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Solving Constraint Satisfaction Problems through
Belief Propagation-guided decimation

Andrea Montanari, Federico Ricci-Tersenghi and Guilherm&gan

Abstract— Message passing algorithms have proved surpris- particularly interesting class is provided message passing-

ingly successful in solving hard constraint satisfaction pblems  guided decimatiomprocedures. These consist in iterating the
on sparse random graphs. In such applications, variables ar following steps:

fixed sequentially to satisfy the constraints. Message pasg . .
is run after each step. Its outcome provides an heuristic to L) Run a message passing algorithm.

make choices at next step. This approach has been referred 2) Use the result to choose a variable indexV’, and a
to as ‘decimation, with reference to analogous proceduresn valuez? for the corresponding variable.

statistical physics. _ 3) Replace the constraint satisfaction problem with the
The behavior of decimation procedures is poorly understood one obtained by fixing:; to =
[ i

Here we consider a simple randomized decimation algorithm . . .
based on belief propagation (BP), and analyze its behaviorm The iteration may stop for two reasons. In the first case a

random k-satisfiability formulae. In particular, we propose a  contradiction is produced: the same variableappears in

tree model for its analysis and we conjecture that it provids  two constraints whose other arguments have already been

asymptot.ically exact prgdictions in the !imit Qf Iargg instances. fixed, and that are satisfied by distinct values xf If

This conjecture is confirmed by numerical simulations. this does not happen, the iteration stops only when all the
variables are fixed and a solution is found. Notice that earli
algorithms, such as unit clause propagation (UCP) [4], [5]

An instance of a constraint satisfaction problem [1] coneid not used message passing in step 2, and were not nearly

sists of n variablesz = (x1,...,2,) and m constraints as effective.

among them. Solving such an instance amounts to finding anRandom constraint satisfaction problems are a useful

assignment of the variables that satisfies all the conssraintesting ground for new heuristics. For instancandom k-

or proving that no such assignment exists. A remarkabkatisfiabilityis the distribution ovek-SAT formulae defined

example in this class is provided Bysatisfiability, where by picking a formula uniformly at random among all the

variables are binary;; € {0, 1}, and each constraint requiresones includingm clauses overn variables. Decimation

k of the variables to be different from a specifiauple. Ex- procedures of the type sketched above proved particularly

I. INTRODUCTION

plicitly, the a-th constraint (clause) € [m| = {1,...,m}  successful in this context. In particulaarvey propagation

is specified byk variable indexes(a),...,ix(a) € [n], guided decimation [6], [7] outperformed the best previous
and k bits z1(a),...,2x(a) € {0,1}. Clausea is satis- heuristics based on stochastic local search [3]. More thcen
fied by assignment if and only if (2;,(4),..., %)) # belief propagatiorguided decimation was shown empirically
(z1(a), ..., zk(a)). to have good performances as well [8].

A constraint satisfaction problem admits a natural factor Unfortunately, so far there exists no analysis of message-
graph [2] representation, cf. Figl 1. Given an instanceheagassing guided decimation. Our understanding almost en-
variable can be associated to a variable node, and eddiely relies on simulations, even for random instances.
constraint to a factor node. Edges connect factor noge Consequently the comparison among different heuristigs, a
F = [m)] to those variable nodésc V = [n] such thatthe-  well as the underpinnings of their effectiveness are soraéwh
th constraint depends in a non-trivial way on variabjeFor unclear. In this paper we define a simple class of randomized
instance, in the case @éfsatisfiability, clause: is connected message passing-guided decimation algorithms, and gresen
to variablesi (a), . . . ,i(a). If the resulting graph is sparse, a technique for analyzing them on random instances. The
fast message passing algorithms can be defined on it.  technique is based on the identification of a process on

Although constraint satisfaction problems are generau'ylfinite trees that describes the evolution of the decinmatio
NP-hard, a large effort has been devoted to the developmegorithm. The tree process is then analyzed through an
of efficient heuristics. Recently, considerable progreas happropriate generalization of density evolution [14]. Our
been achieved in building efficient ‘incomplete solvers. [3 approach is close in spirit to the one of [9]. While it applies
These are algorithms that look for a solution but, if they ddo a large class of random constraint satisfaction problems

not find one, cannot prove that the problem is unsolvable. Ancluding, e.g. coloring of random graphs), for the sake
concreteness, we will focus on randGrBAT.

A. Montanari is with Departments of Electrical Engineeriagd Statis- We expect the tree process to describe exactly the al-
tics, Stanford Universitymont anar i @t anford. edu, F. Ricci-  gorithm behavior in the limit of large instances, — oc.
Tersenghi is with Dipartimento di Fisica, Universita dirRa La Sapienza, Whil Id hi . ical si lati
G. Semerjian is with Laboratoire de Physique Théorique'Beole Nor- lle we could not prove this point, numerical simulations

male, Paris convincingly support this conjecture. Further, non-rmos
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with equal probability. It is easy to see that the limit olbjec
T(c0) is well defined and is an infinite tree with positive
%o probability if & > 1/k(k —1).

We let as(k) be the largest value af such that random
k-SAT instances admit with high probability a solution. It is
known [11] thata, (k) = 2¥ log 2—O(k). A sharp conjecture
on the value ofa(k) has been put forward in [6] on the
basis of statistical physics calculations, implying(k) ~
4.267,9.93, 21.12 for (respectively) = 3,4,5 andas (k) =
2Flog2 — (1 +1log2) + O(27*) for large k [12].

Fig. 1. Factor graph of a small 3-SAT instance. Continuougeed S|mple hgur|st|cs ha\./e be?n analyze.d. thorOUghly [5] and
correspond tej(a) = 0, and dashed ones tg(a) = 1. The corresponding proved to find a solution with probability bounded away
Boolean formula readéz; V z2 V T3) A (T2 V 24 V 25) A (x5 Vas V. from 0 if a < const 2F/k. Here the proportionality constant
z8) A (T3 V 27 V Ts). depends on the specific heuristic.

