
Uncovering symmetric and asymmetric species associations from

community and environmental data

Inferring species association networks [running headline]

Keywords: network inference, representation learning, probabilistic graphical models, species embeddings,
latent variable models, species associations networks

Authors:

Sara Si-moussi sara.si-moussi@univ-grenoble-alpes.fr

Laboratoire d’Écologie Alpine, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000,
Grenoble

Esther Galbrun esther.galbrun@uef.fi

School of Computing, University of Eastern Finland, Kuopio, FI-70211, Finland

Mickaël Hedde mickael.hedde@inrae.fr

UMR Eco&Sols, INRAE, IRD, CIRAD, Montpellier SupAgro, Université Montpellier, F-34000, Montpellier

Giovanni Poggiato giov.poggiato@gmail.com

Laboratoire d’Écologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, CNRS, F-38000,
Grenoble

Matthias Rohr matthias.rohr@univ-grenoble-alpes.fr

Laboratoire d’Écologie Alpine, Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, CNRS, F-38000,
Grenoble

Wilfried Thuiller wilfried.thuiller@univ-grenoble-alpes.fr

Laboratoire d’Écologie Alpine, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000,
Grenoble

Correspondence to Sara Si-Moussi

Mailing address: LECA, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, CS 40700 38058 Grenoble
cedex 9, Francee
E-mail: sara.si-moussi@univ-grenoble-alpes.fr

ar
X

iv
:2

50
7.

09
31

7v
1 

 [
st

at
.M

L
] 

 1
2 

Ju
l 2

02
5

sara.si-moussi@univ-grenoble-alpes.fr
esther.galbrun@uef.fi
mickael.hedde@inrae.fr
giov.poggiato@gmail.com
matthias.rohr@univ-grenoble-alpes.fr
wilfried.thuiller@univ-grenoble-alpes.fr
sara.si-moussi@univ-grenoble-alpes.fr
https://arxiv.org/abs/2507.09317v1


Acknowledgements. We thank Laura Pollock (McGill University) and Tamara Münkenmüller (LECA) for

guidance on and access to source code for simulating virtual communities; we thank Philippe Choler (LECA) for

discussion and crucial explanations on the ecology of Alpine plant communities. We also thank Li Ping Liu for

access to source code on exponential family embeddings.

The research was supported by the Agence Nationale pour la Recherche (ANR) through the MIAI@Univ Greno-

ble Alpes institute (ANR-19-P3IA-0003) and the GlobNet (ANR-16-CE02-0009), Gambas (ANR-18-CE02-0025)

and Forbic (ANR-18-MPGA-0004) projects. Most of the computations presented in this paper were performed

using the GRICAD infrastructure1. SMS was initially supported by a joint PhD fellowship between the French

National Institute of Agricultural and Environmental Research (INRAE) and the French Research Institute for

digital sciences (Inria) and by the Labex Persyval.

Authorship. SS and WT designed the study. SS conceptualized the inference framework with help from EG.

WT and SS designed the evaluation methodology. SS, WT and EG analyzed the results. MH gave additional

perspectives to the paper. SS and WT wrote the first version of the paper and all authors contributed critically

to editing the manuscript.

Source code. The source code for running the model is available on this GitHub repository link.

1https://gricad.univ-grenoble-alpes.fr

1

https://github.com/bettasimousss/InferenceEcoAssocNet


Abstract

Aim There is no much doubt that biotic interactions shape community assembly

and ultimately the spatial co-variations between species. There is a hope that the

signal of these biotic interactions can be observed and retrieved by investigating

the spatial associations between species while accounting for the direct effects of

the environment. By definition, biotic interactions can be both symmetric (e.g.

competition, mutualism) and asymmetric (e.g. parasitism, predation, hierarchical

competition). Yet, most models that attempt to retrieve species associations from

co-occurrence or co-abundance data internally assume symmetric relationships be-

tween species. Here, we propose and validate a machine-learning framework able

to retrieve bidirectional associations by analysing species community and environ-

mental data.

Innovation Our framework (1) models pairwise species associations as directed

influences from a source to a target species, parameterized with two species-specific

latent embeddings: the effect of the source species on the community, and the re-

sponse of the target species to the community; and (2) jointly fits these associations

within a multi-species conditional generative model with different modes of inter-

actions between environmental drivers and biotic associations.

Using both simulated and empirical data, we demonstrate the ability of our frame-

work to recover known asymmetric and symmetric associations and highlight the

properties of the learned association networks. By comparing our approach to other

existing models such as joint species distribution models and probabilistic graphi-

cal models, we show its superior capacity at retrieving symmetric and asymmetric

interactions.

Main conclusions Our framework enables ecologists to obtain a more generalized

picture of the spatial associations between species without unrealistic assumptions

of symmetry. The framework is intuitive, modular and broadly applicable across

various taxonomic groups.
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1 Introduction

Understanding the drivers of species distributions and abundances is a long-lasting goal of biogeography [Humboldt

et al., 1805]. Niche theory explains the spatial distribution of species by a set of physiological and adaptive

properties allowing them to thrive in specific environmental conditions and decline in others [Chase and Leibold,

2003, Pulliam, 2000]. The range of environmental variables (e.g. climate, land cover or soil characteristics) that

matches the eco-physiological requirements of a species delimits its Grinnellian niche [Grinnell, 1917]. Habitat

suitability models or species distribution models (SDMs) [Guisan et al., 2017] aim to infer this niche by establishing

statistical relationships between observed occurrences or abundances of species and the environmental (abiotic)

characteristics of the corresponding locations. These models have been particularly useful to predict species in

space and time [Thuiller et al., 2019], providing operational tools to conservation biologists [Guisan et al., 2013,

Pollock et al., 2020].

Beyond finding suitable habitats, living organisms meet their metabolic demands by feeding on, or acquiring,

resources delimited by their Eltonian niche [Elton, 1927]. Through the processes of foraging for food or resources,

reproducing and responding to the habitat conditions, species in a community affect each other, directly or via

alterations of their surrounding environment (e.g. a large tree provides shade to shade-tolerant under-storey

species). Moreover, species with shared resources may exclude one another locally (competitive exclusion [Hardin,

1960]) or be different enough in terms of space and resource needs to co-exist (niche partitioning [Schoener,

1974]). Conversely, some species facilitate others by modifying the environment in a way that creates habitats

or enables access to resources for other species (engineering and facilitation [Cuddington et al., 2011]). These

biotic interactions can thus be symmetric (e.g. mutualism, competition) in some cases or asymmetric in many

other cases (e.g. predator-prey interaction, amensalism, parasitism) [Morales-Castilla et al., 2015]. Although

biotic interactions are deemed to take place locally, they are likely driving spatial variation in species abundances

[Boulangeat et al., 2012a], and may alter species ranges and leave imprints at large spatial scales [Gotelli, 2002,

Wisz et al., 2013], but see [Thuiller et al., 2015].

As a result of species ’Grinnellian’ and Eltonian’s niches, together with species dispersal abilities, species co-

abundances vary in space. These data, measured as community data, are usually the corner-stone of analyses

aiming to tease apart the relative importance of these processes [Weiher and Keddy, 2001, Thuiller et al., 2013,

Ovaskainen et al., 2017]. A natural way to address this objective is to jointly model multiple species distributions

against environmental variables, and then, analyse the pairwise co-dependencies between species after controlling

for the environmental effects. In theory, these pairwise co-dependencies (i.e. associations) could represent the net

effect of one species on another, resulting from direct interactions or indirect effects [Ovaskainen et al., 2017].

In practice, due to the intertwined effects of biotic and abiotic processes, they are also the outcome of model

mis-specifications and errors, of missing environmental variables and interacting species [Poggiato et al., 2021,

Blanchet et al., 2020].

Several statistical frameworks have been proposed to infer these associations, either as their main objective or

as a byproduct of the modeling process. These approaches differ in the type of dependencies they can model, in how

they accommodate abundance data, and in the way they incorporate environmental covariates. Joint Species Dis-
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tribution Models (JSDM, Warton et al. [2015]), the trendy tools at the moment, jointly predict the co-distributions

of multiple species. Basically, once environmental covariates are accounted for, the residual correlation matrix is

assumed to potentially capture species associations that are unexplained by the modeled covariates Pollock et al.

