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Community detection in networks with unequal groups
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Recently, a phase transition has been discovered in the network community detection problem below which no
algorithm can tell which nodes belong to which communities with success any better than a random guess. This
result has, however, so far been limited to the case where the communities have the same size or the same average
degree. Here we consider the case where the sizes or average degrees differ. This asymmetry allows us to assign
nodes to communities with better-than-random success by examining their local neighborhoods. Using the cavity
method, we show that this removes the detectability transition completely for networks with four groups or fewer,
while for more than four groups the transition persists up to a critical amount of asymmetry but not beyond. The
critical point in the latter case coincides with the point at which local information percolates, causing a global
transition from a less-accurate solution to a more-accurate one.
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I. INTRODUCTION

Community detection, the division of a network into
well-connected groups of nodes with only sparser connections
between groups, has been the subject of vigorous research in a
number of fields including physics, statistics, and computer
science [1]. A string of recent discoveries, however, has
revealed that there are fundamental limits to our ability to
detect community structure [2–7]. Using techniques from
statistical physics and probability theory, it has been shown that
there can exist networks that possess underlying community
structure and yet that structure is undetectable. In particular, for
certain classes of model networks it has been shown that there
exists a sharp detectability threshold above which efficient
algorithms for community detection exist but below which no
algorithm of any kind can classify nodes into their correct
communities with success any better than a random guess—or
even detect the existence of communities in the network—if
given only the network topology as input.

The simplest demonstration of this effect makes use of
the stochastic block model, a probabilistic generative network
model that allows one to create artificial networks with any
number of communities of any size [8]. For networks generated
using this model the existence and location of the detectability
transition has been rigorously proven for the case of two com-
munities of equal size [6,7]. The transition is a continuous one,
with the fraction of correctly classified nodes playing the role
of order parameter. When the number of groups is increased,
the phase transition becomes more complicated, analogous to
that of random constraint satisfaction problems [9]. For five
or more groups (or four or more in the disassortative case or
antiferromagnetic case) there is a “hard-easy” threshold where
the accuracy achievable by an efficient algorithm undergoes a
first-order transition and jumps discontinuously. Immediately
below this point there is a regime where community detection
is possible in principle but is believed to require exponential
time [3,4].

These results are for the symmetric case where the groups
have equal size or, more generally, equal average degree. In
this case, every node has the same probability distribution

of local neighborhoods, so the local environment of a node
gives us no information about what community it belongs to.
In this paper we investigate the less-well-studied case where
the groups have different sizes or average degrees, which is
of obvious relevance to real networks. This case is harder to
analyze than the case of equal groups. We tackle it using two
approaches, both based on the cavity method of Refs. [3,4].
In the first, we perform a perturbative expansion of the cavity
method equations; in the second we consider the behavior of
the equations under finite iteration.

It is straightforward to see that having unequal groups
makes community detection easier. When different groups
have different average degrees we can use the node degree
as a simple proxy for group membership. And making the
group sizes unequal in general makes the average degrees
unequal too (as we will show), so again we can use degree as
a proxy. Furthermore, by propagating degree-based estimates
of group membership through the network using a message-
passing (belief propagation) algorithm, we can improve on the
accuracy of this initial classification, labeling nodes based not
only on their own degrees but also on the degrees of their
neighbors, their neighbors’ neighbors, and so on. Iterating
the message-passing calculation repeatedly corresponds to
increasing the radius of the network neighborhood from which
we draw information, until the classification reaches a fixed
point when all information has been taken into account.

It is known that the classification provided by this fixed
point (or if there are multiple fixed points, the one with the
highest likelihood or lowest Bethe free energy—see below) is
optimal, in the sense that no other algorithm for community
detection can do a better job [3]. In particular, if the fixed
point does a poor job of assigning nodes to groups—or if
it fails completely—then no other method will return better
performance and it is this observation that allows us to say
when the structure in the network becomes undetectable.

Using these methods, we show in this paper that for four or
fewer groups the second-order detectability transition of the
equal-groups case disappears but that for five or more groups
the first-order transition, and the coexistence regime where
several competing fixed points exist, persist up to a critical
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level of asymmetry. In all cases we can classify the nodes
better than chance, no matter what the parameter values are,
but while in some cases our final accuracy is a smooth function
of the parameters, in others there is a sudden jump from low
accuracy based on purely local information to high accuracy
based on propagating information globally across the network.

We note that this phenomenology is qualitatively similar to
the case of “semisupervised” community detection, where we
are given the true labels of a small fraction of nodes [10,11],
and also to the Franz-Parisi spin-glass model [12], where each
node has an external field pointing it to a reference state. In
these models, the known labels or external fields break the
symmetry and provide local information which propagates
under belief propagation, causing the coexistence region to
shrink and finally disappear at a critical point. However, the
scenario we study here differs in that our local information
comes directly from the topology of the network itself, without
the need for any “metadata” or external field.

In Secs. II and III we define the stochastic block model
and describe in detail previous results on detectability and
how they were reached. Then in Sec. IV we develop the
theory for networks with groups of unequal size and degree,
including series expansions around the limit of weak structure
and optimal local classifiers based on neighborhoods of a given
radius. In Sec. V we present extensive numerical tests on the
stochastic block model that confirm the picture painted by our
theoretical results. In Sec. VI we give our conclusions.

II. THE STOCHASTIC BLOCK MODEL

The stochastic block model is a model for networks
containing community structure. It can be used both in
a forward direction for generating artificial networks with
tunable structure and in reverse for detecting the presence of
communities in network data by fitting the model to the data.
In this paper we do both: We use the model to generate test
networks with known community structure and then attempt
to detect that structure by fitting that same model to the
network. This dual approach is central to understanding when
community structure is or is not detectable, since there is no
better way to detect the structure in a network (or any other
data set) than to fit it to the very model used to generate that
structure in the first place. As pointed out by Decelle et al. [3],
this means that if we fail to detect the community structure in
our networks by this method, then all other methods must also
fail on the same networks. The structure in such networks can
thus fairly be said to be undetectable.

The definition of the stochastic block model is as follows.
Each of n nodes is assigned to one of q groups, with proba-
bilities γ1, . . . ,γq of assignment to group 1 to q respectively.
Thus γa is the expected size of group a as a fraction of n. Once
the group assignments are chosen, edges are placed between
node pairs independently at random with probabilities pab that
depend only on the groups a,b that a pair belongs to. If the
diagonal elements paa of the matrix of probabilities are larger
than the off-diagonal ones, then the resulting network will
have traditional “assortative” community structure in which
edges are more probable within groups than between them.
However, other types of structure are possible and are observed
in certain real-world networks, including “disassortative”

structure where edges are more common between groups than
within them or mixed structures in which different groups may
be variously assortative or disassortative with respect to one
another.