To the best of our knowledge, the first application of
essage passing algorithmsiesatisfiability is reported in
iL3]. In this early study BP was mostly applied ioae-shot
ashion(as in iterative decoding of sparse graph codes [14]),

without decimation. By this we mean that belief propagation

soLheenz?:zgga:rs %rgfkn'fggngsartgng\é\gtiff?ﬁa” Icorjlfam;ss run, and resulting marginal probabilities are used tosgue
y 9 the values of all variables at once. However the probability

as well as a synthetlc_dlsgussmn of related work. In Sect.|0& success of the one-shot algorithm is exponentially small
[Mwe define the decimation procedure that we are goin

91ere are isolated constraints, whose variables have
to analyze. We further provide the basic intuition behinel th o) '

L : . ._non-trivial marginal probabilities, each of them is hence
definition of the tree model. The latter is analyzed in Sectio, ;.4 \with finite probability in the one-shot assignment

V] and the predictions thus derived are compared with nu- L ) .
: . . . . . . Statistical mechanics methods allowed to derive a very
merical simulations in Sectidn]V. Finally, some conclusion

and suggestions for future work are presented in SeLfibn recise picture of the solution set [15], [6], [8]. This igul

Proofs of several auxiliary lemmas are omitted from thi§ NEW Mmessage passing algorithm dublseavey propa-

extended abstract and deferred to technical appendices gation [7]. In conjunction with decimation, this algorithm
" allowed to solve random instances of unprecedentedly large

[I. RANDOM k-SAT AND MESSAGE PASSING sizes, in difficult regimes ofr and k.
BACKGROUND AND RELATED WORK A natural way of introducing belief propagation faér
satisfiability is to consider the uniform distribution over

distribution overk-SAT instances withn constraints over, ~ SPlUtions (assuming their existence). Let us denot@dby-

variables. More explicitly, each constraintis drawn uniity ~ 1¢1(@); - - -, ir(a)} the set of variable nodes on which thah

at random among the* (") possible ones. We are interested®OnStraint effectively depends, for any sub&eof the vari-

here in the limitn, m — oo with m/n = « fixed. able nodes their partial assignment = {z;|i € U}, and
Consider the factor grapti of a randomk-SAT formula,  %a(Zoa) = H{(:;il(a), s T (a) 5& (z1(a),- -, Z.k(@))}' the

endowed with the graph-theoretic distance. Namely, th! dicator function of the event "clause is satisfied.” The

distance of two variable node(, j) is the length of the uniform distribution over the solutions can thus be written

shortest path leading fromto j on G. It is well known 1

[10] that, in the large size limit, any finite neighborhood of pa) = 7 H Wa(Za) - @)

a random nodé converges in distribution to a well defined ack

random tree. This observation will be the basis of our treg, [16] it was proved that fory < (2logk)/k[1 + o(1)],

analysis of the decimation process, and is therefore worgp computes good approximations of the marginalg:pf

spelling it out in detail. LeB(i, ¢) be the subgraph induced jrrespective of its initialization. It is clear from empil

by all the verticesj € G, such thatd(i,j) < . Then gydies [17], [18] that the ‘worst case’ argument used in

B(s, ¢) 4 T(¢) asn — oo, where T({) is the random this estimate (and in other papers on belief propagatioh [19

rooted (factor) tree defined recursively as follows. Fer 0, [20]) is far too pessimistic.

T(£) is the graph containing a unique variable node. For any |n Ref. [21] a simple message passing algorithm, warn-

¢ > 1, start by a single variable node (the root) and adthg propagation (see below), was analyzed for a modified

12 Poisson(ak) clauses, each one including the root and'planted’) ensemble of random formulae. The algorithm

k — 1 new variables (first generation variables)./If> 2, was proved to converge and find solutions for large enough

generate an independent copyTof¢ — 1) for each variable densitya (see also [22], [23]). Both the ensemble and the

node in the first generation and attach it to them. The valuedgorithm are quite different from the ones treated in this

zj(a) that violate clause are independently chosen{n, 1}  paper.

predictions based on tree calculations have been repyate%l
successful in the analysis of randdnsatisfiability. This ap-

proach goes under the name of ‘cavity method’ in statistic%
mechanics [6].

As mentioned aboveandomk-SAT refers to the uniform



Further, the definition and analysis of a ‘Maxwell decoderis yi(r) (x;), where
in [24], [25], is closely related to the approach in this

paper. Let us recall that the Maxwell decoder was a (mostly () 1+ tanh hz(-r)
. . . ) - v,'’(0/1) = ———,
conceptual) algorithm for implementing maximum likeliltbo L 2
decoding of LDPC codes over the erasure channel. The hz(i) — Z Uf;iz _ Z uff_)n (5)
treatment in [24], [25] applies almost verbatim to a simple acoyi wed i

constraint satisfaction problem known as XORSAT. The

generalization in the present paper is analogous to the oBe Unit clause and warning propagation

from the erasure to a general binary memoryless symmetricDuring the decimation procedure a sub&ebf the vari-

channel. ables arefixed to specific values, collectively denoted as
Finally, let us mention that BP decimation can be an ingx ~ This has somadirect implications By this we mean

teresting option in engineering applications, as dematesir 5t for some other variables;, j € V \ U, it follows

empirically in the case of lossy source coding [26], [27]. from ‘unit clause propagation’ (UCP) that they take the

same value in all of the solutions compatible with the partia

1. A SIMPLE DECIMATION PROCEDURE assignment;;. We will say that these variables are directly
implied by the conditionz;; = zj;. Let us recall that unit
A. Belief propagation clause propagation corresponds to the following deduction