[2014]. Recent implementations incorporate latent factors as a way to account for missing environmental variables

and to reduce the parameter space size [Ovaskainen et al., 2017]. Adaptation for abundance data, particularly

counts, was achieved through either data transformation techniques or appropriate link functions [Clark et al.,

2017, Niku et al., 2019, Ovaskainen and Abrego, 2020, Chiquet et al., 2018, Popovic et al., 2018]. Alternatives

mostly rely on Markov Random Fields (MRF) that can be applied to estimate conditional dependencies from a set

of co-occurring species [Clark et al., 2018, Harris, 2016], while accounting for the environmental variations. MRF

have the statistical property of estimating direct associations between pairs of variables while accounting for all

other associations, which makes them highly suitable in Ecology [Clark et al., 2018].

Although these two approaches and others have generated a renewed interest to understand biodiversity pat-

terns from community data, they have also crystallized strong debates on their capacity at revealing true associa-

tions that can ultimately be linked to interactions. First, it has been shown that most implementations of JSDMs

provide similar predictions and inferences than traditional SDMs since the residual correlation structure does not

affect the estimated species-environment relationships [Poggiato et al., 2021]. Second, simulated and empirical case

studies have shown the difficulties of these approaches to infer simulated species associations [Zurell et al., 2018,

König et al., 2021]. Third, extracting species associations from co-occurrence data proves to be a complex, if not

impossible, problem [Blanchet et al., 2020, Cazelles et al., 2016a]. Last, but not the least, since both JSDM and

MRF infer a precision matrix from the correlations between prediction residuals, they can only retrieve symmetric

associations. This is not a desired properties since most species interactions, hence their induced associations, are

likely to be asymmetric [Morales-Castilla et al., 2015].

Still, we believe that analysing community data along environmental gradients can bring useful information to

infer species associations. To achieve such a long term goal, we need an approach that can handle both symmetric

and asymmetric associations. Doing so requires capturing the way a given species affects the others, but also

how the same species is affected by the other species. Interestingly, this duality has long been used in functional

ecology to represent how a species respond to the environment through its ’response traits’, and how it affects

community functioning through its ’effect traits’ [Lavorel and Garnier, 2002]. An extension of this response-effect

framework has been proposed for trophic interactions by linking response traits at a given trophic level to effect

traits at another level [Lavorel et al., 2013, Gravel et al., 2016]. We thus believe that distinguishing how a species

respond to a species or a community from how it can affect it in return, which ultimately depend on the intrinsic

properties or traits of the species, could provide a more suitable framework to make the best of community data

and potentially extract information on species associations.

Outline Here, we propose a framework that builds on this response-effect concept to model species - environ-

ment relationships and pairwise symmetric and asymmetric (i.e. bidirectional) associations all-together. To do so,

we use machine learning tools to build an efficient dependency network Heckerman et al. [2000] encoding bidirec-
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tional species associations from community data. These associations are represented with two sets of embeddings

encoding both species effects and responses to other species. Ultimately, the final conditional model of species

abundances is built by aggregating both species-environment relationships and the biotic embeddings through

different implementations that can best represent mechanistic understanding of the system (e.g. predator-prey

interactions, competition-facilitation-amensalism-comensalism).

Through two experiments on simulated datasets and an empirical case study, we illustrate the different im-

plementation of the interplay of biotic associations with environmental covariates. First, we simulate species

abundance data with a species community model to evaluate the ability of our framework to recover known asso-

ciations (both symmetric and asymmetric), where we assume an additive partitioning of environmental and biotic

filters, and compare it with state-of-the-art joint species distribution models and Markov-random fields. Second,

we evaluate the ability of our model to recover simulated predator-prey associations under different food web

topologies, assuming a multiplicative effects of environmental and biotic filters.

Finally, we apply our framework to a well-studied Alpine plant community dataset Choler [2005], Warton et al.

[2015] representing an example of hierarchical filtering of assembly rules (environmental effects at regional scale

and competitive-facilitate interactions at the community scale). We used this empirical example to illustrate the

analysis of structure of the species association networks.
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2 The framework

At a high level, our framework models both species–environment responses and species–species associations. It

captures how species respond to environmental conditions and to other species (i.e., species response), as well as

how they influence the abundance or occurrence of others (i.e., species effect). The resulting graphical model is

directional with respect to the environment (which drives species abundance, but not vice versa), and bidirectional

with respect to species associations ( Fig1a).

More specifically, the incoming edge weights for each species are estimated through a multiple regression that

includes both environmental covariates and the abundances of co-occurring species ( Fig1b). By incorporating

all potential predictors in a single model, the framework quantifies conditional dependencies and disentangles

environmental effects from biotic ones, allowing a direct assessment of their relative contributions. To represent

bidirectional associations, we learn separate embeddings for how a species influences others and how it is influenced

by them.

In the following, we define these embeddings and describe the conditional abundance model and its implemen-

tation.

(a) Overall graphical model. (b) Node-wise neighborhood inference.

Fig. 1: A graphical illustration of the interplay between the environmental and the biotic filters. (a) Species in a
community form a network of associations of different signs: positive (red), negative (blue). Each edge represents
an association from a source to a target species. When both species influence each other, the association is
bidirectional. All species, along with their associations, respond to the environmental conditions (green). We
ignore the reciprocal effect of species on the environment. (b) The abundance of a given species results of its
aggregated response to the environment and to the biotic contexts.

Notation We consider a site by species matrix (K, S), that contains the abundance of species i at site k, denoted

yki. At each site k, the vector xk represents the environmental covariates.
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2.1 Spatial associations and biotic context

2.1.1 Representing species associations using embeddings

For a given pair of species, a spatial association describes the statistical influence of a species on the abundance

of another species. The influences can be of different polarity (positive, negative or neutral) and have different

intensities (Fig 2b). Several mechanisms can lead to these associations: a direct interaction (e.g. pollination,

predation), an indirect interaction through the environment (e.g. resource competition) or a shared correlation to

an unmeasured environmental variable or unobserved species [Poggiato et al., 2021].

We note aij the influence of species j on species i which represents the change in abundance (excess if positive,

deficit if negative) of a target species i induced by a source species j. These values that represent the sign and the

strength of the association between all species pairs are stored into an m×m asymmetric association matrix A (

Fig 2a).
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(b) Pairwise associations classification

Fig. 2: Association strengths are computed from species response and effects (a). Pairwise association strengths
are mapped to potential interaction classes (b). The different quarters of the bi-plot represent the various types
of associations between species. The 1:1 line represents symmetric associations.

From a response-effect perspective, any element of A (e.g. aij) is the byproduct of the effect of species j and

the response of species i. We assume that these parameters represent latent traits or properties of the species that

we do not observe, and which we implement as two separate d-dimensional embeddings.

The effect embedding of species i, αi, expresses the type (i.e. traits, properties) of organisms the species allows

or impedes when it is present. The response embedding of species i, ρi, expresses the type (i.e. traits, properties)

of biotic context it can tolerate. For instance, trees with dense canopy create shade (effect) that selects only

shade-tolerant (response) species and exclude others.

The response and effect embeddings of the different species are collected into two m× d matrices, respectively

denoted as P and Q. The association matrix is then written as A = PQT (cf. Fig 2a).
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2.1.2 Biotic context

The biotic context encodes our assumptions about the potential effects a target species is exposed to at a given

site. In the simplest case, without any prior knowledge, it consists of the abundance of other species observed at

the same site. Formally, the biotic context of species i at site k, denoted Cki, is defined as follows:

Cki = {j ∈ S, j ̸= i and ykj > 0} .

We obtain the aggregated effect of the biotic context by averaging the effect embeddings of its elements weighted

by species’ abundances:

zki =
1

|Cki|

∑

j∈Cki

ykj³j .

This formulation allows the presence of opposing effects from different species to balance one another.

The biotic context constrains the structure of the inferred species association network by restricting the set of

potential associations a priori. For instance, it can be easily adapted for each species according to known inter-

actions. It can also include species from neighboring locations (spatially-explicit) up to a chosen radius within

which their influence would be considered relevant (e.g. species with low/high mobility). Similarly, we can con-

struct a temporally-explicit biotic context from previous observations to account for time-lag and phenological

mismatches. (See Supplementary Methods for other biotic context formulation variants).

2.2 A conditional generative model of abundance

2.2.1 Conditional generative model

To disentangle environmental and biotic effects, we represent the response of the species i at site k as an aggregation

function fagg of the environmental ¸Aki and biotic ¸Bki responses (see Eq. (1a)). The environmental response is given

by the habitat suitability model(s) hi involving only the environmental covariates xk (see Eq. (1b)). The biotic

response ¸Bki depends on the response embedding Äi of the target species and on the biotic context effect zki

resulting in an abundance-weighted sum of pairwise association strengths (see Eq. (1c)). An offset oi is used to

account for variation in exposure or effort.