In this paper we focus on the case of a sparse network with
constant average node degree in the limit of large network
size, meaning that the edge probabilities pab scale as 1/n.
Specifically we set pab = cab/n where the cab are constants.
Then the expected degree ca of a node in group a is the sum
of the probabilities of connection between it and all other
nodes, averaged over all possible assignments of nodes to
communities. Letting si denote the group to which node i

belongs, we have

ca =
∑
{si }

∏
i

γsi

∑
i

pa,si
=

∑
i

∑
b

pabγb = n
∑

b

cab

n
γb

=
∑

b

cabγb. (1)

The sparse case appears to be representative of most real-world
networks and also displays a richer phase transition structure
in the community detection problem.

A. Fitting the stochastic block model to network data

In this paper we consider the following problem. An
undirected network is generated by the stochastic block model
for some choice of {γa} and {cab}, and our goal is to find the
best fit of the same model to the network data to recover the
community assignments planted in the network.

In performing the fit, we will assume that the values of
the parameters γa and cab used to generate the network are
known exactly. The only quantities we need to determine by
our fit are which nodes belong to which groups. This is a
somewhat unrealistic assumption. In general, nothing is known
beforehand, and one must learn the values of the parameters
as well as the group assignments. In some cases we can do
this using an expectation-maximization algorithm [3,4,13–15].
However, our goal here is to understand the fundamental
limits on our ability to detect community structure and for
this purpose the simpler setup considered here is a useful one.
If it is impossible to detect community structure when we
are given the values of the parameters, then it will still be
impossible when we are not given them. Hence the accuracy
we can achieve given the parameter values sets an upper bound
on what we can achieve when the parameters are unknown.

Given the parameters {γa} and {cab}, the optimal group
assignments can be calculated by maximizing the likelihood
that the observed network was generated by the model. In
the case of sparse networks it can be misleading to focus
only on the single assignment that maximizes the likelihood,
which can result in overfitting of the data. Instead we focus on
the posterior distribution μ({sj }) over group assignments, and
especially the marginal probability of group membership for
each node, i.e., the probability μi

a that node i belongs to group
a:

μi
a =

∑
{sj }

μ({sj }) δa,si
, (2)
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where δa,b is the Kronecker δ. In particular, if our goal is to
maximize the fraction of nodes labeled correctly, the optimal
strategy is to label each node i with its most likely group, given
by argmaxa μi

a .
The optimal (maximum-likelihood) value of the posterior

distribution can be shown (via a standard derivation involving
Jensen’s inequality) to be given by maximizing the quantity

L =
∑

a

∑
i

μi
a log γa +

∑
ab

∑
(i,j )

μ
ij

ab log cab

− 1

n

∑
ab

∑
ij

μ
ij

abcab −
∑
{si }

μ({si}) log μ({si}) (3)

as a function of the distribution μ({si}). Here the notation∑
(i,j ) denotes a sum over all edges (i,j ) in the network, and

μ
ij

ab is the two-node marginal probability that nodes i and j

belong to groups a and b respectively:

μ
ij

ab =
∑
{si }

μ({si}) δa,si
δb,sj

. (4)

The quantity L has the character of a free energy. Its
maximization requires us to find a distribution μ whose one-
and two-node marginals give a large value for the average
log-likelihood of the observed network (the first three terms
in L ), while also giving a large value for the entropy term
−∑

{si } μ({si}) log μ({si}). The traditional approach to this
problem, borrowed directly from statistical mechanics, is to
treat μ({si}) as a Gibbs distribution over “states” {si} whose
Hamiltonian consists of (minus) the first three terms in L (the
“internal energy”) and sample from this distribution using a
Monte Carlo algorithm. However, obtaining good statistics on
the marginals requires us to take many independent samples,
which is computationally expensive.

An elegant alternative, better suited to our current aims, is
the belief propagation method proposed recently by Decelle
et al. [3]. Belief propagation focuses on the “belief” or
“message” μ

i→j
a , which is an estimate of the probability that

node i would belong to group a if node j were removed from
the network (or, more precisely, if we lacked information about
whether i and j have an edge between them). The removal of a
node corresponds to the cavity method of statistical mechanics:
It allows us to write down a set of self-consistent equations
that must be satisfied by the beliefs thus [3]:

μi→j
a = γa

Zi→j

exp

(
−1

n

∑
k

∑
b

cabμ
k
b

) ∏
k∈∂i\j

∑
b

cabμ
k→i
b .

(5)

Here ∂i denotes the set of neighbors of node i and ∂i\j denotes
that set exclusive of node j . The quantity Zi→j is a normalizing
constant that ensures that

∑
a μ

i→j
a = 1:

Zi→j =
∑

a

γa exp

(
−1

n

∑
k

∑
b

cabμ
k
b

) ∏
k∈∂i\j

∑
b

cabμ
k→i
b .

(6)

These equations assume that i’s neighbors are conditionally
independent of each other given i’s state si or, equivalently, that

i’s neighbors are correlated only through their interaction with
i. As a result, belief propagation is only exact on trees; on a
finite graph with loops, it is merely an approximation. As long
as correlations in the network decay with distance, however,
it becomes exact in the limit of large size for a network that
is “locally treelike,” meaning that almost all vertices have
neighborhoods which are trees up to a radius of O(log n).
Networks generated by the stochastic block model satisfy this
condition in the sparse case considered here, and hence we
expect belief propagation to give exact results in the large-n
limit.

Implementing belief propagation consists of solving Eq. (5)
by simple iteration starting from an appropriate initial condi-
tion and iterating until the beliefs converge to a fixed point. The
one-node marginal probabilities μi

a can be calculated directly
from the beliefs according to

μi
a = γa

Zi

exp

(
−1

n

∑
k

∑
b

cabμ
k
b

) ∏
k∈∂i

∑
b

cabμ
k→i
b , (7)

where Zi is a normalizing constant,

Zi =
∑

a

γa exp

(
−1

n

∑
k

∑
b

cabμ
k
b

) ∏
k∈∂i

∑
b

cabμ
k→i
b . (8)

The two-node marginals of Eq. (4) can also be calculated from
the beliefs. For pairs i,j connected by an edge,

μ
ij

ab = 1

Zij

cabμ
i→j
a μ

j→i

b , (9)

where Zij is another normalizing constant:

Zij =
∑
ab

cabμ
i→j
a μ

j→i

b . (10)

In the sparse case, we can assume that pairs i,j not connected
by an edge are independent, so

μ
ij

ab = μi
aμ

j

b. (11)

To calculate the value of L itself, we can substitute the
converged values of the one- and two-node marginals obtained
from the belief propagation equations (9) and (11) back into the
log-likelihood, Eq. (3). The final entropy term in (3) requires
an expression for the full joint posterior distribution μ({si}),
which we assume takes the factorized form

μ({si}) =
∏

(i,j ) μ
ij
si sj∏

i

(
μi

si

)di−1 , (12)

where di is the degree of node i. (Again, this form is exact on
trees and asymptotically exact on locally treelike networks in
the limit of large size; on finite networks with loops it is only
approximate and indeed does not even sum to 1.) After some
manipulation, one can then show that the converged value of
L , which is also equal to the log-likelihood, is

L =
∑
(i,j )

log Zij −
∑

i

log Zi + 1

n

∑
ab

cab

∑
i

μi
a

∑
j

μ
j

b,

(13)

with Zi and Zij as in Eqs. (8) and (10). This quantity (or,
rather, minus this quantity) is called the Bethe free energy, and
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it can be shown [16,17] that fixed points of belief propagation
are stationary points of the Bethe free energy. In particular,
there is a stable fixed point that maximizes L whenever μ

takes the form (12). However, belief propagation often has
many fixed points in addition to this one, so it is possible for it
to converge to a local optimum of L rather than the required
global optimum. To get around this problem one typically runs
the belief propagation calculation multiple times with different
initial conditions and selects, from the fixed points found, the
one with the highest log-likelihood (or the lowest Bethe free
energy).