Let us recall the definition of BP for our specific setup ([Z]lprocedure. For each of the fixed variables and each of

: ; the clauses: it belongs to, the valug} can either satisfy
[28] are general references). BP is a message passing algp- , 4 L
; i : . . ausea, or not. In the first case clausecan be eliminated
rithm: at each iteration messages are sent from variableso .
. : . . rom the factor graph. In the second a smaller clause with
to neighboring clause nodes and vice versa. To describe the ) R . )
e less variable is implied. In both cases variableis

. .0
message update equations, we need some more notation. AS :
in the case of factor nodes, we shall cadlthe set of factors removed. It can happen that the size of a clause gets reduced

. to 1, through this procedure. In this case the only variable

that depends on the variablg. If i € Ja, sayi = i;(a P - .

P : € oa say (@), belonging to the clause must take a definite value in order
we denotez(i,a) = z(a) the value ofz; which does not e . S L

. . . .~ ., to satisfy it. We say that such a variable is directly implied
satisfy thea-th clause. For a pair of adjacent variabig ( : . T T
A . by the fixed ones. Whenever a variable is directly implied,

and factor ¢) nodes (i.ei € 9da), let us calld;i(a) (resp.

0_i(a)) the set of factor nodes adjacentitadistinct froma, its value can be substituted in all the clauses it belongs to,

that agrees (resp. disagrees) witton the satisfying value thus allowing further reductions.
of 2. In formulae,d. i(a) — {b € 9i \ al=(i,b) — 2(i,a)} The process stops for one of two reasgis:All the fixed

anda_i(a) = {b € dil=(i.b) = 1 — =(i, a)}. or directly implied variables have been pruned and no unit

. ; - . clause is present in the reduced formula. In this case we
It is convenient to use log-likelihood notations for mes-

. - . . ] ~~~refer to all variables that appeared at some point in a unit
sages as IS done in iterative decoding [14]’ Wlth. two Cayeatélause adirectly implied variables.(2) Two unit clauses
(1) We introduce a factot /2 to be consistent with physics imply different values for the same variable. We will say
notation; (2) The message from variable nodeo factor

nodea corresnonds to the loa-likelihood fof to satisfv/not- that acontradictionwas revealed in this case: no solution
e P 9 { y of the formula can verify the condition;, = zj;.
satisfy clause: (rather than to b@/1).

) s A key element in our analysis is the remark that UCP
Let {h;_,}, {u,_;} denote the messages that are passefmits 'a message passing description. The corresponding

at ime r along the directed edges— a anda — i, for algorithm is usually referred to awarning propagation

1 €V, anda € F. The update equations read (WP) [29]. The WP messages (to be denotedgééa, uffli)
hgrj;) _ Z “1(;21 _ Z ul(:;)n’ @ tazl:)e valueg ".{,I’ O}. The meaning Of-la_)i = I.(respe_ctlve_zly
bebpi(a) beb_1(a) u,,; = 0) is: ‘variable z; is (resp. is not) directly implied
) " . N by clausen to satisfy it.’ For variable-to-factor messages, the
Ug—; = f({h;24:7 € 9a\i}), (3)  meaning ofp'”) = 1 (respectivelyh!” = 0) is: ‘variable
x; is (resp. is not) directly implied, through one of the claise
where we define the functiofi : R*~! — R as b€ di\ a, not to satisfy clause.

We want to apply WP to the case in which a part of the

k—1
1 1—e¢ variables have been fixed, namely= z} for anyi € U C
hi,...,hg_1) = —=1 1— —— 1 —tanhh;) p , . ' g -
Flhs s i) 2 Og{ 2k—1 E( o )} V. In this case the WP rules read
(4) - : o
with € = 0 (this parameter is introduced for the discussion ~ (,.1) p if3bedila) Sty ;=1 5
in SecV). e = ori €U andz} = z(i,a), (6)

Fori € V, let 944 be the subset of clauses that are satisfied otherwise,

by z; = 0, andd_1 the subset satisfied by, = 1. Then the (r)

o if .7, =1Vjedali,
BP estimate for the marginal af, under the measurg( - ) a=

j—a

otherwise.

()

o H o



BP-Decimation §-SAT instance() be precised in Sectidn]V. Here we just say that it includes

1:  initialize BP messagefhi o = 0, ua—; = 0}; a maximum iteration number,,.., which is kept of smaller

2 initialize WP messagef);—., = 0,uq—; = 0}; order thanO(n).

3:  initialize U = 0 The algorithm complexity is therefore naively(n3r .y ).

4 fort=1,....n S It requiresn cycles, each involving(1) at Mostry.y BP it-

S run BP until the stopping criterion is met; erations ofO(n) complexity and(2) at mostn, WP iterations

6 choosei € V'\ U uniformly at random; of complexity O(n). It is easy to reduce the complexity to

7 compute the BP margina4 (z;); O(n?rmax) by updating WP in sequential (instead of paral-

8 chooser; distributed according te; lel) order, as in UCP. Finally, natural choice (correspogdi

o: fix z; = 7 "f‘”d set — U U {i}; to the assumption that BP converges exponentially fasy is t

10: run WP until convergence; take rmax = O(logn), leading toO(n?logn) complexity.

11: if & contradiction is foundreturn FAIL; In practice WP converges after a small number of iter-

12: end ations, and the BP updates are the most expensive part of

13: return z”. the algorithm. This could be reduced further by using the

TABLE | fact that fixing a single variable should produce only a small

THE BELIEF PROPAGATION-GUIDED DECIMATION ALGORITHM. change in the messages. Ref. [7] uses this argument for a

similar algorithm to argue thad(nlogn) time is enough.

