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The architecture of mutualistic networks minimizes
competition and increases biodiversity
Ugo Bastolla1, Miguel A. Fortuna2, Alberto Pascual-Garcı́a1, Antonio Ferrera3, Bartolo Luque3 & Jordi Bascompte2

The main theories of biodiversity either neglect species interac-
tions1,2 or assume that species interact randomly with each other3,4.
However, recent empirical work has revealed that ecological
networks are highly structured5–7, and the lack of a theory that
takes into account the structure of interactions precludes further
assessment of the implications of such network patterns for bio-
diversity. Here we use a combination of analytical and empirical
approaches to quantify the influence of network architecture on
the number of coexisting species. As a case study we consider
mutualistic networks between plants and their animal pollinators
or seed dispersers5,8–11. These networks have been found to be
highly nested5, with the more specialist species interacting only
with proper subsets of the species that interact with the more
generalist. We show that nestedness reduces effective interspecific
competition and enhances the number of coexisting species.
Furthermore, we show that a nested network will naturally emerge
if new species are more likely to enter the community where they
have minimal competitive load. Nested networks seem to occur in
many biological and social contexts12–14, suggesting that our
results are relevant in a wide range of fields.

A long-held tenet in ecology is that the structure of an ecological
network can largely affect its dynamics3,6,7,15,16. Recent work has
unravelled the structure of plant–animal mutualistic networks5,8–11,
but little is known about the implications of these network patterns
for the persistence of biodiversity. Previous theory has analysed the
dynamics of mutualistic communities without considering their
structure3,17–20. More recently, ecologists have started numerically
to explore the robustness of mutualistic networks10,21–25, but no study

has yet determined how the size of the network depends on its
structure. However, understanding the factors determining the num-
ber of coexisting species is possibly the most fundamental problem in
ecology and conservation biology. Here we analytically quantify
whether and to what extent the architecture of mutualistic networks
enhances the number of species that can stably coexist in a commu-
nity (Fig. 1). Also, we explore the emergence of this network archi-
tecture through the assembly process. Our analytical approach
provides general, insightful results about the equilibrium behaviour
instead of simulating the dynamics of our system before such an
equilibrium (Supplementary Fig. 1).

We must first derive a baseline biodiversity that will occur in the
absence of mutualistic interactions. We therefore begin by considering
previous theory that predicts the number of coexisting species when
there are only competitive interactions26,27. Next we build a generalized
model of mutualisms in which species in the same group compete with
each other and interact mutualistically with species in the other group
(Methods). For direct competition for resources without mutualism,
previous work has shown that the largest eigenvalue of the competition
matrix limits the maximum biodiversity that the system can attain26,27.
This predicted maximum number of plant species (similar for
animals) can be expressed as

�SS(P)~
1{~rr(P)

~rr(P)
ð1Þ

where ~rr(P) is the normalized effective interspecific competition para-
meter, which can be computed from the main eigenvalue, l1, of the
normalized competition matrix (Supplementary Methods) as
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Figure 1 | The structure of mutualistic networks determines the number of
coexisting species. Each panel represents a plant–animal network with
different structures: a, fully connected; b, nested; c, compartmentalized.
Two plants and their respective interactions are highlighted. They compete
for resources such as nutrients (red arrow), but also have indirect

interactions mediated by their common pollinators (blue arrow), which may
change in sign and magnitude (indicated by arrow line style). As the number
of shared pollinators is higher, positive effects outweigh negative ones, and
the theory predicts a higher number of coexisting species as indicated by the
size of the matrices.
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~rr(P)~
l1{1

S(P){1
ð2Þ

Here S(P) is the observed number of plant species, which gives the
dimensions of the interaction matrices. Qualitatively, the larger is

~rr(P), the smaller is the number of species that can stably coexist in a
purely competitive system. To obtain explicit analytical formulae, we
will henceforth consider direct competition of mean-field type assum-
ing that all species within a set compete with each other with identical
intensities (this can be relaxed in numerical simulations; Supple-
mentary Methods). In this case, the quantity computed using equation
(2) is equal to the direct competition parameter, r(P).