In many regimes this approach works well. However, it
can also happen that the global optimum has an exponentially
small basin of attraction—that is, the set of initial messages
that would cause belief propagation to converge to it has
exponentially small volume. In that case, finding it can
be computationally difficult, which can lead to interesting
behaviors, as we will see.

III. DETECTABILITY TRANSITIONS

Belief propagation is a fast and practical method for
community detection in networks and has been employed
extensively to fit the stochastic block model and other related
models to network data [3,4,18–20]. It is also a powerful
tool for the formal analysis of algorithm performance. By
analyzing the fixed points of the belief propagation equations,
Eq. (5), we can make statements about whether the method
is, or is not, able to find the communities in a network. And
since the maximum-likelihood fit performed by the algorithm
is optimal in the sense described in Sec. II, if the belief
propagation algorithm fails, i.e., if the fixed point with the
highest likelihood does not give the correct communities, this
implies (for locally treelike networks) that all other algorithms
must also fail. Thus results for belief propagation tell us not
just about one particular algorithm but also about all possible
algorithms for community detection.

Arguments of this type allowed Decelle et al. [3,4] to show
that there exist regions in the parameter space of the stochastic
block model where community structure is undetectable by any
means. Specifically, they showed that if the average degrees,
Eq. (1), are the same for all groups, there is a trivial fixed
point where μ

i→j
a = μi

a = γa . If belief propagation settles at
this fixed point, then it returns results no better than guessing
node labels based on the prior probabilities γa . For example, in
the special case where the q groups have equal size γa = 1/q,
belief propagation concludes that all nodes are equally likely to
belong to all groups and assigns nodes to groups with accuracy
no better than flipping a q-sided coin.

The so-called hard-easy transition corresponds to a bi-
furcation at which this trivial fixed point becomes unstable.
This transition is known in the spin glass literature as the de
Almeida–Thouless line [21] and in information theory as the
Kesten-Stigum transition [22,23] or the robust reconstruction
threshold [24,25]. Above this transition, if we initialize belief
propagation with random messages, or even with just a small
perturbation away from the trivial fixed point, it quickly moves
away from that fixed point towards another, nontrivial fixed
point which is well correlated with the true community assign-
ment. Thus detecting the community structure, and labeling the

nodes with accuracy better than chance, is computationally
easy in this regime—belief propagation succeeds at the task
quickly and reliably.

The position of the hard-easy transition is relatively easy
to compute in the well-studied special case where the groups
have equal size and the parameters cab of the stochastic block
model take just two different values:

cab =
{
cin if a = b,
cout if a �= b. (14)

If cin is significantly greater than cout, this choice gives us
strong assortative structure, but as cin approaches cout the
structure gets weaker. One might imagine that the structure
would remain detectable, albeit with some statistical error, so
long as cin > cout, but this is not the case. Instead the trivial
fixed point becomes stable when

cin − cout = q
√

c, (15)

where

c = cin + (q − 1)cout

q
(16)

is the average degree of the network as a whole.
When the trivial fixed point is stable, belief propagation can

show different behaviors depending on whether the stability
is local or global, which in turn depends on the number q

of groups. For q � 4 it is globally stable below the hard-
easy transition, so the community structure is completely
undetectable (this is known rigorously for q = 2 [6]). Belief
propagation will always converge to the trivial point and return
no information about the community structure. In this case
the transition is a pitchfork bifurcation where the trivial fixed
point emerges continuously from the nontrivial one. If we
define an order parameter

∑
i μ

i
si

− 1/q, equal to the average
probability given to the correct label minus the fraction 1/q we
would get right by chance, then this order parameter undergoes
a classic second-order phase transition from a nonzero value
above the critical point to zero below it. Up to a constant, this
order parameter is the marginal overlap Qμ defined below, and
this phase transition is shown by the blue (bottom) curve in
Fig. 1(b).

In contrast, for q > 4 (or q � 4 in the disassortative case)
there is a region immediately below the easy-hard transition
where the trivial fixed point is locally stable but not globally
stable. In this regime there is at least one nontrivial fixed
point that is also locally stable and corresponds to an accurate
classification of the nodes. In this “coexistence region,” belief
propagation can converge to either fixed point—and hence
may fail or succeed—depending on the initial values of the
messages. The blue curves in Fig. 3 show how we obtain
different values of the order parameter by initalizing belief
propagation either with random initial messages or with
messages close to the nontrivial fixed point.

Unfortunately, the basin of attraction of the accurate fixed
point is exponentially small, so we will almost always converge
to the trivial fixed point if we start with random messages. But
if we have the luxury of exploring the entire space of messages,
or performing an exponential number of independent runs
of belief propagation, we can still find the accurate fixed
point. And if the likelihood is higher at this point than at the
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FIG. 1. The overlap Q, Eq. (40), and the marginal overlap Qμ,
Eq. (41), for belief propagation on networks generated by the
stochastic block model with q = 2 groups, n = 105 nodes, average
degree c = 3, and group sizes as given in Eqs. (37) and (38), as
a function of ε = cin − cout for various values of δ. Increasing δ

(from bottom to top at the left of both panels) corresponds to greater
differences between the group sizes and average degrees. The dashed
lines in the left panel are the expected values in the weak-structure
(i.e., ε = 0) limit, Eq. (42). Note how the sharp detectability transition
disappears for δ > 0; both overlaps are smooth functions of the block
model parameters.

trivial fixed point, then the algorithm that picks the solution
with higher likelihood (as described above) would choose the
accurate fixed point over the trivial one and label the nodes
with good accuracy. We would, however, need to perform
exponentially many runs of belief propagation to achieve this
result. Decelle et al. [3,4] have conjectured, though it has
not been proved, that in fact there exists no algorithm of any
kind that will find the accurate fixed point quickly under
these circumstances—specifically none that will find it in
polynomial time. If this conjecture is correct, then it implies the
existence of a “hard but detectable” regime where community
detection is possible in principle but computationally hard. (It
is this regime that gives the easy-hard transition its name.)