In the following we shall always assume that WP is initialq
ized with b(o) =0, u!? = 0 for each edgqia) € E.

i—a i—a

It is then easy to prove that messages are monotone in”\Nalyzing the dynamics of BP-decimation seems ex-
the iteration number (according to the orderiag< I). tremely challenging. The problem is that the procedure is

In particular the WP iteration converges in at magt,) NOt ‘Myopic’ [3], in the sense that the value chosen for
iterations. We denotéu(“)} the corresponding fixed point variablez; depends on a large neighborhood of nedte the

messages, and say th‘aEEHV\U is WP-impliedby the fixed factor graph. By ana_logy with myopic_ decimation algorithms
one expects the existence of a critical value of the clause

i i i ; (00) _
variables if there exist € i such that = I. Then the densityagpg(k) such that the algorithm finds a solution with

Intuitive picture

a—1

Egllg&alence between UCP and WP can be stated in the fogpobability bounded away fror for a < agpg(k), while

it is unsuccessful with high probability fot > agpg(k).
Lemma 1. Assume a partial assignmenf; to be given for Notice that, if the algorithm finds a solution with positive
UCV.Then probability, restarting it a finite number of times shdbild
1) The fixed point WP messaghx{(’j)i} do not depend on Yield a solution with probability arbitrarily close tb.
the order of the WP updates (as long as any variable We shall argue in favor of this scenario and present an

is updated ara priori unlimited number of times). approach to analyze the algorithm evo_Iution f@rsmaller_
2) i € V\ U is directly implied iff it is WP-implied. than aspinodal pointaspin(k). More precisely, our analysis
3) UCP encounters a contradiction iff there exists 1,  allows to compute the asymptotic fraction of ‘directly im-

(0 — (=) — 1. plied’ variables after any number of iterations. Furtheg t
. . outcome of this computation provides a strong indicatiat th
For the clarity of what follows let us emphasize theaspin(k) < agpg(k). Both the analysis, and the conclusion

terminology offixed variables (those i) and ofdirectly 5+ aspin(k) < appy(k) are confirmed by large scale
implied variables (not in, but implied byz7, though UCP [ imerical simulations.

or WP). Fir_1a||y, we vv_iII callfrozenvariables the union of Our argument goes in two steps. In this section we
f|xe_d and directly implied ones, and denote the set of frozef}, . how to reduce the description of the algorithm to a
variables by C V. sequence of ‘static’ problems. The resolution of the latter
C. Decimation will be treated in the next section. Both parts rely on some

The BP-guided decimation algorithm is defined by th S;Z?P“Otns on t?he tasy_m.pt(itm. b(te#aw?rt.otf. Ialrge r?;dgm
pseudocode of Tab[@ I. There are still a couple of elements instances, that ornginate in the statstical mecrmnic

a € 041, b € 0_i such thatu

S . ;
we need to specify. First of all, how the BP equatidis (Z)é:seslzn%er':it)r?; g}fn pr&kélevzr; [6], [8]. We will spell out such
(3) are modified when a non-empty subBetf the variables As {f relimina? remarBI:. notice that the two message
is fixed. One option would be to eliminate these variables P y ' 9

from the factor graph, and reduce the clauses they beloﬁgssmg algorithms play different roles in the BP-deciorati

to accordingly. A simpler approach consists in modifyin oced_ure of Tabléll. BP is used _to estimate marg_mals of
Eq. (3) wheni € U. Explicitly, if the chosen valuer* he uniform measurg( - ) over solutions, cf. Eq[{1), in the
(r+1) +oo. If it does n(;t first repetition of the loop. In subsequent repetitions,sit i

satisfies clause, then we set, . .. R
(r41) t—a used to compute marginals of the conditional distribution,
we seth,_|,’ = —o0.

Next, let us stress that, while WP is run until CONVErgence, 1p caveat: here we are blurring the distinction between pubitya with

a not-yet defined ‘stopping criterion’ is used for BP. Thil wi respect to the formula realization and the algorithm raitin.



given the current assignment, = z;;. These marginals are  Let us call Z, = W, \ W;_; the set of newly frozen
in turn used to choose the valué¢s;} of variables to be variables after this fixing step. A moment of reflection shows
fixed. WP is on the other hand used to check a necessahat Z; containsi(¢) and that it forms a connected subset of
condition for the current partial assignment to be constste V' in G. Consider now the subgrapgh, C G induced byZ,
Namely it checks if it induces a contradiction on directly(i.e. G; = (Z;, F}, E;) where F} is the set of factor nodes
implied variables. In fact, it could be replaced by UCP, andhaving at least one adjacent variabledn and E, is the set

in any case, it does not influence the evolution of the partialf edges betwee; and F}). A crucial observation is the
assignment;;. following:

Let us introduce some notatiofii(1),i(2),...,i(n)) is
the order in which variables are chosen at sfejn the
algorithm, Uy = {i(1),...,i(t)} the set of fixed variables
at the beginning of the + 1-th repetition of the loop, and  From this lemma, and since the factor graph of a typical
W, the frozen variables at that time (i.e. the uniorfhfand random formula is locally tree-like, one is naturally lead t
the variables directly implied by;; ). study the size ofZ;, i.e. of the cascade of newly implied

