• Volume/Page
  • Keyword
  • DOI
  • Citation
  • Advanced
   
 
 
 

Flickr Twitter iResearch App Facebook

Your access to this publication is provided through the subscription of Uni Oldenburg/IBIT. Library Welcome Message Help

Library Welcome Message Help

close

Attention, institutional online journal administrators: if the institution name printed in this screen message is incorrect, you can request a change by sending an email to librarynames@aip.org.

Please include your institutional account number, the account administrator's email address and the preferred online display name.

Phys. Fluids 26, 883 (1983); http://dx.doi.org/10.1063/1.864230 (7 pages)

Equation of motion for a small rigid sphere in a nonuniform flow

Martin R. Maxey1 and James J. Riley2

1Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
2Flow Research Company, Kent, Washington 98031

(Received 11 June 1982; accepted 22 November 1982)

The forces on a small rigid sphere in a nonuniform flow are considered from first prinicples in order to resolve the errors in Tchen’s equation and the subsequent modified versions that have since appeared. Forces from the undisturbed flow and the disturbance flow created by the presence of the sphere are treated separately. Proper account is taken of the effect of spatial variations of the undisturbed flow on both forces. In particular the appropriate Faxen correction for unsteady Stokes flow is derived and included as part of the consistent approximation for the equation of motion.

KEYWORDS and PACS

PACS

  • 47.55.-t

    Multiphase and stratified flows

  • 47.27.T-

    Turbulent transport processes

ARTICLE DATA

PUBLICATION DATA

ISSN

0031-9171 (print)  

    References

  1. C. M. Tchen, Ph.D. thesis, Delft, Martinus Nijhoff, The Hague, 1947.
  2. A. B. Basset, Treatise on Hydrodynamics (Deighton Bell, London, 1888), Vol. 2, Chap. 22, pp. 285–297.
  3. J. Boussinesq, Theorie Analytique de la Chaleur (L'École Polytechnique, Paris, 1903), Vol. 2, p. 224.
  4. C. W. Oseen, Hydrodynamik (Leipzig, 1927), p. 132.
  5. S. Corrsin and J. Lumley, Appl. Sci. Res. A 6, 114 (1956).
  6. Y. A. Buevich, Fluid Dynam. 1, 119 (1966).
  7. J. J. Riley, Ph.D. thesis, The Johns Hopkins University, Baltimore, Maryland, 1971.
  8. S. L. Soo, Phys. Fluids 18, 263 (1975PFLDAS000018000002000263000001).
  9. M. Gitterman and V. Steinberg, Phys. Fluids 23, 2154 (1980PFLDAS000023000011002154000001).
  10. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, Groningen, 1965), p. 67.
  11. H. Faxen, Ark. Mat., Astron. Fys. 17, 1 (1922).
  12. F. P. Bretherton, J. Fluid Mech. 14, 284 (1962). [ISI]
  13. J. M. Burgers, “2nd Report on Viscosity and Plasticity,” Kön. Ned. Akad. Wet., Verhand. (Eerste Sectie) 16, 113 (1938) (Chap. 3).
  14. J. Pérès, C. R. Acad. Sci. 188, 310 (1929).
  15. T. R. Auton, Ph.D. thesis, University of Cambridge, Cambridge, U.K., 1981.
  16. T. R. Auton, submitted to Int. J. Multiphase Flow (1982).
  17. T. Boggio, Rend. R. Accad. Nar. Lincei 16, Ser. 5, 613 and 730 (1927).
  18. A. T. Hjelmfelt and L. F. Mockros, J. Eng. Mech. Div. A.S.C.E. 93, 87 (1967).
  19. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops and Particles (Academic, New York, 1978), p. 285.
  20. S. I. Rubinow and J. B. Keller, J. Fluid Mech. 11, 447 (1961). [ISI]
  21. P. G. Saffinan, J. Fluid Mech. 22, 385 (1965). [ISI]
  22. A. T. Hjelmfelt and L. F. Mockros, Appl. Sci. Res. 16, 149 (1966). [ISI]
  23. H. Tennekes and J. Lumley, A First Course in Turbulence (M.I.T. Press, Cambridge, 1972), p. 19.
  24. H. Tennekes, J. Fluid Mech. 67, 561 (1975). [Inspec]



Close
Google Calendar
ADVERTISEMENT

close