If one continues to decrease cin − cout, there comes a point at
which the likelihoods for the two fixed points cross over and the
trivial fixed point becomes favored even with repeated restarts.
At this “condensation threshold” the system undergoes a first-
order phase transition, where the fixed point that dominates the
Gibbs distribution changes from the accurate one to the trivial
one. Below this point there is a “clustered” regime where many
locally stable fixed points still exist, including the accurate
one, but the algorithm that selects the solution with the highest
likelihood will classify the nodes into their groups with success
no better than chance.

Thus, below the condensation threshold, belief propagation
no longer succeeds under any circumstances and the commu-
nity structure becomes information-theoretically undetectable:
No algorithm, even one that takes exponential time, can
perform better than chance. Finally, as we decrease cin − cout

even further, there is a “spinodal” or dynamical transition
where the accurate fixed point disappears altogether, and the
trivial point becomes globally stable.

The coexistence of more than one stable fixed point in the
same parameter regime is a classic sign of a first-order phase
transition. Indeed there is a close analogy between the behavior
of the community detection problem and a thermodynamic
first-order transition. As described above, one can regard the
log-likelihood as (minus) the free energy of a thermodynamic

system, a q-state Potts-like spin system in this case whose spins
are the community assignments si of the nodes. Fixed points
of the belief propagation algorithm give us not just individual
community assignments of nodes but the entire distribution
μ({si}). Thus they correspond, in thermodynamic terms, not
to microstates but to macrostates, and competing fixed points
correspond to coexisting phases of the system. The accurate
fixed point corresponds to a ferromagnetic phase which is
correlated with the true group assignment, and the trivial fixed
point corresponds to a paramagnetic phase. The condensation
transition is the point at which the free-energy branches
corresponding to these two phases cross, making one phase
thermodynamically favored over the other at equilibrium.

The words “at equilibrium” are crucial here, implying that
we have the luxury of sampling the entire state space of
group assignments. Since the state space is of exponential
size as a function of n, this is typically not possible for a
polynomial-time algorithm. Thus even if the accurate fixed
point has a higher likelihood it may be difficult to find it.
The situation is analogous to that of a glassy material: The
lowest free energy of such a system may be attained in the
crystalline state, but if that state is surrounded by a high
free-energy barrier—corresponding dynamically to having an
exponentially small basin of attraction—then at reasonable
time scales we will remain in the trivial paramagnetic state
and fail to find the true equilibrium. The hard-easy transition
in community detection is the point at which the free-energy
barrier disappears, so it becomes dynamically easy for the
system to reach the ferromagnetic state and accurately detect
the community structure.

We can carry the physical analogy of a first-order transition
further. Suppose we start in the accurate (ferromagnetic) phase,
just above the hard-easy transition, and then slowly decrease
cin − cout so we enter the coexistence region. We do this
in “adiabatic” fashion, making only incremental changes to
the structure of the network—adding, removing, or moving
edges one by one—iterating the belief propagation equations
to convergence after each change, starting from the previous
fixed point. The net result will be that we stay at the accurate
fixed point even as we pass the easy-hard transition and enter
the regime where that fixed point would be a priori hard to find.
We will continue to follow the accurate point until it disappears
and we shift to the trivial (paramagnetic) phase. At that point,
we can if we wish start increasing cin − cout again, rising back
through the coexistence region but now staying at the trivial
fixed point until we once again pass the hard-easy transition,
where the trivial fixed point destabilizes and we jump back to
the accurate one, corresponding to spontaneous magnetization.
In this way we can trace out a hysteresis loop in the behavior
of the system; the transitions at which the trivial and nontrivial
fixed points become unstable or disappear corresponding to
the spinodal lines at the boundaries of the loop.

While it is true that belief propagation rarely finds the
accurate fixed point in the coexistence region when the beliefs
are randomly initialized, it is still possible to find it if we
initialize the beliefs in the right way. In Sec. V we show
the results of numerical calculations where the beliefs are
initialized at the known true community assignments of the
nodes si , meaning we set μ

i→j
a = δa,si

, where δa,b is the
Kronecker δ. This initialization places the beliefs sufficiently
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close to the accurate fixed point that the process reliably
converges to it. In real-world applications one does not know
the true assignments of the nodes to communities so this
calculation is not possible—finding those assignments is the
entire point of performing belief propagation in the first
place—but we may still be able to find the accurate fixed
point if we have some side information or “metadata” about
the group assignment that allows us to guess sufficiently good
initial values of the beliefs. This is roughly what happens in
the semisupervised case mentioned in the Introduction, where
we are given the correct labels of a fraction of the nodes.
This kind of information lowers the hard-easy transition,
allowing us to find the accurate fixed point at lower values
of cin − cout [10,11]. In a similar way, we will see that making
the groups unequal lowers the hard-easy transition and shrinks
the coexistence region, until, at a critical amount of asymmetry,
it removes the detectability transition altogether.

IV. NETWORKS WITH UNEQUAL GROUPS

The purpose of this paper is to understand how the
detectability results reviewed in the previous section change
when the community structure is asymmetric, i.e., when we
go from equally sized groups to unequal ones. In fact, the
key question is not whether the groups have unequal sizes but
rather whether they have unequal degrees. If they do, then the
trivial fixed point μi

a = γa no longer exists, and we can no
longer identify the hard-easy transition with a simple linear
stability analysis.

Here we explore two complementary approaches to this
problem. In the first, we approximate the fixed point by a series
expansion about the limit of weak structure. In the second we
approximate it by performing only a finite number of iterations
of the belief propagation equations.

A. Series expansion

In our first approach, we expand the equations for the case
of unequal groups about the weak-structure limit, i.e., about the
limit where cin = cout. That is, we choose unequal sizes γa for
the groups then expand in powers of the strength cin − cout of
the community structure. This also results in different average
degrees for the groups (which, as we have said, is really the
crucial point): from Eq. (1), the average degree ca of a node in
group a is

ca =
∑

b

cabγb = cout + (cin − cout)γa, (17)

so nodes in larger groups (larger γa) have higher degree on
average whenever cin > cout. Thus we can use the node degrees
as a guide to community membership. As we will see, the belief
propagation equations employ this local degree information to
estimate communities with success better than a random guess,
and, moreover, they spread that information to neighboring
nodes to improve the results still further. The calculation is as
follows.

First, note that the average degree in the network as a whole
is

c =
∑

a

γaca = cout + (cin − cout)γ̄ , (18)

where

γ̄ =
∑

a

γ 2
a (19)

is the expected size of the community to which a randomly
chosen node belongs. Equivalently, γ̄ is the fraction of nodes
we would assign to the correct communities purely by chance
if we were to place the correct number nγa of nodes randomly
in each group a.

We now expand around the case cin = cout by fixing the
mean degree c, Eq. (18), and varying the difference,

ε = cin − cout. (20)

This fixes the values of cin and cout uniquely to be cin = c +
(1 − γ̄ )ε and cout = c − γ̄ ε or, equivalently, we can write

cab = c + (δab − γ̄ )ε. (21)

In the limit ε → 0, where cin = cout, there is no correlation
between the community structure and the topology of the
network. Thus the network data tell us nothing and the
probability of a node belonging to any group a is simply equal
to the prior probability γa . Indeed, it is easy to check in this
case that the sole solution of the belief propagation equations
is μ

i→j
a = γa .