We begin the argument by considering an ‘idealizedvariables induced by fixing the-th variable. If this size
version of the algorithm where BP is replaced by a blackemains bounded as — oo, thenG: will typically be a tree
box, that is able to return the exact marginal distributio@nd, consequently, contradictions will arise with vamsfy
of the measure conditioned on the previous choices, nameijnall probability during one step. If on the other hand the
vi(+) = piu (- |z}). Let us point out two simple properties size diverges for infinitely large samples, th@pwill contain
of this idealized algorithm. First, it always finds a solatio /00ps and opens the possibility for contradictions to appea
if the input formula is satisfiable (this will be the case with In order to compute the typical size &f, we notice that
high probability if we assumer < oy (k)). In fact, assume [Z:| = [Wi| — |[Wi—1[, and consider & of ordern, namely
by contradiction that the algorithm fails. Then, there has = nf. If we let ¢(0) = E[W,4|/n denote the fraction of
been a last time, such that thek-SAT instance has at least frozen variables when a fractiof of variables have been
one solution consistent with the Conditi%t,l = 2"{‘%71’ fixed, then under mild regularity conditions we have
but no solution under the additional constraint = =} . do(0)
for i = i(t). This cannot happen because it would imply lim Ef|Znol] = == - (8)

n—oo
ﬁi‘Uﬁ—l gfﬂfmgl_) :to, gni Itfhthlsl IS tt:ﬁ case, we would not Of coursep will be an increasing function @f. The argument
ave chosemw; In stepe o ? aigorithm. . above implies that, as long as its derivative remain finite fo
The second consequence is that the algorithm output cop- [0,1], then the algorithm finds a solution. When the
figuration z* is a uniformly random solution. This follows derivative diverges at some poifit, then the number of
from our assumption since direct implications of a single variable diverges as weleT
n spinodal pointagpin(k) is defined as be the smallest value
H Vi) (€hp) = of a such that this happens. o
t=1 The expectation in the definition af(¢) is with respect

Lemma 2. If G, is a tree, no contradiction can arise during
stept.

P{z"|i(-)}

n s i} to the choices made by the real BP algorithm in the first
= HMi(t)\U(t—l)(It |27 (4—1)) = m(z") .- n# steps, including the small mistakes it necessarily makes.
t=1 Our crucial hypothesis is that the location @§pin(k) does

Therefore, the distribution of the state of the idealized©t change (in the — oo limit) if ¢(6) is computed along
algorithm after any numbet of decimation steps can be the execution of the idealized decimation algorithm. Ineoth
described as follows. Pick a uniformly random solutionVords we assume that the cumulative effect of BP errors
«*, and a uniformly random subset of the variable indexe@/€r 7 decimation steps produces only a small bias in the
U, C V, with |U,| = t. Then fix the variables € U, to distribution of z*. For @ > agpg(k) this hypothesis is no
take_valuea:i — »* and discard the rest of the referencd®Nger consistent, as the real BP algorithm fails with high
configurationz* (i.e. the bitsz* for j ¢ Uy). probability. _ _ .

We now put aside the idealized algorithm and consider Under th'_s hyp_othess, a_nd reqalllng the description of the
the effect of fixing the-th variablei(t) to Ij"(t)‘ Three cases State of the idealized algorithm given above, we can compute
can in principle arise(i) z,,, was directly implied to be ¢(0) as follows. Draw a random formula om variables, a

H . 1 H *
equal tol _x;_‘(t) by 7, . and a contradiction is generated.un'formly random ‘reference’ solution*, a subsetU of nf

We assume that BP is able to detect this direct implicatio}ﬁarlable nodd Let ¢n(0) be the probability that a uniformly

and avoid such a trivial contradictio(i) =;;, was directly _rantlj_o:jn ;arlibleTEod9|sefroEep, €. eltherolrUI ortglrectlyt
implied to} ;) by z7;, . The set of frozen variables remains| P€d BY Ly Then ¢.( ) = o On(0). N ;e nex
the sameJl; — Wt:;; as this step is merely the actuationsecuon this computation will be performed in the random
of a previous logical implication(ii:) i(t) was not directly tree modelT(¢) of SecT.

|mpI|ed by igt,l' This is the Only Interesting case that we 2in the largen limit one can equivalently dra®/ by including in it each
develop now. variable of V' independently with probability.



IV. THE TREE MODEL AND ITS ANALYSIS where E,[] denotes expectation with respect to the distribu-
tion of (h, h),. This is a (vector) random variable defined by

recurrence or¥ as

! I I
i“j_zuﬂ 1-¢[[a-a) |, a4
i=1 i=1 i=1

Let us consider a-satisfiability formula whose factor
graph is a finite tree, and the uniform measureover
its solutions (which always exist) defined in EqJ (1). It N
follows from general results [2] that the recursion equa- (h,h),
tions [23) have a unique fixed-point, that we shall denote
{hi—a,uq—i}. Further the BP marginalg;( - ), cf. Eq. [3),
are the actual marginals pf Drawing a configuration from
the law i is most easily done in a recursive, broadcasting
fashion. Start from an arbitrary variable nodeand draw | . initial condition (u,@)i—o = (0,0) with probability 1.

z; with distribution ;. Thanks to the Markov property of | s recursionl, and [_ are two independent Poisson
., conditional on the value of;, z,,; can be generated

[[e

*!1 _tanh hi~

fm) . (@15)

i=1

(U7 U)ey1

<f(h1,...,hk_1),

independently for each of the branches of the tree rooted &5

i. Namely, for eactu € 9i, one drawsey,,; from

1
M(ZpayilTi) = ;wa(xi@aa\i) H Visa(zj) - (9)
j€da\i

Here z is a normalization factor and;_,(-) denotes the

random variables of parameterk /2, ¢ is a random variable
ual to0 (resp. 1) with probability & (resp.1 — 6), the
{(u, @), (u;,a;)} and (hi, h;) are independent copies
of, respectively(u, @), and (h, ).