Now that we have set up the baseline limit to the number of coexisting
species defined by equation (1), we can incorporate mutualism between
plants and animals and quantify the new limit to biodiversity. It is still
possible to derive an effective competition matrix that includes the effect
of mutualism. The maximum eigenvalue of this matrix limits biodiver-
sity through equations (1) and (2). We first consider the fully connected
mutualistic network in which all plants interact with all animals (Fig. 1a).
The normalized effective interspecific competition, ~rr(P)

mut, is related to the
direct competition without mutualism as follows, where a(P) is a para-
meter (Supplementary Information equation (7)) that is proportional to
the strength of mutualistic interactions:

~rr(P)
mut~

r(P){a(P)

1{a(P)
ð3Þ

Stable solutions exist for a(P) , r(P). We can see from equation (3) that

~rr(P)
mut is smaller than r(P). This means that mutualism always reduces

the effective interspecific competition in a fully connected plant–
animal network. The predicted maximum number of plant species

in the presence of mutualism, �SS(P)
mut, becomes (Supplementary Methods)

�SS(P)
mut~

1{~rr(P)
mut

~rr(P)
mut

~
�SS(P)

1{a(P)=r(P)
ð4Þ

which is strictly greater than �SS(P), proving that fully connected mutua-
listic networks increase the number of coexisting species by reducing the
effective interspecific competition.

Having quantified the increase in biodiversity due to mutualism in
the fully connected case, we proceed by assessing how this mutualistic
effect is shaped by the structure of mutualistic networks (Fig. 1b, c). We
will repeat the above arguments relaxing the assumption that plant and
animal species interact with all species in the other group. Whereas the
effective competition matrix in the case of mean-field mutualism con-
tained terms describing an average identical effect of one species on
another, now the elements of the effective competition matrix, C

(P)
ij , are

different and have to be written explicitly as (Supplementary Methods)

C
(P)
ij ~dijz

1
�SS(P) zR 1

S(A)z�SS(A) n
(P)
i n

(P)
j {n

(P)
ij

� �
ð5Þ

where dij is the Kronecker delta function (1 if i 5 j, 0 otherwise), R is the
mutualism-to-competition ratio (Supplementary Information equa-

tion (23)), n
(P)
i is the number of interactions of plant species i and n

(P)
ij is

the number of shared interactions between species i and j. Importantly,
the right-hand side of equation (5) decreases with the nestedness of the
mutualistic network (as defined in Methods). As a consequence, by
inspection nestedness reduces the effective interspecific competition
for a given distribution of number of interactions across plant species
and fixed parameters. Because the predicted maximum number of
plant species (equation (4)) increases with decreasing effective com-
petition, the model predicts that the more nested is the matrix, the
higher is the maximum biodiversity.

To explicitly quantify the increase in biodiversity (from the base-
line of an exclusively competitive system) due to the nested architec-
ture of mutualistic networks, we computed the derivative of the
predicted maximum number of plant species (equation (4)) with
respect to the mutualism-to-competition ratio:

1

�SS(P)
mut

L�SS(P)
mut

LR

�����
R~0

~ 1z
1

�SS(P)

� �
hn(P)i �SS(P) ĝg(P){

hn(P)i
S(A)z�SS(A)

� ��

{(1{ĝg(P))z
h(n(P))2i{hn(P)i2

hn(P)i(S(A)z�SS(A))

S(P)z�SS(P)

S(P){1

# ð6Þ

Here hn(P)i~
X

i
n

(P)
i =S(P) and h(n(P))2i~

X
i
(n

(P)
i )2=S(P) are the

mean and mean-square number of mutualistic interactions per plant
species, respectively. This derivative increases with the parameter

ĝg(P)~
X

i=j
n

(P)
ij

.
(S(P){1)