We expand about this point in powers of ε thus:

μi→j
a = γa

(
1 + αi→j

a ε + · · · ) (22)

for some coefficients α
i→j
a and expand the marginals similarly:

μi
a = γa

(
1 + αi

aε + · · · ). (23)

Since
∑

a μ
i→j
a = ∑

a μi
a = 1 and

∑
a γa = 1, we have∑

a

γaα
i→j
a =

∑
a

γaα
i
a = 0. (24)

Substituting Eq. (22) into Eq. (5) and keeping terms to first
order in ε, we get

μi→j
a = γa

Zi→j

exp

[
−1

n

∑
k

∑
b

cabγb

(
1 + αk

bε
)]

×
∏

k∈∂i\j

∑
b

cabγb

(
1 + αk→i

b ε
)
. (25)

The sum in the exponential is∑
b

cabγb

(
1 + αk

bε
)

= ca + ε
∑

b

cabγbα
k
b

= ca + ε

[
cout

∑
b

γbα
k
b + (cin − cout)γaα

k
a

]

= ca + ε2γaα
k
a = ca + O(ε2),

where we have used Eqs. (1), (20), and (24). Similarly,∑
b

cabγb

(
1 + αk→i

b ε
) = ca + ε2γaα

k→i
a = ca + O(ε2).
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Using these expressions in (25), along with Eq. (18) again, we
get

μi→j
a = γa

Zi→j

e−ca cdi−1
a , (26)

where Zi→j is the appropriate normalizing constant as
usual. Notice that μ

i→j
a is independent of j at this order,

meaning that a vertex sends the same message to each of its
neighbors.

Similarly, we can calculate the one-node marginal proba-
bilities μi

a from Eq. (7) and we get

μi
a = γa

Zi

e−ca cdi

a . (27)

This tells us that nodes with higher degree di will have a
higher probability of being placed in groups where the average
degree ca is higher, while those with lower degree will have
a higher probability of being placed in groups with lower
average degree. In other words, the algorithm will divide the
nodes according to their degrees. As a result, whenever ε > 0
there is no regime in which we do no better than chance.

Specifically, since nodes in group a have degrees which are
Poisson distributed with mean ca , Eq. (27) implies that the
marginals are exactly equal to the posterior probabilities of the
groups given the degree, since

Pr[si = a | di] = Pr[si = a]

Pr[di]
Pr[di | si = a]

= γa

Zi

e−ca cdi

a = μi
a, (28)

where γa = Pr[si = a] by definition and Zi = di! Pr[di] is the
required normalization constant. This is the Bayes-optimal
conclusion that we can reach about i’s group membership,
given no information except its degree or, equivalently, given
only its radius-1 neighborhood in the network.

That only the radius-1 neighborhood enters into this
calculation is a result of the fact that, in the weak-structure limit
where we treat ε to first order, belief propagation transmits
information only one step along the edges of the network
before it reaches a fixed point. If we calculate the next order
in the series, treating terms up to second order in ε, then
we will find ourselves taking the radius-2 neighborhood into
account, classifying nodes based on their own degree and
the degrees of their neighbors, and so on. This suggests
an alternative approach which we describe in the following
section.

B. Finite iteration of the belief propagation equations

As discussed above, a series expansion of the belief
propagation equations produces a set of approximations for the
fixed point that depend on information from a neighborhood
of increasing radius around the node of interest. This prompts
us to consider an alternative approach in which we look
at the behavior of the belief propagation algorithm after
a finite number of iterations of the update equations (5).
Since each iteration corresponds to each node passing its
current information to its neighbors, t iterations mean that
each node receives information from its neighbors out to
distance t .

Suppose we start with messages derived from nothing but
the prior on group assignments, i.e., μ

i→j
a = γa for all i,j,a,

and apply belief propagation for a single step. After one
iteration of Eq. (5) the new values of the beliefs will be

μi→j
a (1) = γa

Zi→j (1)
e−ca cdi−1

a , (29)

where Zi→j (1) is the appropriate normalizing constant as
usual and we have made use of Eq. (1). These values are
identical to those derived from the first-order expansion of
the previous section, Eq. (26). Similarly, from Eq. (7), the
one-node marginal probabilities are

μi
a(1) = 1

Zi(1)
γae−ca cdi

a = Pr[si = a | di], (30)

the same again as in the previous section, Eq. (27). And, as
previously, this is the optimal Bayesian classification of the
nodes based on their radius-1 neighborhoods in the network:
that is, based only on how many neighbors they have but
without any further information about those neighbors—see
Eq. (28).

If we perform a second step of belief propagation, we get

μi→j
a (2) = γae

−ca

Zi→j (2)

∏
k∈∂i\j

1

Zk→i(1)

∑
b

γbcabe
−cb c

dk−1
b (31)

and

μi
a(2) = γae

−ca

Zi(2)

∏
k∈∂i

1

Zk→i(1)

∑
b

γbcabe
−cb c

dk−1
b . (32)

Now the marginals depend both on i’s degree and the degrees
of its neighbors, i.e., on i’s neighborhood of radius 2. And
again this is the optimal Bayesian classification given this
information and no other, as we can see by noting that if k

is a neighbor of i and is of type b, then its so-called excess
degree—that is, the number of neighbors k has in addition to
i—is Poisson-distributed with mean cb. Thus

Pr[dk | k ∈ ∂i,sk = b] = e−cb c
dk−1
b

(dk − 1)!
. (33)

Furthermore, the definition of the block model gives

Pr[k ∈ ∂i | sk = b,si = a] = pab , (34)

and so

Pr[sk = b | k ∈ ∂i,si = a] = γbpab∑
b′ γb′pab′

= γbcab

ca

. (35)

Now, applying Bayes’s rule and summing over all possible
types of i’s neighbors (which are unknown to us) gives the
following probability that i is of type a, given i’s degree and
those of its neighbors:

Pr[si = a | di,{dk}] ∝ γa Pr[di,{dk} | si = a]

= γa Pr[di | si = a]
∏
k∈∂i

Pr[dk | k ∈ ∂i,si = a]

= γa

e−ca cdi
a

di!

∏
k∈∂i

∑
b

Pr[sk = b | k ∈ ∂i,si = a]

× Pr[dk | k ∈ ∂i,sk = b]
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= γa

e−ca cdi
a

di!

∏
k∈∂i

∑
b

γbcab

ca

e−cb c
dk−1
b

(dk − 1)!

∝ γae
−ca

∏
k∈∂i

1

(dk − 1)!