The response of each species conditional to the environmental conditions and biotic context (yki | xk, Cki),

denoted as yki for clarity, is assumed to follow a distribution F from the Exponential Family with mean mki

and dispersion ϕi parameters. The function g denotes the canonical link function, which relates the aggregated

response at site k of species i to the mean (see Eq. (1d)).

The choice of distribution within this family is done according to the data type, for instance, using the normal

distribution for biomass, the Bernoulli for presence/absence, or the Negative Binomial for over-dispersed counts.
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g(mki) = fagg(¸
A
ki, ¸

B
ki) (1a)

¸Aki = hi(xk) (1b)

¸Bki = oi + Äizki = oi +
∑

j∈Cki

(ykj ∗ aij) (1c)

yki ∼ F(mki, ϕi) (1d)

2.2.2 Aggregation of abiotic and biotic effects

The aggregation function captures the interplay between abiotic and biotic filters (Fig. 3), which can follow different

ecological assumptions. In the community assembly rule framework Weiher and Keddy [2001], environmental

conditions first define the set of species that can potentially occur, while biotic interactions determine which

of these species persist, based on their responses and effects. In some cases, abiotic conditions condition the

occurrence of an interaction or share its nature or strength. In others, the biotic context itself can create favorable

conditions, for instance, through facilitation.

To reflect these possibilities, we implement and evaluate three aggregation modes: additive, multiplicative, and hi-

erarchical. Although these capture distinct ecological mechanisms, the framework is flexible and can accommodate

alternative formulations (Fig. 3).

Additive filters

g(mki) = ¸Aki + ¸Bki (2)

In the case of additive filters, the biotic context can complement the environmental conditions, and a species

may occur if either filter is favorable. For instance, a species might be present even in unsuitable habitat if

another facilitator species creates favorable micro-habitat. Conversely, a competitor’s presence might exclude a

species despite suitable environmental conditions. Here, the biotic and environmental responses are summed to

reflect their combined, potentially compensatory influence (Eq.2).

Multiplicative filters

mki = Ã(¸Aki)× Ã(¸Bki) (3)

yki ∼ Bernoulli(mki) (4)

In the case of multiplicative effects, a species can only be present when both abiotic conditions and the biotic

context are favorable. This setting is particularly relevant for obligate interactions, such as trophic, host–parasite,

or host–symbiont relationships. For example, consider a predator species that requires both suitable abiotic

conditions (e.g., temperature) and the presence of at least one prey species. Its occurrence (Eq 4) depends on the
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product of these two components (Eq 3), each assessed independently, reflecting the necessity of both filters for

survival.

Hierarchical filters The hierarchical filter setting distinguishes between two nested levels of influence: broad-

scale environmental filters (e.g., climate) that define the regional species pool, and local-scale habitat features that

interact with biotic associations to shape species abundances. This approach mirrors the commonly used assembly

rule framework [Thuiller et al., 2013], in which abiotic filters act first, followed by biotic structuring. In practice,

we implement this structure using a zero-inflated regression, where the environmental component governs species

presence (denoted by the suitability ski) (Eq 5), and the biotic context influences the abundance yki conditional on

occurrence. In this formulation, a Dirac point mass at zero is used such that when ski = 0, the species abundance

is deterministically set to zero (Eq 6).

ski ∼ Bernoulli(¸Aki) (5)

yki ∼















F(¸Bki;ϕi), if ski = 0.

¶0, otherwise.

(6)

Choosing the aggregation function requires knowledge of the ecological community and the expected types of

interactions or dependencies that could induce the inferred associations. In contrast, different assumptions can be

tested and the best one can be quantified by statistical model selection.

2.3 Inference and model selection

We use the Stochastic Gradient Descent algorithm [Bottou, 2010] to optimize the negative log-likelihood of the

observed abundances or occurrences with respect to the parameters, including the response and effect embedding

matrices, the parameters of the abiotic response weights, and the species-specific dispersion parameters. Since

the biotic context can substantially increase the number of variables and thus the risk of variance inflation due

to multicollinearity [Dormann et al., 2013], we introduce elastic net regularization penalties to select meaningful

associations for each species.

The proposed model includes a set of hyperparameters that must be selected carefully: the hyperparameters

for the habitat suitability models, the embedding dimension, the vector of species offsets, and the regularization

coefficient. We implemented two model selection (hyperparameter tuning) strategies. The first relies on informa-

tion criteria [Konishi and Kitagawa, 2008] to penalize model complexity, such as the Akaike Information Criterion

(AIC), the Bayesian Information Criterion (BIC), or its extended version (eBIC). The second strategy uses cross-

validation based on predictive performance, using, for instance, the AUC for presence/absence data or Poisson

deviance for count data.
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Fig. 3: Examples of scenarios for the aggregation of abiotic and biotic filters. (a) multiplicative filters represent a
product of: environmental requirements and biotic resources (realized niche of preys). (b) Additive filters represent
the sum of three complementary factors: the effect of the environmental environment and the associations that
complement it through either presence of facilitators (resp. competitors) that can extend (resp. restrict) the
suitable environmental range. (c) Hierarchical filters show the effect of two nested filters. First, an environmental
filter operates at a regional scale, as depicted in the vertical stratification of species into 3 groups (regional pools):
red, blue and yellow. Second, a biotic filter that acts locally through the presence of positive or negative associations
or lack thereof between species of the regional pool.
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2.4 Species association network

The regularization introduces sparsity into the association network by removing links between species that are

independent or do not exhibit strong associations [Ohlmann et al., 2018]. Alternatively, the robustness of estimated

biotic associations can be assessed through a bootstrap procedure: instead of applying a penalty during inference,

the model is fitted to multiple bootstrap samples of the original dataset. Confidence intervals for the mean of each

pairwise association are then computed, and associations whose intervals include zero are set to zero. In both the

regularized and bootstrap approaches, a threshold can be applied to obtain a discrete version of the association

matrix, defined as follows:

Iij =























positive if aij > ϵ+,

negative if aij < −ϵ−,

neutral otherwise.

such that ϵ+ and ϵ− represent user-defined thresholds on the strength of the positive and negative associations,

respectively. The resulting matrix can be seen as a network, where each species is represented by a vertex and a

directed edge labeled as positive (resp. negative) from vertex i to vertex j represents a positive (resp. negative)

influence of species i on species j.

Based on our embedding definitions, species with similar response embeddings form clusters of rows in the

association matrix, referred to as response groups, while species with similar effect embeddings form clusters of

columns, or effect groups. These two sets of groups can be identified simultaneously using a co-clustering algorithm

[Govaert and Nadif, 2013]. Their combination reveals blocks in the association matrix corresponding to groups

of species that play similar structural roles i.e., are functionally redundant or exchangeable within the network

[Gauzens et al., 2015].

3 Test of the framework on simulated species communities

To validate our framework, we conducted two simulation experiments in which community data were generated

along an environmental gradient based on species-specific abiotic optima and predefined association matrices.

The first experiment was designed to assess the ability of our model (EA) and competing association inference

methods (JSDMs, MRFs) to recover both symmetric and asymmetric associations under an additive filtering

scenario.

The second experiment was designed to test whether our model could recover associations under a multiplicative

filtering scenario, where species presence depends on both environmental and biotic context suitability. This setting

is not supported by the alternative methods.
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3.1 Experiment 1: process-based simulation of community assembly

3.1.1 Community data simulation

We used a process-based stochastic model adapted from Virtualcom Münkemüller and Gallien [2015] to simulate

the assembly of individuals from a regional species pool into communities, on different locations sampled along an

environmental gradient (See Supplementary Methods).

We designed an experiment in which multiple simulations were run on random locations along a single environ-

mental gradient (ranging from 0 to 100), using randomly generated configurations of the prior association matrix.

These configurations included:

• Only environmental filtering (Env)

• Only positive associations (Pos)

• Only negative associations (Neg)

• Mixed positive and negative associations (PosNeg)

For each configuration, we varied:

• The species pool size: 10, 20, or 50 species

• The association density: sparse (1/3 of species pairs associated) vs. dense (2/3)

• The association symmetry: symmetric (+/+, -/-) vs. asymmetric associations (+/0,-/0).

Association strengths were fixed at +1 for positive and −1 for negative effects, focusing on association polarity

rather than intensity. This factorial design yielded 33 simulation datasets, allowing us to evaluate our frame-

work across a range of conditions and compare its ability to recover symmetric associations against JSDMs and

probabilistic graphical models.