To obtain a numerical estimate of the functio¥®(9) =

limg—o ¢®%(#) we resorted to sampled density evolution
(also called ‘population dynamics’ in the statistical picgs

marginal of the variabler; in the amputated factor graph context [6]), using samples df)® elements and: = 4 as a
where factor node: has been removed (this is easily eX-working example, see Fi@l 2. For small valuesgfs"®€(6)

pressed in terms of the messdge.,). Once all variableg

is smoothly increasing and slightly larger thénEssentially

at distancel from i have been generated, the process can k@i frozen variables are fixed ones, and very few directly

iterated to fix variables at distan@from 7, and so on. It

implied variables appear. Moreover the maximal slope of

is easy to realize that this process indeed samples a solutipe curve is close to 1, implying that the number of new

uniformly at random.

frozen variables at each stef;, remains close to 1. As

Following the program sketched in the previous Sectioryrows, ¢"®¢4) becomes significantly different from, and
we shall study the effect of fixing a subset of the variableghe maximal slope encountered in the interdale [0, 1]
to the value they take in one of the solutions. We first staigets larger. At a value'®®(k) the curve¢'™®(#) acquires

the following lemma.

spin

a vertical tangent a@*(aggi%), signaling the divergence of

Lemma 3. Supposd/ is a subset of the variables of a treethe size of the gr"’:f’ez of newly implied variables. Density
formula, and letz* be a uniformly random solution. The volution gives usygii(k = 4) ~ 8.05, with an associated

probability that a variable: ¢ U is directly implied byzy;
reads

vi(0){1- H}(1-@H)}+W(1){1—
a€dyi (10)

where the new messagés,_.;, h;—.} are solutions of

1 if jeU
1— JI (1—up—j) otherwise (11)

bed_j(a)
)

_ H (1 — tar;h hjﬂa

j€da\l

~

h/jﬁa

>

(12)

Uq—1]

We consider now a random tree factor graph and a rand

set of fixed variable$/.

Lemma 4. Consider a random tree formul@(¢) obtained
from the construction of Secti@d I, and a random suliget
of its variable nodes defined by lettifge U independently
with probability 6 for eachj. Finally, let z* be a uniformly

random solution ofT (¢). Then the probability that the root

of T(¢) is frozen (either fixed or directly implied hyj;) is

o~

SUee(9) = [(1 ~tanh h)h| | (13)

value of 6. ~ 0.35. For a > agSh(k) the curved™(9)
has more than one branch, corresponding to the presence of
multiple fixed points fol € [0y(a), 8.(a)]. In analogy with
[25], we expect the evolution of the algorithm to be desdibe
by picking (for eachd) the lowest branch of"®€(9). The
resulting curve has a discontinuity@t(«), which is a slowly
decreasing function aof.

We expect the tree computation to provide the correct
prediction for the actual curvé(d) (i.e. $"®€(0) = ¢()) for
a large range of the satisfiable regime, incluc{ngtSrgﬁ](k)].
As a consequence, we expetdpin(k) = agﬁi%(k) and BP
decimation to be successful up tspin(k). Similar tree
computations are at the basis of a number of statistical

mechanics computations in randotrSAT and have been

om

repeatedly confirmed by rigorous studies.

The relation between tree and graph can be formalized in
terms of Aldous [30] local weak convergence method. Fix
a finite integer/ and consider the finite neighborho&d¢)
of radius ¢ around an arbitrarily chosen variable node of
an uniformly drawn factor grapl¥ on n variables. Denote
by gy (-) the law of zg,) when z is a uniformly
random solution. We proceed similarly in the random tree
ensemble. Draw a random tr@€L) with L > ¢, let T(¢) its
first £ generations, anqit{?éem( +) the distribution ofz ).
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Fig. 2. Fraction of frozen variables as a function of the tfoac of fixed a
variables. Comparison between the tree model and the tilgoc numerical _ - o ) )
results, for 4-satisfiability formulas with = 4000, « = 7 ando = 8.4. Fig. 3. Probability of success of the BP decimation alganiis a function

of the clause density in random4-SAT. The vertical line corresponds to
the thresholdaspin(4). Our analysis indicates that BP decimation finds a

Considerations building on the field of statistical mechkani solution with probability bounded away fromfor o < agpin(4).

of disordered systems leads to the following hypothesis.
0.55

Conjecture 1. There exists a sequenceg(k) such

that prp(-) = Wi8(-) for all o < ac(k), ie. o I N =000
(B(0), pa(eyn(-)) and (T(6), u¥S5 [(-)) have the same 05t by tr66 model ——

weak limit. A precise determination of.(k) was presented
in [8], yielding a.(k) =~ 3.86,9.55,20.80 for, respectively,
k = 3,4,5 and ac(k) = 2¥log2 — 3log2 4+ O(27%) at ;

0.35 : q
large k. \

Local weak limits of combinatorial models on random 3
graphs were recently considered in [31]. For a generalized 0.25
conjecture in the regimgy. (k), as(k)] see [32].

A slightly stronger version of this conjecture would imply
that ¢(6) = ¢tree(9)_ As a consequence (following the dis- Fig. 4. Mean halting time for the BP decimation algorithm andom

. . . . -SAT. The vertical line corresponds to the thresholg,in(4). The mean
cussion in previous section) the tree model would correctly P in(4)- T
taken over unsuccessful runs. Fer< aspin(4) a large fraction of the

describe the algorithm evolution. runs is successful and do not contribute to the mean.