∑
b

γbcabe
−cb c

dk−1
b , (36)

which (after normalization) matches Eq. (32).
These results extend naturally to any number t of itera-

tions: If we start with uniform messages and iterate belief
propagation t times we get the Bayes-optimal estimate of
i’s marginals based on its network neighborhood of radius
t . Indeed, the belief propagation equations are equivalent
simply to applying Bayes’s rule locally, updating i’s marginal
based on those of its neighbors with the assumption that i’s
neighbors are independent of each other. This holds exactly on
trees and, therefore, also on locally treelike networks such
as those generated by the stochastic block model on the
radius-t neighborhood of almost all vertices. Thus, iterating
belief propagation t times is an asymptotically optimal
algorithm for labeling nodes of a stochastic block model
network based on local information up to t steps away in the
network.

Since we know that the local neighborhood carries infor-
mation about group membership in the case of asymmetric
groups, this allows us to conclude that belief propagation,
starting from messages equal to the prior probabilities, will
always label the nodes better than a random guess. It is by
no means guaranteed, however, that a local calculation of this
kind must give the best possible answer. It is possible that
some nonlocal calculation could do better and indeed this is
exactly what happens in the coexistence region for the case
q > 4. In this region the local calculation does do better than
a random guess, but there exists another fixed point that does
better still. Finding this fixed point, however, requires us to
start belief propagation very close to it, meaning we have
to give the algorithm fundamentally nonlocal information,
simultaneously choosing the correct values of the beliefs out
to arbitrary distances.

We close this section by addressing the expert reader on
the subject of replica symmetry. When replica symmetry
breaking occurs, the Gibbs distribution breaks apart into
clusters of states with large energy barriers between them:
Within each cluster there are long-range correlations, causing
the conditional independence assumption of belief propagation
to break down. In this case, belief propagation gives incorrect
estimates of the marginals and the free energy, forcing us
to use higher-order algorithms such as survey propagation,
whose messages correspond to distributions of distributions
[26,27]. However, we are working here with a planted model,
and, moreover, we assume that the true parameters of the
model are known to the algorithm. In this setting, the planted
configuration is a typical state in the Gibbs distribution, and
no static replica symmetry breaking occurs. There can still
be dynamic replica symmetry breaking, as in the coexistence
region below the condensation threshold, where there are
an exponential number of clusters corresponding to fixed
points of belief propagation; however, these clusters have
higher free energy than the paramagnetic state, so they
are thermodynamically suppressed. As a result, long-range

correlations disappear and belief propagation is asymptotically
optimal [28,29].

V. NUMERICAL RESULTS

The results of Sec. IV suggest that it should be possible
to classify nodes into the correct groups with a success rate
better than chance for all networks with cin > cout when group
sizes are unequal or, more generally, when average degrees are
unequal. In this section, we test this prediction with numerical
experiments on networks generated by the stochastic block
model. As we will see, our expectations are borne out by the
simulations and a number of other phenomena are revealed
as well, particularly concerning the picture for networks with
larger numbers of communities. As described in Sec. III, when
q > 4 there are, for certain parameter regions, two stable fixed
points. When the size or average degrees of the groups are
equal, the values of the messages at one of these fixed points
(the “trivial” fixed point) give no information about community
memberships while those at the other give a group assignment
strongly correlated with the true one, and there is a first-order
phase transition between the two. When the group sizes are
unequal or when the groups have different average degrees a
random guess according to the prior probabilities γa achieves
an accuracy of γ̄ , Eq. (19), but the calculations of the previous
section suggest that even the less good of the two fixed points
achieves an accuracy significantly better than this. Thus in this
regime we expect to see a (first-order) phase transition between
“good” and “better” performance but no regime in which the
algorithm fails altogether.

In order to measure the effect of unequal group sizes
and degrees, we explore a two-parameter space of block
model networks. The first parameter is the difference ε =
cin − cout between the densities of in-group and between-group
connections, as defined previously in Eq. (20). The second
parameter, which we denote δ, measures the amount of
asymmetry in the groups, i.e., how far we are from having
equally sized groups. We define the group sizes γa to be

γa = 1

q
(1 + δζa), (37)

where the quantities ζa are of order 1 and sum to zero,
∑

a ζa =
0. This choice satisfies the normalization constraint

∑
a γa = 1

and allows us to go from equal-sized groups at δ = 0 to unequal
ones for δ > 0. For the particular simulations performed here,
we consider equally spaced group sizes with

ζa = a − 1
2 (q + 1). (38)

For q = 3, for example, we would have groups of size 1
3 and

(1 ± δ)/3. Varying δ also varies the average group degrees.
From Eq. (17) we have

ca = cout + ε

q
(1 + δζa), (39)

so the groups have different average degrees whenever δ > 0.
To quantify our success (or lack of success) at identifying

the planted community structure, we calculate the overlap
between the planted and detected communities, equal to the
fraction of nodes assigned to their correct communities by
the algorithm. There is, however, some ambiguity about how
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the overlap is defined, given that belief propagation does not
uniquely assign nodes to single communities but rather gives
us the marginal probabilities μi

a with which the nodes belong to
each community. Conventionally, one removes this ambiguity
by assigning each node to the community it has the highest
probability of belonging to. Then the overlap is

Q = 1

n

∑
i

δ
(
si, argmax

a

μi
a

)
, (40)

where si is the planted community of node i as previously,
δ(i,j ) is the Kronecker δ, and argmaxa f (a) denotes the value
of a that maximizes f (a).

This measure has some problems, however. It throws away
a lot of information contained in the marginals when a node
has a significant probability of belonging to more than one
group. Moreover, it can assign a node to a group even if the
probability it belongs there is only a little above 1/q, so for
large q the most probable assignment may be quite unlikely to
be correct. An alternative measure that takes these issues into
account is the marginal overlap,

Qμ = 1

n

∑
i

μi
si
, (41)

which is equal to the total fraction of nodes that would be
assigned to the correct communities if communities were as-
signed randomly in proportion to their marginal probabilities.

Note that these two definitions of the overlap have different
values in the weak-structure limit where the marginal proba-
bilities are equal to the group sizes μi

a = γa . In the case where
each node is assigned to its most likely group we end up putting
all nodes in the largest group in the weak-structure limit, which
means that the fraction of correctly assigned nodes is

Q = max
a

γa = 1

q

[
1 + 1

2
(q − 1)δ

]
(42)

for the choice of group sizes in Eq. (38). In contrast, the value
of the marginal overlap in the weak-structure limit is

Qμ = 1

n

∑
i

γsi
= γ̄ = 1

q

[
1 + 1

12
(q2 − 1)δ2

]
. (43)

A. Performance of belief propagation

Figure 1 shows the overlap (left) and marginal overlap
(right) for networks with q = 2 groups. For these calculations
we generated networks with n = 100 000 nodes, average
degree c = 3, and various values of the parameters δ and ε,
and then ran the belief propagation algorithm starting from
random initial messages.

For the case δ = 0, where the two communities are of
equal size and equal average degree, we see that there is,
as in Refs. [3,4], a phase transition at εc = 2

√
c = 3.46 . . .