3.1.2 Inference

We fitted our model to species count data from the simulated communities using a negative binomial distribution

with an exponential link function and an additive aggregation of environmental and biotic filters. Hyperparameters

were selected via 10-fold cross-validation, using Poisson deviance as the performance metric.

3.1.3 Evaluation and comparison with JSDMs and graphical models

We also applied five well-established or emerging methods for inferring associations from count data: HMSC

[Ovaskainen et al., 2017], EcoCopula [Popovic et al., 2019], EMTree [Momal et al., 2019], MRFcov [Clark et al.,

2018], and PLN [Chiquet et al., 2018]. Table 1 summarizes, for each method, the underlying probabilistic model,

data requirements, training/inference settings, and any additional post-processing steps.

For all methods, the inferred association matrices were discretized to identify the type of association (positive,

negative, or neutral), and compared to the ground-truth using standard multi-class performance metrics: precision,

recall, and F1-score. Recall reflects the proportion of true associations of a given type that were correctly identified
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(sensitivity), while precision measures the proportion of predicted associations of a given type that were correct

(specificity). The F1-score is the harmonic mean of precision and recall, balancing false positives and false negatives.

Framework Count distribution Association structure Graph selection procedure Learning configuration

Ecological
Association
Network (EA)

-Negative binomial
-Unknown dispersion
-Link: log

Dependency
network

Cross-validation

Optimizer: adam
Maximum number of epochs: 200
Batch size: 16
Early stopping (convergence
by monitoring validation loss):
- Patience: 5 epochs
- Tolerance: 1E-3

EcoCopula Popovic et al. [2018, 2019]
-Negative binomial
-Unknown dispersion
-Link: log

Copula Gaussian
Graphical Model

Graphical lasso Importance sampling: 1000

EMtree Momal et al. [2019] Poisson log-normal
Mixture of tree-shaped Gaussian
Graphical Models

Edge probabilty
Support: 2/pool_size

Covariance mode: full
Number of iterations: 50

Convergence tolerance: 1E-8
Resampling: 5

Hierarchical Modeling
of Ecological Communities
(HMSC) Ovaskainen et al. [2017]

Poisson Residual correlation
MAP residual covariance
Support level 95%

MCMC: Hamiltonian Monte-Carlo
thinning = 10
nChains = 2
Burn-in = 500
nSamples = 5000-7500

Cross-validation: 2 folds

MRFcov Clark et al. [2018]

Gaussian with
non-paranormal
transformation
of count data

Conditional Markov
Random Field

Bootstrap (95% CI)
Sample proportion: 70%
Symetrization function: mean

Bootstrap samples: 500

Poisson
Log-Normal network
(PLNetwork) Chiquet et al. [2018]

Poisson log-normal
Gaussian Graphical
Model

Graphical lasso +
stability selection

Covariance mode: full
Offset: None

Table 1: Description of the evaluated frameworks and their respective configuration.

3.1.4 Results

The analysis of the relative abundance index (RAIij) showed good discrimination between positive and negative

associations, while neutral associations resulted in more variable RAIij values (see Supplementary Materials).

Among the six inference methods, some were relatively easy to fit and offered limited control over model selection

(e.g., EMTree, EcoCopula, MRFcov), beyond setting the number of iterations and the sampling scheme used

for estimating confidence intervals. Execution time varied considerably between methods, largely driven by the

model selection procedures employed (e.g., bootstrapping, lasso regularization, cross-validation). In particular,

the Bayesian posterior inference in HMSC made it substantially slower than the other approaches.

For each method, we visualized the distribution of inferred association strengths across the different simulation

configurations (e.g., environmental filtering only, association types, species pool size; Fig. 4).

All methods except HMSC produced sparse association networks, with low strengths values and were good at

discriminating positive and negative associations, while maintaining neutral associations median-centered at zero.

Most spurious associations, i.e. neutral pairs with inferred value significantly different from zero, were negative

especially in simulations involving only positive associations reflecting the implicit constraint induced by the fixed

carrying capacity on the total species count. On the other hand, HMSC produced very dense association matrices

despite a large support level for association selection suggesting that some of the inferred associations are indirect

associations. There was no difference in inferred strengths neither between symmetric and asymmetric simulations

(for all methods).

As species pool size increases and niche overlap becomes more likely, inferred association strengths become more

sensitive to niche differences: positive associations weaken with increasing overlap across all methods, while neg-
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ative associations show variable responses, with EA and HMSC displaying opposite trends as niche distance

increases.

In terms of association type classification, no major performance differences were observed across models for

symmetric or dense association structures, the quality of inferred associations depended on species pool size:

EA and EcoCopula consistently performed best on positive associations, especially in small pools, while negative

associations were challenging for all methods, with EA, MRFcov, and HMSC showing relatively better performance.

Detailed results are presented in the Supplementary Materials.

Fig. 4: Distribution of the association strengths inferred by the six methods run for each simulation experiment (in
columns, e.g. Neg_S_10_D means simulated Negative Symmetric associations for a species pool of 10 species,
with Dense network of interactions). A data point represents a directed association from a species to another,
its color encodes the true type of the association, its coordinates on the y axis represents the fitted association
strength by the corresponding model for the simulation configuration x axis. In other words, blue histograms
should rather be on the negative side (negative association correctly inferred), red colors on the positive side
(positive association correctly inferred) and grey centered around 0 (neutral association)
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3.2 Experiment 2: simulation of predator-prey co-occurrences

3.2.1 Community data simulation

In this experiment, we simulated species occurrence data where each species depends jointly on suitable environ-

mental conditions and the presence of at least one prey given by a known predator-prey network (food web). This

setup reflects an intersection of abiotic and biotic filters, modeled as a multiplicative response.

Using the trophic R package, we generated six food webs with different topologies, each involving the same

number of trophic groups (G = 5). A trophic group consists of species that share the same prey and are consumed

by the same predators, statistically analogous to a latent block structure in a graph.

To each trophic group, we assign mG = 5 species with different abiotic niche optima sampled uniformly along

an environmental gradient ranging from 0 to 100. We select 500 sites uniformly in the same gradient.

3.2.2 Inference

We fitted our model to the simulated presence/absence data using a multiplicative filter setting. We used a

linear logistic regression with a quadratic term to fit the Gaussian abiotic niche. The simulation model assumes a

unidirectional positive dependency of the predators on their preys. Thus, we imposed a non-negative constraint

to the embedding vectors to prevent the inference of negative associations and promote sparsity of the association

matrix Hoyer [2004]. Consequently, we only inferred two types of associations: positive and neutral. Additionally,

we tested whether imposing structure by sharing embeddings between species of the same trophic group improved

the ability of the model to retrieve true potential and realized associations.

We used a 10-fold cross-validation to select the combination of embedding dimension and lasso regularization

that maximized the accuracy of predicted occurrences.

3.2.3 Evaluation

We evaluated the quality of the recovered associations in terms of accuracy, ROC-AUC, sensitivity, and specificity.

As ground truth, we used two reference food webs: (1) the potential food web (metaweb), which includes all

possible interactions; and (2) the realized food web, obtained by filtering the metaweb to retain only interactions

between species that co-occur at least in one site.

3.2.4 Results

The inferred associations were more faithful to the realized than the potential network (Fig 5). In all cases,

incorporating a parameter-sharing constraint within trophic groups allowed to improve the sensitivity with respect

to both ground truth networks.

Additional results are available in the Supplementary Materials.
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Fig. 5: Network structure inference quality with respect to the potential (metaweb) and the realized networks
under two different constraints: non-negative associations and within-group embedding sharing. Performances are
reported separately for each food web topology.

4 Empirical case study - Alpine plant associations

4.1 Plant community data

To test our model on a real ecological system, we applied it to an Alpine plant abundance dataset originally

published by Choler [2005]. The dataset includes abundance records for 82 plant species surveyed in July 2000

across 75 vegetation plots (each 5× 5 m) along a meso-topographical gradient in the French Alps. Environmental

and topographic variables were also recorded for each plot.

4.2 Inference and statistical analyses

We fitted our model to this dataset using the hierarchical filtering mode (Fig. 3), assuming that habitat suitability

drives species occurrence, while local biotic associations influence species abundance and can lead to local exclusion

[Boulangeat et al., 2012b]. Details of data pre-processing and model selection are provided in the Supplementary

Materials.

