008). Monte Carlo maximum likelihood for exponential
random graph models: From snowballs to umbrella densities (Tech. Rep.). Cambridge,
MA: Department of Statistics, Harvard University.

Beaumont, M. A. (2003). Estimation of population growth or decline in genetically
monitored populations. Genetics, 164, 1139–1160.

Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems
(with discussion). J. R. Statist. Soc. B, 36, 192–236.

Bickel, P. J., & Doksum, K. A. (2000). Mathematical statistics: Basic ideas and selected
topics (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

Chen, M.-H., & Shao, Q.-M. (1997). On Monte Carlo methods for estimating ratios
of normalizing constants. Annals of Statistics, 25, 1563–1594.

Childs, A. M., Patterson, R. B., & MacKay, D. J. C. (2001). Exact sampling from
nonattractive distributions using summary states. Phys. Rev. E., 63, 036113.

Corander, J., Dahmström, K., & Dahmström, P. (1998). Maximum likelihood estima-
tion for Markov graphs (Research Rep. 8). Stockholm: Department of Statistics,
University of Stockholm.



2232 F. Liang and I.-H. Jin

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via EM algorithm. J. R. Stat. Soc. B, 39, 1–38.

Efron, B., & Tibshirani, R. J. (1993), An introduction to the bootstrap. London: Chapman
& Hall.

Frank, I., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical
Association, 81, 832–842.

Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From impor-
tance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–
185.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences (with discussion). Statistical Sciences, 7, 457–511.

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In E. M. Kerami-
gas (Ed.), Computing science and statistics: Proceedings of the 23rd Symposium on the
Interface (pp. 156–163). Fairfax: Interface Foundation.

Geyer, C., & Thompson, E. (1992). Constrained Monte Carlo maximum likelihood
for dependent data. Journal of the Royal Statistical Society, Series B, 54, 657–
699.

Green, P. J., & Richardson, S. (2002). Hidden Markov models and disease mapping.
Journal of the American Statistical Association, 97, 1055–1070.

Hunter, D. (2007). Curved exponential family models for social network. Social Net-
works, 29, 216–230.

Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of
social network models. Journal of the American Statistical Association, 103, 248–
258.

Hunter, D., & Handcock, M. (2006). Inference in curved exponential family models
for network. Journal of Computational and Graphical Statistics, 15, 565–583.

Hurn, M., Husby, O., & Rue, H. (2003). A tutorial on image analysis. Lecture Notes in
Statistics, 173, 87–141.

Liang, F. (2007). Continuous contour Monte Carlo for marginal density estimation
with an application to a spatial statistical model. J. Comput. Graph. Statist., 16,
608–632.

Liang, F. (2010). A double Metropolis-Hastings sampler for spatial models with
intractable normalizing constants. Journal of Statistical Computing and Simulation,
80, 1007–1022.

Lubbers, M., & Snijders, T. A. B. (2007). A comparison of various approaches to the
exponential random graph model: A reanalysis of 104 student networks in school
classes. Social Networks, 29, 489–507.

Madras, N. (2000). Lectures on Monte Carlo Methods. Providence, RI: American Math-
ematical Society.

McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed
models (2nd ed.). Hoboken, NJ: Wiley.

Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a
simple identity: A theoretical exploration. Statistica Sinica, 6, 831–860.

Møller, J., Pettitt, A. N., Reeves, R., & Berthelsen, K. K. (2006). An efficient Markov
chain Monte Carlo method for distributions with intractable normalizing con-
stants. Biometrika, 93, 451–458.



Monte Carlo Metropolis-Hastings Algorithm 2233

Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-
family random graph models: Terms and computational aspects. Journal of Sta-
tistical Software, 24 (4). http://www.jstatsoft.org/v24/i04

Murray, I., Ghahramani, Z., & MacKay, D. J. C. (2006). MCMC for doubly-intractable
distributions. In Proc. 22nd Annual Conference on Uncertainty in Artificial Intelli-
gence. San Francisco: Morgan Kaufmann.

Preisler, H. K. (1993). Modeling spatial patterns of trees attacked by bark-beetles.
Appl. Statist., 42, 501–514.

Propp, J. G., & Wilson, D. B. (1996). Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures and Algorithms, 9,
223–252.

Resnick, M. D., Bearman, P. S., Blum, R. W., Bauman, K. E., Harris, K. M., Jones, J.,
et al. (1997). Protecting adolescents from harm: Findings from the national lon-
gitudinal study on adolescent health. Journal of the American Medical Association,
278, 823–832.

Riggan, W. B., Creason, J. P., Nelson, W. C., Manton, K. G., Woodbury, M. A., Stallard,
E., et al. (1987). U.S. cancer mortality rates and trends, 1950–1979. Washington, DC:
U.S. Government Printing Office.

Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential
random graph (p∗) models for social networks. Social Networks, 29, 173–191.

Rue, H., & Held, L. (2005), Gaussian Markov random fields: Theory and applications.
London: Chapman & Hall/CRC.

Sherman, M., Apanasovich, T. V., & Carroll, R. J. (2006). On estimation in binary
autologistic spatial models. J. Statist. Comput. Simu., 76, 167–179.

Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random
graph models. Journal of Social Structure, 3, article 2.

Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New
specifications for exponential random graph models. Sociological Methodology, 36,
99–153.

Strauss, D., & Ikeda, M. (1990). Pseudo-likelihood estimation for social Network.
Journal of the American Statistical Association, 82, 204–212.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discus-
sion). Annals of Statistics, 22, 1701–1762.

Torrie, G. M., & Valleau, J. P. (1997). Nonphysical sampling distributions in Monte
Carlo free-energy estimation: Umbrella sampling. Journal of Chemical Physics, 23,
187–199.

Udry, J. R., & Bearman, P. S. (1998). New methods for new research on adolescent
sexual behavior. In R. Jessor (Ed.), New perspectives on adolescent risk behavior (pp.
241–269). Cambridge: Cambridge University Press.

van Duijn, M. A. J., Gile, K. J., & Handcock, M. S. (2009). A framework for the
comparison of maximum pseudo-likelihood and maximum likelihood estimation
of exponential family random graph models. Social Networks, 31, 52–62

Wasserman, S., & Robins, G. (2005). An introduction to random graphs, dependence
graphs, and p∗. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and
methods in social network analysis (pp. 148–191). Cambridge: Cambridge University
Press.



2234 F. Liang and I.-H. Jin

Wei, G., & Tanner, M. (1990). A Monte Carlo implementation of the EM algorithm and
the poor man’s data augmentation algorithm. Journal of the American Statistical
Association, 85, 699–704.

Wu, H., & Huffer, F. W. (1997). Modeling the distribution of plant species using the
autologistic regression model. Ecological Statistics, 4, 49–64.

Received December 18, 2011; accepted January 29, 2013.