V. NUMERICAL SIMULATIONS

In order to test the validity of our analysis we performedr = 7 < aspin. In agreement with the picture obtained
numerical simulations of the pseudo-code of Table I. Leffom the analytical computation, the algorithm managed to

us give a few further details on its implementation. Thdind a solution of the formula (no contradiction encountgred
BP messages are stored fsnhh, .., tanhu, .;}. Am- and the measured fraction of frozen variables follows quite

biguities in the update ruld](3) arises whemhw;,_,; = accurately the tree model prediction. The second formuta wa
tanhwu. .; = 1 with b € d,i(a) andc € d_i(a). Because of taken in the regimerspin < a = 8.4 < ac. The algorithm
numerical imprecisions this situation can occur even kefor halted because a contradiction was found, after roughly the
contradiction has been detected by WP; such ambiguities dfaction .. (computed from the tree model) of variables has
resolved by recomputing the incoming messagesiu,_,; been fixed. The portion of the curve before this event exfibit
using the regularized version of E] (4) with a small positivagain a rather good agreement between the direct simulation
value ofe (in practice we used = 10%). and the model.

As for the stopping criterion used in step 5, we leave the Figure[3 shows the probability of success of BP decima-
BP iteration loop if either of the two following criteria is tion in a neighborhood ofspin(4) for random formulae of
fulfilled: (1), sup, |tanh A" — tanh h{"""| < 6, i.e. BP sizen = 500, 1000, 2000. Each data point is obtained by
has converged to a fixed-point within a given accurg@y; running the algorithm o000 to 3000 formulae. The data
A maximal number of iterations,, . fixed beforehand has strongly suggest that the success probability is boundeg aw
been reached. In our implementation we téck 10-° and  from 0 for o < agpin(k), in agreement with our argument.
Tmax = 200. Finally, in Figurd 4 we consider the number of variablges

A first numerical check is presented in FIg. 2. The twdixed by BP decimation before a contradiction is encountered
dashed curves represent the fraction of frozen variabtesyal According to the argument in Sectién 1B, /n should
the execution of the BP guide decimation algorithm, for twaoncentrate around the locatigh of the discontinuity in
formulas of thel-sat ensemble, of moderate size€ 4000). ¢(#). This is in fact the point at which the number of
The first formula had a ratio of constraints per variableariables directly implied by a fixed one is no longer

04 g 5

mean halting time
o

7 72 74 76 78 8 82 84 86 88 9
a



bounded. The comparison is again encouraging. Notice that
for a < agpin(k) we do not have any prediction, and the [1]
estimate oft, concerns only a small fraction of the runs.

To summarize, our simulations support the claim that !
for o < agpin(k) the success probability is strictly positive
and the algorithm evolution follows the tree model. For[3]
a > agpin(k) the main failure mechanism is indeed related
to unbounded cascades of directly implied variables, aftefy

aboutnd, steps.
(5]

V1. CONCLUSIONS AND FUTURE DIRECTIONS ]

Let us conclude by highlighting some features of this work
and proposing some directions for future research. It iglwor [7]
mentioning that, as was also found in [8], random 3-sat has
a qualitatively different behavior compared to randéraat (8]
with k& > 4. In particular we did not found any evidence
for the existence of a vertical tangent point in the= 3
function ¢(0) in the regime we expect to control through the [9]
tree computation, namely < a.(3) ~ 3.86.

Our analysis suggests that BP guided decimation is su[fi-]
cessful with positive probability forv < agpin(k). Further
we argued that this threshold can be computed through[#]
tree model and evaluated via density evolution. Despiteghe
conclusions are based on several assumptions, it is tegnpt{n ]
to make a comparison with the best rigorous results on
simple decimation algorithms. Fér= 4 the best result was (13]
obtained by Frieze and Suen [33] who proved SCB (shortegly
clause with limited amount of backtracking) to succeed for
o < 5.54. This is far from the conjectured threshold of!1®]
BP decimation that isvgpin(4) ~ 8.05. For largek, an

asymptotic expansion suggests that [16]
2k

aspin(k) = e?(l +O(k™ )) ) (16) (17]

[18]

whereas SCB is known from [33] to reach clause densities

of cx2% /k, with ¢, — 1.817 ask — oo. A rigorous version [1°]
of our analysis would lead to a constant factor improvemengg
On the other hand, the quest for an algorithm that provably
solves randomk-SAT in polynomial time beyondn = [#1

O(2%/k), is open.

From a practical point of view the decimation strategy22]
studied in this paper is not the most efficient one. A
seemingly slight modification of the pseudo-code of Table [b3]
consists in replacing the uniformly random choice of the
variable to be fixed, privilegiating the ones with the most
strongly biased marginals. The intuition for this choice igz4]
that these marginals are the less subject to the 'smallrror
of BP. The numerical results reported in [8] suggest that th't
modification improves significantly the performances of the
decimation algorithm; unfortunately it also makes its gl
much more difficult. [26]
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tegrated project No. 1935 in the complex systems initiative?]
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WP, cf. Egs. [(B),[{7) to find which variables are directly

implied by z7;. Thent,_.; is the probability that, .; = I

Proof of Lemma 1The statement is completely analogougvhenz;; is drawn conditional on; satisfyinga. Further,

to the equivalence between message passing and peelig.. is the probability thaty; ., = I whenzy; is drawn

versions of erasure decoding for LDPC codes [14]. Since the@nditional onxz; not satisfying clause.

proof follows the same lines as well, we will limit ourselves Now, supposer; has been fixed te:; drawn according

to sketch its main points. to its marginal (hence the two terms in Ed._](10)) and

1) Let {u,_;} and {v/ .} be two fixed points of WP. a configurationz has been generated conditional ap

Then {min(u,_;, 1, ;)} is a fixed point as well. It follows through the broadcast construction. Then the configuration

that the ‘minimal’ fixed point is well defined and that it of the variables iU is retainedx;, = z7;, and the rest of

coincides with the limit of{u") 1 irrespective of the order z* is discarded. The status (directly implied or not)uefis

a—1

of WP updates. read off from the values of the messaggs.; it receives.