4.3 Results

The application of our approach to the Alpine dataset identified four densely connected modules of different sizes,

within which species occupied distinct structural roles in the plant association network. Modules were structured

along a gradient of response to the snow melting date (Fig. 6).

Species from early-melting sites clustered into the same module, characterized by a dominance of positive asso-

ciations—notably, a largely asymmetric attraction of forbs and grasses toward tall, dominant graminoids such

as Carex and Kobresia. In contrast, forbs and grasses also formed two distinct groups connected by negative

associations, indicative of competitive exclusion. Some of these species acted as hubs, linking high-elevation sites

to adjacent zones where they also occurred.

The second module encompassed two groups of grasses: tall herbs occurring in favorable conditions, which were

primarily structured by negative associations reflecting amensalism and competition; and short herb meadows, ex-
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posed to zoogenic disturbance, which exhibited increased abundance when co-occurring with tall herbs, suggesting

a facilitative interaction.

The third module represented chionophilous (cold-adapted) vegetation found on late-melting sites. The fourth

module encompassed north-facing, isolated communities, dominated by Salix herbacea, which showed positive

associations with high-altitude communities but remained disconnected from other modules (Fig. 6).

Interestingly, we found a higher proportion of positive associations in communities from stressful environments,

such as early-melting sites exposed to wind and erosion due to snowmelt [Choler, 2005]. These associations likely

reflect facilitative interactions mediated by graminoids through several mechanisms: graminoids help stabilize

the soil [Callaway, 2007, Heilbronn and Walton, 1984], reduce desiccation and frost heaving on stones—thereby

supporting seedling survival [Choler et al., 2001]—and create favorable microclimatic conditions that shelter smaller

forbs and grasses from wind exposure [Wardle et al., 1998]. In contrast, negative associations were more frequent

in species-rich sites, likely driven by competition for limiting resources such as water and nitrogen [Choler et al.,

2001].
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(a) Inferred plant association matrix. Species in the association matrix are grouped based on a hierarchical co-clustering
performed row-wise (yielding response groups) and column-wise (yielding effect groups).

(b) Network of plant associations. Blue (resp. red) edges indicate negative (resp. positive) edge weights. Node colors on
the graph represent communities identified by the modularity maximization algorithm Newman [2006] whilst node sizes are
scaled according to the plant height. Nodes (except Salix herbacea, which represents the vegetation on the northern face
of the gradient) are placed from left to right following an ascending order of their response to Snow duration (regression
coefficient from the Generalized Linear Model used as a Habitat Suitability Model).

Fig. 6: Plant associations on an Alpine mesotopographic gradient. We highlight the communities (node colors)
in figure (b) using colored labels on the matrix (a).
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5 Discussion

In this work, we tackled the challenge of inferring interspecific associations from multiple species co-abundances

in hetereogeneous environments. To do so, we formalized pairwise associations as a function of two sets of latent

variables representing the response and the effect of each species with respect to the others. We incorporated these

associations into a conditional probabilistic model of abundance that accounts for environmental covariates. We

evaluated our approach on both simulated and empirical datasets.

5.1 Disentangling abiotic and biotic drivers

5.1.1 Uncovering positive, negative and neutral associations

Comparatively to other tested frameworks, our method (EA) performed well on both positive and negative associ-

ations detection, despite the constraint induced by the embedding-based factorization. On average, discriminating

positive and negative associations was within reach of most methods, provided an appropriate pair of thresholds

was used to delimit the range of neutral associations. An exception concerned HMSC, which recovered multiple

spurious associations that were potentially indirect effects despite the high support level. A more appropriate

approach would have been to analyze the inverse covariance matrix. However, inverting the posterior estimate of

the covariance matrix suffered from various numerical instabilities.

Due to the upper-limit constraint of the fixed carrying capacity on the total count, all models inferred spu-

rious negative associations between non-interacting species, especially in simulations with positive effects only,

as a compensation mechanism. Association strengths were sensitive to niche overlap. For all methods, positive

associations were easier to detect between species with overlapping niches. The fact that this pattern was observed

for all methods as well as on the pairwise relative abundance indices suggested that the abiotic filter outruled these

associations during the community assembly simulation.

Amongst the tested methods, HMSC, PLN/EMtree and EcoCopula first fit the abiotic response then species

dependencies are estimated either as random effects (HMSC, PLN) or from the marginal residuals (EcoCopula).

The implicit importance given by these inference procedures to the abiotic drivers over the species associations

explains the low detection rate of negative associations. In constrast, EA and MRFcov which both rely on an

explicit regression over species abundances, do not suffer from the same bias, explaining their superiority in

detecting negative effects.

5.1.2 Uncovering prey-predator associations

Several studies discuss the difficulties of recovering biotic interactions from co-occurrences Sander et al. [2017],

Barner et al. [2018], Blanchet et al. [2020]. In our experiment, we assumed that trophic interactions induce a

dependence of predators on their preys but not vice-versa (directed positive association).

We showed that using an appropriate coupling with the abiotic drivers allows to detect such associations

providing that the species pair co-occur. However, the model detected symmetric dependencies when the abiotic

niches of the pair overlapped strongly and especially in trophic chains and when the predator did not have other
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alternative prey. Moreover, the varying performances in recovering the true network structure for different food

web topologies questions the power of the response-effect factorization to represent arbitrary directed acyclic graph

(DAG) structures and suggests that a symmetric approach might be more effective, if coupled with knowledge of

species trophic levels.

5.1.3 Importance of the abiotic-biotic aggregation function

Species joint responses to abiotic (environment) and biotic (associations) drivers take on different forms, modeled

by an aggregation function. Most existing frameworks are limited to linear or additive forms. Linear responses are

particularly useful when associations are mediated by the environment (e.g in competition) or can alter it (as in

habitat facilitation). In this case, associations compensate the suitability of the environment by either improving

micro-habitat conditions or exerting a negative force that counterbalances it.

On the other hand, when associations arise from direct interferences, their detection requires conditioning

on co-occurrence, hence on habitat suitability Gravel et al. [2019]. When we fitted an additive architecture to

the predator-prey occurrences, the model had a very low detection rate confirming that linear combinations of

habitat suitability and biotic effects are not sensitive to such direct associations. These results may be specific to

presence/absences and not hold true for abundances.

In general, the choice of an aggregation function depends on the type of interactions expected in the studied

system. To guide this choice, several frameworks [Kissling et al., 2012, Boulangeat et al., 2012b, Thuiller et al.,

2013] conceptualize the incorporation of eco-evolutionary processes into species distribution models (a.k.a BI-SDMs

[Dormann et al., 2018]). Besides, theoretical developments extended the theory of island biogeography [MacArthur

and Wilson, 2001] to account for trophic interactions [Gravel et al., 2011] and more general interaction networks

under environmental constraints [Cazelles et al., 2016a,b].

5.2 From species representations to biotic associations

5.2.1 The meaning of species embeddings

In theory, the effect embedding of a species is equivalent to a factor analysis of all other species abundances

(residual abiotic responses if coupled with environmental data) when it is present. The effect embedding is a

proxy of the species’ influence on the community composition. Combining the effect embeddings of occurring

species produces an ordination of the community composition in the embedding space of dimension d: Rd. The

species response embedding can be mapped into the same space, we can measure through the dot product the

compatibility of the species to the observed community.

Since the community ordination is obtained as a linear combination of present species’ effects, species response

to the community can be rewritten as a sum of one-to-one responses to each observed species. When the response

and effect embeddings are forced to be similar, we recover the same structure used by Latent Variable JSDMs.

Analogously to the species embeddings, Kissling et al. [2012] proposed the concept of interaction currencies

as surrogates for biotic interactions in distribution models in a similar response-effect framework. Hypotheti-

cally, these currencies include resources, bionomic variables [Hutchinson, 1957], traits, and other non-consumable
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environmental conditions that mediate interactions. Our analysis of embeddings learnt from data in food web

simulations showed that they captured both abiotic and biotic species preferences. In the case study on Alpine

plants, we found that embeddings were mildly related to functional traits.

5.2.2 Constraining embeddings with prior knowledge

In practice, the embedding dimension is typically significantly smaller than the number of species. While species

can have distinct habitat preferences, the biotic role expressed in their interactions and the spatial associations

they produce is drawn from a limited number (significantly smaller than the pool size) of behaviors represented

by functional groups [Walker, 1992]. A species can belong to one or several functional groups with different

proportions. Such information can be mined from online databases or provided by experts [BETSI, 2012, Nguyen

et al., 2016, Kattge et al., 2020]. While learning graphical models with large species pools requires large datasets,

replacing species with fixed groups Ohlmann et al. [2018] has two advantages: (1) to reduce the parameter space

size by sharing embeddings within groups, (2) allowing extrapolation to new settings where different taxa are

observed yet from the same modeled groups. Besides, as evidenced by our simulated experiment, using group

constraints can improve the ability of inference models to recover potential associations even when species did not

co-occur.