X
k

n
(P)
k

� �
, which is highly correlated

with the measure of nestedness defined in Methods. As seen above,
mutualism of the fully connected type always increases the number of
coexisting species, setting a maximum limit to biodiversity (fully
connected networks have the maximum numbers of absolute and
shared mutualistic interactions; Fig. 1a). Structured networks,
however, may increase the effective competition and reduce bio-
diversity if there are not enough shared interactions (that is, for
low nestedness; Fig. 1c), or if direct competition is strong so that
the predicted maximum numbers of species in the absence of mutu-

alism, �SS(A) and �SS(P), are small. Therefore, the architecture of mutua-
listic networks highly conditions the sign and magnitude of the effect
of mutualism on the number of coexisting species. Nestedness pro-
vides the maximum number of species given a certain number of
interactions (Fig. 1b). The next question is to unravel how nested
mutualistic networks arise in the first place. In Supplementary
Methods, we analytically show that a new species entering the com-
munity will experience the lowest competitive load, and will there-
fore be most likely to be incorporated into the community, if it
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Figure 2 | The nested architecture of real mutualistic networks increases
their biodiversity. a, The increase in the predicted maximum biodiversity
(sum of plant and animal species) of a mutualistic network as a function of
its value of nestedness. Each symbol represents a real network.
b, Relationship between the increase in the predicted maximum biodiversity
for real networks versus randomizations. All significantly nested networks
(filled symbols) show a higher increase in biodiversity. The increase in
biodiversity is calculated as a numerical approximation to equation (6). The
observed numbers of species (S(P) and S(A)) are given in Supplementary
Table 1. Other parameters are �SS(P)~�SS(A)~50 and R 5 0.005.
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interacts with the most generalist species. This naturally leads to a
nested network.

To illustrate the predicted effect of network architecture on bio-
diversity, we incorporate the structure of each one of 56 real mutua-
listic networks (Supplementary Table 1) into our analytical expression
(equation (5)). In Fig. 2a, we plot the increase in biodiversity in rela-
tion to the baseline limit without mutualism (equation (6)) against the
level of nestedness. As can be seen, real communities that are more
nested show higher increases in biodiversity. It is possible, however,
that this increase is mediated by a covariant variable such as the
number of species or interactions. To rule this out, we use an alterna-
tive way of exploring the role of network structure that keeps constant
all variables but nestedness. Figure 2b shows the comparative increase
in biodiversity for both real and randomized networks (Methods). In
the bulk of communities (45 of 56, P 5 2.0 3 1026, binomial test), the
real architecture induces a higher increase in biodiversity than the
randomization. More importantly, all networks that are significantly
nested (Methods; filled symbols in Fig. 2b) have a greater increase in
biodiversity than do their randomizations. Nestedness may be corre-
lated with other properties of network structure such as degree distri-
bution or disassortativity, and the overall contribution to biodiversity
increase may therefore be a composite of all these properties that shape
the architecture of mutualistic networks.

Our analytical framework can complement previous non-interacting
or mean-field approaches to ecology1,2, by quantifying the importance
of network structure for biodiversity. Ideally, this could provide an
assessment of the relative contributions of different mechanisms to
biodiversity maintenance, a critical task at present in the face of global
change. A variety of systems can be described as similar cooperative
networks12–14. The dynamics of such systems can be captured by
appropriate versions of the mutualistic model studied here.
Therefore, our analysis can be extended to address questions such as
to what extent systemic risk depends on the structure of the financial
systems13, how the optimum number of companies is determined by
the architecture of contractor–manufacturer networks14, and to
what degree the structure of social networks favours the evolution of
cooperation28.

METHODS SUMMARY
We used a mutualistic model defined as a system of differential equations. It

describes the dynamics of a community of n plant species and m animal species as

a function of their intrinsic growth rates, interspecific competition, and mutua-

listic effects represented as nonlinear, saturating functional responses (Holling

type II). We controlled the structure of the plant–animal mutualistic network

and were able to analytically solve the model for several network architectures.

We analytically estimated nestedness by averaging the number of shared inter-

actions between two given plants relative to their respective numbers of inter-

actions. In a completely nested matrix, the sets of interactions overlap, therefore

maximizing the above quantity. This analytical measure of nestedness allowed us

to directly relate nestedness to the effective competition matrix, and to write our

analytical solutions as a function of nestedness.