[see Eq. (15)] from a regime where the overlap is 1
2 by

either definition—no better than a random guess—to one with
overlap strictly greater than 1

2 . For δ > 0, however, where the
communities have unequal size and unequal average degree,
we see that the algorithm does better than chance whenever
ε > 0; moreover, the detectability transition disappears, i.e.,
the overlap is a smooth function of ε. Figure 2 provides an
alternative visualization of the behavior of the system. Here

(a)
ε

δ

2 3 4 5
0

0.4

0.8

1.2

1.5

2

2.5

3

3.5

(b)

FIG. 2. The marginal overlap Qμ (a) and log (base 10) of the
convergence time (b) as a function of ε and δ for networks with
q = 2 groups, size n = 105, and average degree c = 3. The overlap is
a smooth function except at the detectability transition for equal-sized
groups, which occurs when δ = 0 and ε = 2

√
c. This is also the only

place where the convergence time diverges. Thus for q = 2 and δ > 0
there is no detectability transition. In both panels δ of each line is
increasing from bottom to top.

we show the overlap Q (left) and the convergence time (right)
in the ε-δ plane. These figures make the lack of a sharp
detectability transition particularly clear: The only place where
Q is not a smooth function, and the only place where the
convergence time diverges, is at the equal-group detectability
transition, when δ = 0 and ε = εc.

We have also performed tests on networks with three and
four groups and find similar behavior. For more than four
groups we expect qualitatively different behavior as described
above—a first-order transition with a coexistence region below
the hard-easy transition, characterized by the simultaneous
coexistence of two stable fixed points. Unfortunately, clear
numerical confirmation of this behavior is harder to obtain.
The coexistence region is difficult to see because the range
of ε it spans is quite narrow for assortative networks. As
observed in Ref. [4], however, the behavior is clearer in the
disassortative case, and particularly in the fully disassortative
case of a network that has connections only between different
groups and none within groups. (Community detection in this
case is equivalent to a “planted graph coloring problem.” In
computer science a q-coloring of a graph is a coloring or
labeling of the vertices with q different labels such that no
vertices with the same label have an edge between them. Our
problem is equivalent to one in which we generate a random
graph that we know to be colorable in this way by first assigning
the labels and then adding edges only between unlike labels.
Then we discard the labels and try to recover them again based
only on the structure of the graph.) Since cin = 0 in a totally
disassortative network, our parameter ε is just −cout in this
case while the average degree, Eq. (18), is c = cout(1 − γ̄ ).
Thus there is no need for separate parameters c and ε: fixing
the average degree automatically fixes ε.

Recall that both of the fixed points in the coexistence region
are expected to give better-than-random classification of the
nodes into communities, but one is expected to perform better
than the other. The two points can be considered perturbations
of the “accurate” and “trivial” fixed points of the equal-groups
case. Roughly speaking, the perturbed “near-trivial” fixed
point corresponds to inference with local information, starting
with the prior and applying belief propagation a few times,
while the accurate fixed point corresponds to finding a self-
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consistent solution with global correlations and considerably
higher accuracy. We expect both fixed points to be locally
stable, but for the accurate fixed point to have an exponentially
smaller basin of attraction than the near-trivial one.

To test this hypothesis we perform two separate sets of
experiments. In the first we initialize belief propagation with
uniformly random messages μ

i→j
a (up to normalization).

With this random initialization belief propagation typically
converges to the near-trivial fixed point, unless we are above
the hard-easy transition at which this point becomes unstable.
In the second set of simulations we initialize belief propagation
with messages corresponding to the true communities that
we planted in the network, μ

i→j
a = δa,si

. With this planted
initialization belief propagation typically converges to the
accurate fixed point, unless we are below the spinodal
transition at which this point disappears. Thus, above and
below the coexistence region we expect these two sets of
experiments to converge to the same solution, while within the
coexistence region we expect them to give different solutions,
with the random initialization giving a lower overlap than the
planted one.

Figure 3 shows the overlap Q as a function of c for fully
disassortative networks with q = 5 and n = 100 000, with
random initial messages (left) and the planted initialization
(right), run on the same set of networks in each case. As the
figure shows, the results are indeed as hypothesized above.
For low and high values of c the two initializations give the
same results, as they do also for sufficiently large values of
δ. For small values of δ, however, there is a sizable range of
values of c where the overlap achieved by belief propagation
with random initial messages is significantly lower than that
with the planted initialization, indicating the coexistence of
two competing fixed points. For comparison, the hard-easy
transition for fully disassortative networks in the equal-group
case [3] is at c = (q − 1)2 = 16.

Figure 4 again gives a different view of the results,
with the left panel showing the overlap achieved by belief
propagation with random initial messages in the c-δ plane.
There is a clear curve visible in this plot where the overlap
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FIG. 3. The overlap Q for belief propagation on fully disassor-
tative networks generated by the stochastic block model with q = 5
groups, n = 105 nodes, and various values of δ (increasing from
bottom to top) as indicated, as a function of average degree c. In
panel (a) we initialize the beliefs with uniform random values; in
panel (b) we initialize them with the true (planted) communities. For
small values of δ there is a range of c where the latter initialization
gives a higher overlap, indicating a second and better fixed point with
a small basin of attraction. In particular, for δ = 0 the coexistence
region corresponds to 12.8 < c < 16.
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FIG. 4. The overlap Q (a) and log (base 10) of the convergence
time (b) as a function of c and δ for totally disassortative networks
with q = 5 groups and n = 105 nodes. The beliefs are initialized with
random values in both panels. The first-order hard-easy transition
is visible as a line in the c-δ plane where the overlap jumps
discontinuously and the convergence time diverges. The height of
the discontinuity decreases with increasing δ until we reach a critical
point at which it vanishes at a second-order transition. Above this
point the overlap is a smooth function of c and δ and there is no
detectability transition.

changes discontinuously as the near-trivial fixed point becomes
unstable and belief propagation jumps to the accurate fixed
point. Exactly on this curve, the near-trivial fixed point is
marginally stable, causing the convergence time to diverge, as
shown in the right panel. Thus there is a hard-easy transition
in this case, even though there was none for q = 2, and it
is a first-order transition. As the asymmetry increases with δ,
however, the size of the discontinuity shrinks and past a certain
point (about δ = 0.12) it vanishes altogether. The critical point
where it vanishes is a second-order phase transition and beyond
this transition the overlap is a smooth function of the block
model parameters.

This behavior is reminiscent of a first-order transition in a
spin system with an external field, where the order parameter
shows a discontinuity as a function of temperature but the
size of the discontinuity decreases and then vanishes at a
critical value of the external field [10,12]. In the present case
the “temperature” comes from the average degree and/or the
strength of the community structure, and the “external field”
comes simply from the topology of the network.