5.3 Perspectives

Beyond group constraints, some frameworks [Lo and Marculescu, 2017, Chiquet et al., 2018, Scutari et al., 2019]

support white-lists and black-lists, containing authorized and forbidden associations respectively, by penalizing

graphs that do not satisfy those constraints. When interaction networks can be described at least partially, the

same approach can be used to complete missing edges by harnessing similarities of species interactions. This

semi-supervised problem is referred to as collaborative fitlering [Fu et al., 2019] and is one of the main applications

of dependency networks. Incorporating this link prediction task within a multispecies distribution model would

allow to quantify the effect of known and predicted interactions on species distributions.

We motivated throughout our simulation experiments the use of different joint responses for abiotic and biotic

drivers depending on the underlying biotic interactions. The fact that interactions require and affect co-occurrences

simultaneously are not mutually exclusive [Gravel et al., 2019]. The availability of multi-trophic communities

datasets [Derocles et al., 2018] where complex interactions are entangled calls for applications coupling different

modes of aggregating abiotic drivers with biotic associations.

6 Conclusion

Biological interactions and other processes induce spatial patterns of co-occurrence and co-abundance. We pre-

sented and validated a model of species co-abundances as a function of the habitat and biotic associations. We

proposed an asymmetric scheme for modeling associations that is based on learning latent representations of

species’ responses and effects. Future efforts should be directed towards an incorporation of prior knowledge of
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the complete or partial topology of the association networks to guide the inference process. Along with that, a

strong theory of how known ecological interactions influence the co-distribution of species is needed to support all

these models.
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1 Supplements to framework description

1.1 Extensions of the biotic context definition

1.1.1 Adding conditioning covariates

In the base model, the estimation of any pairwise association is oblivious to the abiotic or biotic conditions sur-
rounding it. To account for these neighborhood conditions, we extend the base model by allowing the embeddings
used to represent the biotic context to vary according to some covariates.

Each site is associated to p conditioning covariates. These covariates are stored alongside an offset in a n×(p+1)
matrix V , such that each of the first p columns of V contains the values of the corresponding covariate for the
different sites while the last column is filled with ones. Then, given an embedding dimension d, the covariates are
mapped to d dimensions by applying a regression with a weight matrix W ∈ R

(p+1)×(d). The resulting conditioning
vectors ´k = WvTk represent the relative weight associated to a given latent dimension depending on the conditions
defined by the covariates.

The extended biotic context is then written as follows, where » is the element-wise vector product:

zki = ´k »
( 1

|Cki|

∑

j∈Cki

ykj³j

)

=
1

|Cki|

∑

j∈Cki

ykj · (´k » ³j)

The biotic associations can be recovered as in the base model, by isolating the pairwise associations in the
response variable. However, in this case, the associations we obtain are represented by a three-dimensional tensor
instead of a two-dimensional matrix. Each slice along the first dimension of this tensor represents a local association
network.

akij =

d
∑

l=1

(´k » Äi » ³j)l

¸ki = f
(

∑

j∈Cki

ykiakij + oj
)

By incorporating the association covariates on the latent space, we gain two desirable properties. First, we get
a fixed number of parameters that is a factor of the embedding dimension, which is significantly smaller than the
number of modeled species. Second, we ensure species with similar latent traits, as captured by the response and
effect embeddings, share associations regardless of the surrounding conditions.

1.1.2 Temporal extension

When longitudinal data are available, we denote the abundance of species i at site k at time-point t as y
(t)
ki .

Accordingly, the definition of the biotic context for a target species at a given time-point is extended to contain
the species, including the target, that were observed in the previous time-point:

C
(t)
ki = {j ∈ S, y

(t−1)
kj > 0}

z
(t)
ki =

1
∣

∣

∣
C

(t)
ki

∣

∣

∣

∑

j∈C
(t)
ki

y
(t−1)
kj ³j

1.1.3 Spatial extension

Given a function d that measures the distance between any pair of sites and a radius r, we consider a spatial
extension of the base model where the biotic context is defined to contain species that were observed at locations
within distance r of the considered site.

Cki = {(j, l) ∈ S × K, ylj > 0 and d(k, l) f r}

One can adapt the radius values to each species or group of species. The effect of each contextual element
decays with distance to the target location, with a rate Ä which controls the decrease in weight per unit of distance.

zki =
∑

(j,l)∈Cki

ylj · exp(−Ä d(k, l))
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1.1.4 Graph extension

So far, we have defined the biotic context based on the local community composition, using the presence or abun-
dance of other species to model pairwise effects on the target species. However, this formulation does not capture
higher-order associations among the context species themselves, nor the broader network structure surrounding the
target, what we refer to here as the contextual network. To address this, we propose leveraging graph embedding
techniques to compute latent representations of the contextual network.
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2 Supplements to the virtual experiment 1

2.1 Simulation how-to

We used a process-based stochastic model adapted from Virtualcomm (Gallien and Münkemüller 2015) to simulate
the assembly of individuals from a regional species pool into communities, on different locations sampled along
an environmental gradient. The assembly process is controlled by three filtering mechanisms: the response to the
abiotic environment, the outcome of biotic interactions and reproduction. For simplicity, the spatial structure of
communities and thus dispersal processes are ignored. In other words, there is no exchange of individuals between
neighboring communities. The simulation starts with a given or random initial composition for each community
independently. Individuals are replaced through time until an equilibrium state is reached or a user-defined number
of iterations is completed. The final communities’ composition is returned at the end Fig. 1.

2.1.1 Notation

- We start by sampling n locations uniformly on a single environmental gradient E.

- All locations have the same carrying capacity of K individuals from a common pool of m species S = {Sj/j ∈
[1,m]}.

- Each species has its own optimal environmental value µj ∈ E as well as a niche breadth ¶j ∈ E.

- Biotic interactions are described by a full interaction matrix I = (Ijk)/j, k ∈ [1,m]2 ; −1 f Ijk f 1 where Ijk
represents the effect of the interaction between the pair (Sj , Sk) on species Sk. We also write: I = I+ − I−

such that:

– I+ = (I+jk)/j, k ∈ [1,m]2; 0 f I+jk f 1 represents the matrix of positive effects (facilitation matrix)

– I− = (I+jk)/j, k ∈ [1,m]2;−1 f I+jk f 0 represents the matrix of negative effects (competition matrix)

Fig. 1: Simulation procedure.

2.1.2 Assembly rules

At each timestep (epoch), given an actual composition c, the probability that an individual from a given species
i to replace any other individual of c is given by the following equation ; such that:

• Benv: weights of the abiotic filter.

• Bcomp: weight of the competition.
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• Bfac: weight of the facilitation.

• Babun: weight of the reproduction filter, can be interpreted in terms of growth rate.

• Penv,i,c: the probability of species i to occur under the environmental value Ec is given by the normalized
density on Ec of a Gaussian distribution parameterized by its optimum and niche breadth. The closer to its
optima, the higher the probability of the species’ occurrence.

• Pcomp,i,c: the probability for an individual of species i to join the community given the aggregated effect of
its competitors in c.

• Pfac,i,c: the probability for an individual of species i to join the community given the aggregated effect of
its facilitators in c.

• Pabund,i,c: probability of an individual of species i to join the community as a result of the reproduction of
some of the Ni,c conspecifics in c.

The unnormalized weights Wi,c for each species are then normalized by dividing each one of them by their
sum. The result is a vector of probabilities W that sums to 1. Finally, we sample from a multinomial distribution,
parameterized with W , K individuals to compose the new community.