2) Consider the orderingi(1),i(2),...,i(q)} according It is easy to convince oneself thai cannot be implied to
to which variables are declared as directly implied withifake the value opposite to the one it took at the beginning
UCP. For each € {1,...,q} there is at least one unit clause©f the broadcasting: by definition;; is compatible with it.
involving only variablei(s) before this was declared. Call Equation [(ID) follows by computing the probability that at
this a(s). Then use the same update order for WP, namel§ast one of the messages..; is equal tol among the ones
update, in sequence message, ,(s), and all the messages from clauses: that are satisfied by;.
hi(sy—p TOr b # a(s). It is immediate to show that this ~Equation [11) is derived by applying the same argument
leads to a fixed point, and the resulting WP-implied variableto the branch of the tree rooted atind not including factor
coincide with the directly implied variables. The proof isnodea. Finally, to derive Eq.[(12) notice that, in order for
completed by using point. variablez; to be directly implied to satisfy clausg each of

3) Consider the same ordering of variables used in poiffe variableg € da\I must be implied by the corresponding
2 above. If there exists € V, a € 0,4, b € d_i as in the subtree not to satisfy.. From the above remark, this can
statement, then UCP must have reduced both clausesly ~happen only if none of th¢z7} satisfiesa. The probability
to a unit clause involving; and requiring it to take different Of this event is easily found froni(9) to be

APPENDIX

values. Viceversa if UCP produces such a situation, in the 1 —tanhhj_,

WP updates!” ; = u{”). = 1 after some time-. O H — 17)
j€da\i

Proof of Lemma 2The same statement has been proved for 0

the Maxwell decoder [25]. We therefore briefly recall the

basic ideas used in that case. Proof of Lemma 4Denote byp the root of T(¢). Condi-

First of all the only WP messages changing from stefional on the realization of the tree and of the &&tthe
t — 1 to stept (call these the ‘new’ messages) are the onggrobability of a direct implication of the root is obtaineg b
on the edges of the tre€’;, and directed outwards. As solving (2), [3), [11),[(IR) for the edges directed towatus t
a consequence, no contradiction can arise because of tvamt, which leads to couples of messadé#; .., hi—q)}
contradicting new messages, because no variable node laas {(u,—.;, u,—;)} along the edges of (¢). Since T(¢)
two incoming new messages. and U are random these couples of messages are random
There could be, in line of principle, a contradiction be-variables as well.
tween a new and an old message. The crucial observationWe claim that for/ > 1, the message@i, ., uq—,) sent
is that indeed any factor node if; has at most two to the root of T(¢) by the adjacent constraint nodes are
adjacent variable nodes iff; (because otherwise if could distributed as(u,u),. Similarly for £ > 0, (h,h), has the
not ‘transmit’ an implication). If a variable nodealready distribution of the messages sent from the first generation
receives somé& message at timé— 1 from clausea, then variables to their ancestor constraint node in a random
it cannot receive any new message at tinfeom a different T(¢ + 1). This claim is a direct consequence of Eds. (2),
clauseb. This because the message- b must already be (@), (I1), [I12) and of the definition of (¢) and U. The
I, and therefore clausieis already effectively ‘reduced’.  random variables. have, for instance, the distribution of the



cardinalities ofdLi(a) for an arbitrary edge of the random Large k argument.Consider the functioraAS(@) defined, for

tree, as|di \ a| £ Poisson(ak) and unsatisfying values 6 € [0,1], as the smallest solution iio, 1] of the equation

z(i,a) of the variables are chosen independently with equal N ak ~

probability. p=0+(1-10) <1 — exp [—27¢’“D . (19
Finally the expression of!®®(#) is obtained from[(Z0) R

by noting that the cardinalities af.s for the root of T(¢) It can be shown thap(6) is a smoothly increasing function

are distributed as the ones 8fi(a) and using the global of ¢ as long asx < agpin(k), while for larger values ofx a

symmetry betwee® and 1, which implies that on average discontinuous jump develops in its curve. This threshold ca

the two terms of[{10) yield the same contribution. Note thabe explicitly computed and reads

the dependence of of ¢lee arises through the distribution ok /p 1\ 2

of (h,h)s, the bias of the coig used in [I4) being. O Aspin(k) = = <k—:2) ) (20)

Details on the population dynamics algorithmhhe numer- . o . -

ical procedure we followed in order to determipiee(g) Ve believe this simple to determine functief¢) to be

amounts to approximating the distribution of the randon§duivalent to the trug(6) in the largek limit, up to ex-

variable (u,@), by the empirical distribution of a large Ponentially small ink corrections. In fact(1I8.14.15) implies

sample of couples{(u;,@;)}Y,. A sample{(hj,ﬁj) N the following exact equation,

is then generated according to EQ.1(14): for edcha [V ~ ak B

one draws two Poisson random variablesandi_, l++[l_] E[n] =6+ (1-6) <1 - &xXp [_yd@)k 1D , (21)

indexes;:= uniformly in [N], and a biased coig. The j-th

element of the sample is thus computed as where the expectation is taken in tle— oo limit. For

large values of: one can show the random varialileo be
R bt - - exponentially close td), hence¢(d) and E[h] coincide at
(hj, hj) = (Z Uit — Zuj;’ 1-¢JJa- ﬁji)) the leading order, and by comparirig(19) and (21) they also
i=1 i=1 i=1 coincide with ¢(6). The conjecture stated in Eq.{16) was

Subsequently the samplg(u;,;)} is updated from obtained by expanding (0) at the leading order. O
{(hj,ﬁj)} by a similar interpretation of Eq[(L5). After
¢ iterations of these two steps, starting from the initial
configurationu;, ;) = (0,0) forall j € [1, N], the estimate
of ¢%(9) is given by

N
% > (1 — tanh hj)h; . (18)

J=1

When ¢ gets large this quantity is numerically found to
converges to a limit we denotetd™®(#). O
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