Figure 5 shows the behavior observed in our experiments
as a single phase diagram in the c-δ plane. The blue curve
represents the hard-easy transition at which the near-trivial
fixed point becomes unstable; to the right of this curve
only the accurate fixed point is stable, so all calculations
converge to a high overlap, regardless of whether they are
initialized randomly or with the planted communities. The
green curve shows the spinodal line where the accurate fixed
point disappears; to the left of this curve both initializations
converge to the near-trivial fixed point, yielding a relatively low
overlap. In between lies the coexistence region (gray), which
extends up to the critical point at δ � 0.12; for δ larger than
this there is no phase transition. Finally, the red curve is the
condensation transition mentioned in Sec. III, the line at which
the likelihoods (or, equivalently, the Bethe free energies) of the
two fixed points cross. To the left of this line the algorithm that
finds the fixed point with highest likelihood will choose the
near-trivial fixed point over the accurate one, and hence fail to
detect the communities no matter how much time is allowed.
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FIG. 5. Phase diagram in the c-δ plane for the q = 5 fully
disassortative case described in the text. The blue curve shows
where the near-trivial fixed point becomes unstable (also called the
Kestum-Stigum or hard-easy transition); the green curve is the point
at which the accurate fixed point disappears. The gray area between
the two is the coexistence region in which both fixed points are stable
and belief propagation can converge to either depending on the initial
conditions. The red curve is the condensation transition at which the
likelihoods cross over; the black dot is the critical point above which
there is no phase transition behavior at all.

Note that, even to the right of the hard-easy transition, there
can be locally stable fixed points other than the accurate one:
When ε is large enough or δ is small enough, there are also fixed
points corresponding to various permutations of the groups.
These permuted fixed points have lower likelihood than the
one corresponding to the planted community structure, but for
large ε they can have fairly large basins of attraction, causing
belief propagation with random initial messages to fall into
them fairly often. (This is the source of some of the fluctuations
visible in Fig. 3.) Nevertheless, we can find the accurate
fixed point in this case by performing a reasonable number
of independent runs of belief propagation and choosing the
fixed point with the highest likelihood.

B. Belief propagation with a finite number of steps

In this section we investigate the behavior of belief
propagation when run for a finite number of steps, as opposed
to iterating it until it converges to a fixed point. As discussed in
Sec. IV B, iterating belief propagation t times makes optimal
use of local information up to t steps away but ignores
information further than that.

In Fig. 6 we show the overlap Q [Fig. 6(a)] and marginal
overlap Qμ [Fig. 6(b)] for q = 2 groups. In each panel, the
black curve shows the overlap of the fixed point to which
belief propagation converges if we continue iterating it. Below
that, we show two curves corresponding to iterating belief
propagation for t = 1 and t = 2 steps where (as in Sec. IV B)
the messages are initially set equal to the prior probabilities
μ

i→j
a = γa . As we iterate, using information about the network

from larger and larger neighborhoods, the accuracy of belief
propagation improves and the curves approach the overlap for
the fixed point from below. We also show two further curves
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FIG. 6. The overlap Q and marginal overlap Qμ achieved by
belief propagation on networks with q = 2 groups, average degree
c = 8, and δ = 0.6, as a function of ε = cin − cout. The black (middle)
curve in each panel shows the result of iterating belief propagation
until it converges to a fixed point as in Fig. 1; the other curves show
the overlap after 1 (top and bottom curves) and 2 (second top and
second bottom curves) iterations. The lower curves in each panel
use initial messages μi→j

a = γa equal to the prior probabilities of
the groups as discussed in Sec. IV B; the upper curves use initial
messages μi→j

a = δa,si corresponding to the planted communities.
Each measurement is averaged over 10 different networks of size
n = 105.

where the beliefs are initialized with the planted assignment
μ

i→j
a = δa,si

and these curves approach the overlap of the
fixed point from above. (The fixed point is the same for
either initialization, since for q = 2 and δ > 0 there is no
detectability transition.)

The curves with t = 2, for either initialization, already give
quite a good approximation to the final overlap when ε is
either very low or very high. Only in the intermediate region,
close to the position of the detectability threshold for equal-
sized groups (which in this case is at εc = 2

√
8 � 5.66) is

the approximation still poor after two iterations. This agrees
with previous observations that belief propagation converges
quickly everywhere except in the vicinity of the transition
[4]. It also shows that, for q = 2 groups, local information
is enough to allow belief propagation to quickly approach
optimal classification as the neighborhood radius increases.
(See Ref. [30] for recent rigorous results on external fields or
“side information,” showing that local algorithms also succeed
in that setting.)

Figure 7 shows analogous results for q = 5 groups in the
fully disassortative case for parameter values that encompass
the coexistence region where both fixed points are stable.
In the coexistence region, initializing the beliefs with the
prior probabilities—and thus using only local information—
converges to the near-trivial fixed point, while initializing with
the planted communities converges to the accurate fixed point.
This behavior is visible in the figure, with two lines in each
panel (in black) showing the converged overlaps. Outside the
coexistence region these two lines agree but inside it they
do not, showing that in this region there is a fundamental
difference in the power of local versus global information.

The remaining curves show the results for t = 1,2,4,8
iterations. With the prior initialization these results fail to
register the first-order transition, instead following an analytic
continuation of (an approximation to) the near-trivial fixed
point. Similarly, with the planted initialization we miss the
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FIG. 7. The overlap Q and marginal overlap Qμ for belief prop-
agation on fully disassortative networks generated by the stochastic
block model with q = 5 groups and δ = 0.05, as a function of the
average degree c. The two black curves in the middle of each panel
show the final converged result starting from the prior initialization
and planted initialization respectively. The other curves show the
results of belief propagation after t = 1,2,4,8 iterations (red, cyan,
green, and blue curves respectively, i.e., from top to bottom for upper
four curves and from bottom to top for lower four curves) starting
from each initialization. The converged result consists of one network
at each point, and each measurement of the finite-step data is averaged
over five different networks of size n = 105.

spinodal transition and instead follow an approximate contin-
uation of the accurate fixed point. As a result, convergence
from the “wrong” initialization to the final overlap is quite
slow both above and below the coexistence region.

VI. CONCLUSIONS

We have studied the detection of community structure in
networks generated by the stochastic block model, a standard

model of networks with well-defined clusters of nodes.
Previous studies have revealed the presence of a detectability
transition in such networks, below which the communities are
undetectable by any means. In this paper we study the case
where the symmetry between the groups is broken by having
groups with unequal sizes or unequal average degrees.

We find that for the well-studied case of two groups,
the detectability threshold disappears when the groups are
unequal, making the accuracy a smooth function of the
parameters of the model. On the other hand, for q > 4 (or
q � 4 in the disassortative case), where the detectability
transition is first-order in the equal-groups case, the transition
persists up to a certain amount of asymmetry. Before this
point is reached there is a coexistence between two competing
solutions—one with low accuracy (but still better than chance)
based on local information and the other with higher accuracy
based on global information. As the amount of asymmetry
increases, the coexistence region shrinks and finally disappears
at a critical point, beyond which there is no sharp transition. We
conjecture that this local-global distinction may be a generic
phenomenon in statistical inference whenever a symmetry is
broken, both in networks and in other kinds of data.
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[27] M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 (2002).
[28] A. Montanari, Eur. Transact. Telecommun. 19, 385 (2008).
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