2.2 Simulation experiment

We set up an experiment where multiple simulations were run on random locations along a single environmental
gradient ranging from 0 to 100 with different randomly selected configurations of the prior association matrix:
absence of association (environmental filtering only), positive associations only, negative associations only and a
mix of positive and negative associations. In each configuration mode, we varied the pool size, i.e. the number
of species (10, 20 or 50), to test how the different models might be affected by the species pool size, the density

in terms of number of associated pairs as a function of the pool size (sparse 1/3 or dense 2/3) and whether
the association matrix included asymmetric effects: semi-attraction (e.g. commensalism) or semi-repulsion (e.g.
amensalism). Positive (resp. negative) effects were all set to +1 (resp. −1) as we are interested in the polarity
of the associations rather than their intensity. The factorial design of this experiment produced 33 simulation
datasets Fig 2. These combinations allowed us to test our framework, but also to compare its ability to detect
species symmetric associations in respect to other approaches like JSDMs and probabilistic graphical models.
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Fig. 2: Description of the simulation experiment 1 with different assembly rules
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2.3 Simulation diagnosis

To assess whether the simulated virtual communities reflect the simulation parameters (e.g. two competing species
tend not to co-occur), we defined the relative abundance index (RAIji), an asymmetric pairwise index that measures
the average change in abundance of the target species i when the source species j is present as compared to its
mean abundance irrespective of whether the source species j is present, ȳi.

∆kji = { yki − ȳi, for all k ∈ K such that yki > 0 and ykj > 0 } .

Then RAIji = avg(∆kji) across all k sites. The larger the standard deviation std(∆kji), the more ambiguous
the strength of the effect of species j on species i. If the confidence interval avg(∆ji) ± 1.96 std(∆ji) does not
contain zero, then the simulated dependencies unambiguously translate a polarized effect of species j on species i.
Otherwise, the simulations led to an equilibrium for which it is not possible to retrieve the parameters.

Before fitting the inference models on the simulated data, we checked using an empirical measure of pairwise
association RAIij whether species dependencies reflected the simulated patterns. Fig 3 depicts the value of the
statistic for each directed association aij. The distribution of RAIij values showed a good discrimination of positive
and negative associations, albeit with different strengths. Neutral associations translated into small RAIij values,
median-centered on zero for simulations with negative associations only. Whereas they spanned a large spectrum
of values in simulations with only positive or a mix of positive and negative effects. The proposed indicator is
itself a good proxy for association inference, however since it does not account for environmental covariates we use
it as a diagnosis tool.

Fig. 3: Simulation diagnosis. Distribution of relative abundance indices RAIij per simulation. Each data point
represents a directed association (positive in red, negative in blue and neutral in gray) involving two species from
the corresponding simulation. Labels on the x-axis correspond to simulation configurations.

2.4 Supplementary results

2.4.1 Sensitivity of associations to niche distances

On larger pool sizes, the distance between niche optima decreases as the probability of niche overlap increases.
Consequently, the estimates of species associations varied with the number of modeled species. Although the
strengths appeared to be drawn from a small fixed interval, their value was sensitive to the species niche differences
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(Fig 4). For all tested frameworks, the strength inferred for true positive associations decreased with the amount
of niche overlap. For large niche differences (no overlap), MRFcov, EMtree and PLN even reported opposite signs.
Conversely, inferred strengths of true negative associations were either invariant to niche difference (MRFcov),
very small and close to neutral (EMtree, PLN, ecocopula and EA) or increasing in absolute strength (HMSC). At
medium to high niche distance, EA reported an increase in the absolute strength of negative associations. HMSC
showed the opposite pattern, suggesting that the negative effects were rather explained by the abiotic covariates.

Fig. 4: Sensitivity of the inferred association strength aij per association type and inference model to the abiotic
niche distance measured by the absolute difference between their niche optima µi − µj .

2.4.2 Comparative performances on association type inference

We reported the Area Under the Precision-Recall Curve (PR-AUC), the recall and f1-score in Fig 5 for each
association type separately. We found no significant difference between the models in respect to their performances
in inferring positive vs dense or symmetric/asymmetric datasets. However, the quality of inferred associations
varied with the pool size.
On positive associations, EA and Ecocopula outperformed the other methods in all pool sizes. EMtree, PLN and
MRFcov reported good performances for 20 and 50 species datasets, but they failed to detect positive associations
in 10-species datasets. On negative associations, all models had strong difficulties in retrieving them, and this
difficulty was more pronounced for large pool size. EA, MRFcov and HMSC outperformed other methods.
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Fig. 5: Inference of true association class per type of association for each model measured by the recall, f1-score
and AUC-PR metrics. The higher the value the better performing is the model. AUC-PR is computed on the
raw associations while the recall and f1-score are computed on the discretized associations using as a threshold
ϵ+ = ϵ− = 5E − 2
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3 Virtual experiment 2

In this experiment, we simulated species occurrence data where each species depends jointly on suitable environ-
mental conditions and the presence of at least one prey given by a known predator-prey network (food web). This
setup reflects an intersection of abiotic and biotic filters, modeled as a multiplicative response. This multiplica-
tive structure and the asymmetry of predator–prey interactions is not supported by other association inference
methods. Therefore, we only evaluated our approach.

3.1 Simulation how-to

Fig 6 illustrates the experimental setup and the procedure used to generate occurrences. Briefly, we assume a
bottom-up control so that to be present, a consumer requires the availability of at least one resource, in addition
to habitat suitability. Basal trophic groups do not depend on any resource, only on the environment. The process
resulted in six datasets, each containing 25 species and 500 sites.

Fig. 6: Simulations of consumer-resource co-occurrences along an environmental gradient given food web topology
and true abiotic niches.

3.2 Structural regularities conserved in the embeddings

For each topology, we investigated whether learnt embeddings reflect the underlying clustering of species into
trophic groups. Concretely, we performed a Mann-Whitney ranking test [4] checking whether species from the
same prior trophic group had more similar embeddings than species from different groups. Finally, we asked to
what extent response and effect embeddings captured species abiotic preferences and their biotic requirements. We
did that by testing the correlation between embedding similarity and niche overlap measured with environmental
optima differences and the proportion of shared preys in both the potential and realized food webs.

3.3 Supplementary results

3.3.1 Network structure inference performances

The inferred associations were more faithful to the realized than the potential network. In all cases, incorporating a
parameter-sharing constraint within trophic groups allowed to improve the sensitivity with respect to both ground
truth networks.

The main source of error was the confusion of directed associations with symmetric reciprocal associations,
introducing spurious associations. This error was particularly frequent between species of inner groups in trophic
chains. However, the model managed to break this symmetry for species from groups with a higher diversity of
preys (number of distinct groups) of preys.
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Additive abiotic and biotic responses Intersection of abiotic and biotic requirements
Group-level Species-level Group-level Species-level

MW RN MW RN MW RN MW RN
Accuracy (ACC)

min 0.45 0.80 0.72 0.82 0.45 0.62 0.24 0.38
max 0.83 0.94 0.83 0.94 0.88 0.96 0.72 0.87
median 0.790 0.890 0.765 0.895 0.780 0.735 0.615 0.735
mean (sd) 0.72 ± 0.15 0.87 ± 0.06 0.77 ± 0.04 0.88 ± 0.05 0.71 ± 0.18 0.76 ± 0.12 0.55 ± 0.19 0.69 ± 0.18

ROC-AUC (AUC)
min 0.24 0.07 0.49 0.50 0.50 0.75 0.47 0.62
max 0.80 0.85 0.53 0.74 0.80 0.92 0.58 0.83
median 0.470 0.415 0.505 0.565 0.670 0.855 0.535 0.800
mean (sd) 0.52 ± 0.22 0.43 ± 0.27 0.51 ± 0.01 0.58 ± 0.09 0.64 ± 0.12 0.84 ± 0.07 0.53 ± 0.04 0.77 ± 0.08

F2-score (F2)
min 0.00 0.00 0.00 0.00 0.29 0.50 0.27 0.49
max 0.56 0.65 0.19 0.44 0.68 0.77 0.52 0.55
median 0.120 0.220 0.105 0.220 0.520 0.590 0.415 0.520
mean (sd) 0.19 ± 0.23 0.25 ± 0.25 0.10 ± 0.08 0.19 ± 0.16 0.52 ± 0.14 0.61 ± 0.09 0.40 ± 0.11 0.52 ± 0.02

True Skill Statistic (TSS)
min -0.06 0.00 -0.01 0.00 0.11 0.37 0.02 0.30
max 0.36 0.77 0.06 0.46 0.60 0.83 0.16 0.63
median 0.000 0.150 0.005 0.120 0.335 0.715 0.085 0.600
mean (sd) 0.08 ± 0.16 0.24 ± 0.30 0.02 ± 0.03 0.15 ± 0.17 0.34 ± 0.16 0.68 ± 0.16 0.09 ± 0.05 0.54 ± 0.13

Table 1: Summary of trophic network structure inference performances using two architectures: Additive abiotic
and biotic effects, intersection of requirements (reported in the main text), with associations at the species level
or the group level (by sharing embeddings within prior trophic groups). Metrics are computed taking in turn the
potential MW (metaweb) and the realized RN network as ground truth. We highlight the best median score for
each metric and reference network.