We assessed the significance of nestedness by estimating the probability, p,

that a randomization of the network is equally or more nested than the real

matrix5. Our randomizations assumed that the probability of an interaction

was proportional to the generalization level of both the plant and the animal

species5.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
The mutualistic model. The dynamical equation for the population of plant

species i is

dN
(P)
i

dt
~a

(P)
i N

(P)
i {

X
j[P

b
(P)
ij N

(P)
i N

(P)
j

z
X
k[A

c
(P)
ik N

(P)
i N

(A)
k

1zh(P)
P

l[A c
(P)
il N

(A)
l

ð7Þ

where upper indices (P) and (A) denote ‘plant’ and ‘animal’, respectively, Ni

represents the number of individuals of species i and P and A indicate the sets

of plant and animal species, respectively. The parameter ai represents the intrinsic

growth rate in the absence of mutualism, and bij represents the direct interspecific

competition for resources between species i and j (for example light and nutrients

in the case of plants, and breeding sites in the case of animals). The last term

describes the mutualistic interaction, through nonlinear functional responses

representing a saturation of consumers as the resources increase. The parameter

cik defines the per capita mutualistic strength of animal k on plant i, and h can be

interpreted as a handling time. The equations for animal populations can be

written in a symmetric form by interchanging the indices (A) and (P).

Equation (7) incorporates all elements recently adduced as necessary ingredients

for a realistic model of facultative mutualism17,29, plus additional ones such as the

explicit interspecific competition term. It generalizes previous mutualistic models

and allows the reconciliation of previous results on particular cases
(Supplementary Methods).

Fixed points of the model. We can analytically obtain the fixed points of model

(7) through some algebraic transformations and Taylor expansions (see

Supplementary Methods for the full analytical development). There are two

different solutions. The first is characterized by small equilibrium biomasses,

N= 1/hc. Because the mutualistic strength, c, has to remain small for this to be

stable, we call this regime weak mutualism. A second type of fixed point, which

we refer to as strong mutualism, corresponds to equilibrium biomasses, N, of

order 1/hc. As soon as the weak-mutualism fixed point becomes unstable, the

strong-mutualism fixed point becomes stable. Because mutualistic networks are

built upon weak dependences10, the weak-mutualism solution seems the most

plausible; it is the one considered in the main text, whereas the strong-mutualism

regime is described in Supplementary Methods.

The weak-mutualism fixed-point equations can be written in the form of a

linear system,
X

j
C

(P)
ij N

(P)
j ~p

(P)
i , where p

(P)
i are the entries of the effective

productivity vector (Supplementary Methods). We show in Supplementary

Methods that the necessary and sufficient condition for dynamic stability in

the weak-mutualism regime is that all equilibrium biomasses are positive and

the effective competition matrix is positive definite (that is, all eigenvalues are

real and positive).

Measuring nestedness. The level of nestedness of the mutualistic matrix is usually

estimated by means of appropriate software5,12,30. Here we introduced an explicit

definition of nestedness that makes the calculation more straightforward and had

the advantage of being related to the form of the effective competition matrix. For

plant species, it reads

g(P)~

P
ivj n

(P)
ijP

ivj min (n
(P)
i ,n

(P)
j )

Here min(n
(P)
i , n

(P)
j ) refers to the smaller of the two values n

(P)
i and n

(P)
j . A sym-

metric definition holds for animal species. This nestedness index ranges from zero

to one, and is highly correlated with previous measures of nestedness.

To assess the significance of nestedness in a real community, we used a popu-

lation of randomizations of the real community. Our null model randomized the

interaction matrix probabilistically maintaining the generalization level of both

the plant and the animal species. Specifically, the probability of an interaction

between plant i and animal j, pij, is given by the following expression5, where pi

and qj are the fractions of occupied cells in row i and column j, respectively:

pij~
pizqj

2

As a statistic indicating significance, we estimated the probability, p, that a

randomization was equally or more nested than the real matrix5.

doi:10.1038/nature07950

 Macmillan Publishers Limited. All rights reserved©2009

www.nature.com/doifinder/10.1038/nature07950
www.nature.com/nature
www.nature.com/nature

	Title
	Authors
	Abstract
	Methods Summary
	References
	Methods
	The mutualistic model
	Fixed points of the model
	Measuring nestedness

	Figure 1 The structure of mutualistic networks determines the number of coexisting species.
	Figure 2 The nested architecture of real mutualistic networks increases their biodiversity.