3.3.2 Structural regularities captured by the embeddings

For all topologies, the ranking test showed that both response and effect representations were significantly more
similar when species belonged to the same trophic group. Moreover, species embedding similarity correlated
positively with both abiotic and biotic niche similarity, with variable significance levels across topologies. Response
and effect representations similarity were strongly correlated for two reasons: (1) species with similar responses
were likely to have similar effects and vice-versa, (2) both representations were very similar, which explains the
symmetry in some of the inferred associations.

Anarchy Democracy Cascade gCascade Niche pNiche
Internal clustering validation

response 38278(<0.001) 36408(0.0021) 40024(<0.001) 35983(0.0044) 37188(<0.001) 38100(<0.001)
effect 36683(0.0013) 37300(<0.001) 39164(<0.001) 36708(0.0013) 36448(0.002) 38188(<0.001)

Abiotic niche similarity
response 0.21(<0.001) 0.13(0.0014) 0.13(<0.001) 0.16(<0.001) 0.23(<0.001) 0.16(<0.001)
effect 0.21(<0.001) 0.12(0.0033) 0.18(<0.001) 0.24(<0.001) 0.07(0.065) 0.15(<0.001)

Eltonian niche similarity
response 0.04(0.29) 0.1(0.015) 0.15(<0.001) 0.09(0.03) 0.12(0.0039) 0.13(0.0011)
effect 0.04(0.31) 0.11(0.0052) 0.2(<0.001) 0.08(0.06) 0.08(0.041) 0.15(<0.001)

Filtered prey similarity
response 0.14(<0.001) -0.03(0.39) 0.34(<0.001) -0.11(0.0052) 0.13(0.0013) 0.03(0.48)
effect 0.13(<0.001) 0.02(0.59) 0.31(<0.001) -0.09(0.033) 0.05(0.25) 0.08(0.035)

Table 2: Structural regularities captured by the response and effect embeddings, for each food web topology.
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4 Supplements to the empirical application

4.1 Environmental data preparation

The plant dataset contained the following set of environmental variables:

slope : the slope inclination in degrees,

snow : the average snowmelt date in Julian days between 1997 and 1999,

physd : the percentage of non vegetated soil due to physical processes,

zoogd : the percentage of non vegetated soil due to marmot activity,

aspect : the relative south aspect, and

form : the microtopographic landform index.

We initially applied a one-hot encoding scheme to the two categorical features (aspect and form) and we scaled
the numerical features.

4.2 Framework adaptation and training

We split the observations into a training and a test dataset using a multi-label stratification scheme1 to ensure
that all species were covered and their proportions were preserved in both sets.

For each plant species, we pre-trained a generalized linear model (GLM) with a logit link to relate species
occurrences to the environmental variables. We used the learnt weights as initial parameter values in the habitat
suitability component of our framework.

We defined the biotic context for a target species as the set of plants observed on the location of interest. We
used a negative binomial distribution to fit the plant counts. The embedding vectors were initialized using random
samples from a uniform distribution on the [−0.01, 0.01] interval, and subjected to lasso penalties to promote
sparsity. Finally, the offset value for each species was set to its average count on occurrence points.

We trained the full model using stochastic gradient descent (with a learning rate of 0.01 and momentum of 0.8)
on the training dataset using a subsampling rate of 25% for the negative examples. We monitored the negative
log-likelihood of positive examples (presences) on the validation set after each full pass of the training set to assess
the convergence of the training. We stopped when the loss stops decreasing or when 200 epochs have elapsed.

4.3 Embedding dimension and lasso parameter selection

The first step in this evaluation was to find appropriate values for the hyperparameters of our model. For a species
pool of size m, the embedding dimension d is selected among powers of 2 up to m/2, to improve hyperparameter
search speed. In our case, with m = 82, the embedding dimension is chosen from the set {2, 4, 8, 16, 32}.

When the value of the lasso penalty parameter ¼ becomes large, some components of the embedding vectors
take extremely small values for all species (below 10−5). These components have no effect on the computed
associations. Removing them, shrinks the embeddings to a smaller effective dimension, equal to the number of
retained components. In the extreme, very high values of ¼ lead to effective dimension equal to zero, resulting in
a zero association matrix, so that the interaction model is only parameterized by the species offset counts.

For each value of d, we apply the training procedure described previously with increasing values of ¼ ∈
{0.01, 0.015, 0.02, 0.025}. We evaluate the resulting models on the test set by computing the effective dimension
and the deviance of the predicted counts on positive examples (Fig. 3).

1Python library scikit-multilearn: http://scikit.ml/
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¼ \k 2 4 8 16 32

Effective dimension

0.010 2 4 8 16 32
0.020 2 3 5 11 21
0.030 0 0 1 3 0
0.040 0 0 0 0 0

Deviance

0.010 0.300 0.295 0.296 0.290 0.287
0.020 0.302 0.298 0.298 0.295 0.295
0.030 0.579 0.579 0.304 0.305 0.579
0.040 0.579 0.579 0.579 0.579 0.579

AIC

0.010 1148.960 1804.961 3116.962 5740.960 10988.957
0.020 1148.946 1804.952 3116.954 5740.951 10988.947
0.030 1148.704 1804.704 3116.936 5740.920 10988.704
0.040 1148.704 1804.704 3116.704 5740.704 10988.704

Table 3: Effective dimension (number of non-zero components), positive deviance and Akaike Information Criterion
(AIC) as a function of the embedding size (k) and the lasso penalty parameter ¼.

4.4 Habitat suitability

Performances The model predicts habitat suitability with a 87.7 ± 0.17% AUC score for all genera (Fig. 7).
The analysis of environmental variable importance showed the dominance of snow duration followed by zoogenic
disturbances, the site form and aspect. Physical disturbance and slope weights were negligible, probably due to
their correlation with snow.
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Fig. 7: Habitat Suitability Model variable importance and prediction performances per genus.

4.5 Summary association network

We performed a hierarchical co-clustering on the inferred association matrix, to obtain effect and response groups.
In parallel, we applied the modularity maximization algorithm [5] on the association network to identify densely
connected modules, referred to as communities (sensu graph theory) [3]. After that, we mapped the structural
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roles within the modules to create the group-level network. (See Supplementary Results). Finally, we analyzed
the resulting patterns in light of existing literature on Alpine plants interactions [2].

north slope south slope

MS grassland

HS forbs

Dominant

graminoids

Dwarf shrubs

LS grasslandShort herbs

Chinopholous

vegetation

Fest Viol, Trif spp

Minuartia verna

Kobresia spp, Carex Spp

Salix herbacea

Alch glau, Anth nippPlantago alpina

Carex foetida

Fig. 8: The summary association network. Structural roles (nodes) are mapped to position in the gradient
(Higher-slope HS, mid-slope MS, lower-slope LS) and plant classes (graminoids, grasses/herbs, forbs) and network
modules (node colors). Edges go from a source (effect group) to a target (response group). Blue (resp. red) edges
represent positive (resp. negative) associations.

4.6 Analyzing the functional meaning of plant embeddings

We investigated the functional determinants of the associations diversity. To do so, we compute the mutual in-
formation between the learnt embeddings and the plant traits (reported in [1]). The Mutual Information [6] is
an unbounded symmetric and positive score that measures the amount of information contained in one random
variable about another. It quantifies the reduction in uncertainty about one random variable given knowledge of
another. Zero mutual information indicates independence.

In general, we expect traits related to dispersal capabilities (seed mass, spread) to impact the prevalence of
the species, consequently increasing or decreasing the opportunity to affect other species (interaction probability).
As a result, we expect such traits to have a higher mutual information with effect embeddings than with response
embeddings. Conversely, traits related to nutrient uptake and biomass accumulation potential capture competitive
or cooperative abilities of the plant species. Hence, we would expect a high mutual information between these
traits and both responses and effects embeddings.

There was a relatively significant contribution of the leaf nitrogen mass and spread to the plants response,
whereas leaf angle was found independent (Fig. 9). The Specific Leaf Area contributes significantly to the effect
in addition to the Nitrogen mass and on a lesser extent Spread. Height is reported as related to both parameters.
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Fig. 9: Mutual information between plant traits and their latent representations. Each bar concerns a specific
trait, it represents the stack of mutual information scores from the first to the last (fourth) embedding dimension.
The lower (resp. upper) figure shows the results for the response (resp. effect) embeddings.
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