PREVIEW

Your changes have been published

This page has been removed

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f

Geometric collision rates and trajectories of cloud droplets falling into a Burgers vortex

Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/17/3/10.1063/1.1858191

References

  • By Reginald J. Hill
  • Source: Phys. Fluids 17, 037103 ( 2005 );
1.
1.O. Vohl, S. K. Mitra, S. C. Wurzler, and H. R. Pruppacher, “A wind tunnel study of the effects of turbulence on the growth of cloud drops by collision and coalescence,” J. Atmos. Sci. 56, 4088 (1999).
http://dx.doi.org/10.1175/1520-0469(1999)056<4088:AWTSOT>2.0.CO;2
2.
2.A. Khain, M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, “Notes on the state-of-the-art numerical modeling of cloud microphysics,” Atmos. Res. 55, 159 (2000).
http://dx.doi.org/10.1016/S0169-8095(00)00064-8
3.
3.R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183 (2003).
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161125
4.
4.R. A. Shaw, W. C. Reade, L. R. Collins, and J. Verlinde, “Preferential concentration of cloud droplets by turbulence: Effects of the early evolution of cumulus cloud droplet spectra,” J. Atmos. Sci. 55, 1965 (1998).
http://dx.doi.org/10.1175/1520-0469(1998)055<1965:PCOCDB>2.0.CO;2
5.
5.R. A. Shaw, “Supersaturation intermittency in turbulent clouds,” J. Atmos. Sci. 57, 3452 (2000).
http://dx.doi.org/10.1175/1520-0469(2000)057<3452:SIITC>2.0.CO;2
6.
6.P. A. Vaillancourt and M. K. Yau, “Review of particle-turbulence interactions and consequences for cloud physics,” Bull. Am. Meteorol. Soc. 81, 286 (2000).
7.
7.R. R. Rogers and M. K. Yau, A Short Course in Cloud Physics (Pergamon, Oxford, 1989).
8.
8.K. V. Beard and H. T. Ochs, “Warm-rain initiation: An overview of microphysical mechanisms,” J. Appl. Meteorol. 32, 608 (1993).
http://dx.doi.org/10.1175/1520-0450(1993)032<0608:WRIAOO>2.0.CO;2
9.
9.B. M. Pobanz, J. D. Marwitz, and M. K. Politovich, “Conditions associated with large-drop regions,” J. Appl. Meteorol. 33, 1366 (1994).
http://dx.doi.org/10.1175/1520-0450(1994)033<1366:CAWLDR>2.0.CO;2
10.
10.R. J. Hill and J. M. Wilczak, “Pressure structure functions and spectra for locally isotropic turbulence,” J. Fluid Mech. 296, 247 (1995).
11.
11.R. J. Hill and S. T. Thoroddsen, “Experimental evaluation of acceleration correlations for locally isotropic turbulence,” Phys. Rev. E 55, 1600 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.1600
12.
12.R. J. Hill, “Scaling of acceleration in locally isotropic turbulence,” J. Fluid Mech. 452, 361 (2002).
http://dx.doi.org/10.1017/S0022112001007091
13.
13.A. La Porta, G. A Voth, A. M. Crawford, J. Alexander, and E. Bodenschatz, “Fluid particle accelerations in fully developed turbulence,” Nature (London) 409, 1017 (2001).
http://dx.doi.org/10.1038/35059027
14.
14.G. A Voth, A. La Porta, A. M. Crawford, J. Alexander, and E. Bodenschatz, “Measurement of particle accelerations in fully developed turbulence,” J. Fluid Mech. 469, 121 (2002).
http://dx.doi.org/10.1017/S0022112002001842
15.
15.D. Legendre and J. Magnaudet, “A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow,” Phys. Fluids 9, 3572 (1997).
http://dx.doi.org/10.1063/1.869466
16.
16.E. E. Michaelides, “Review—The transient equation of motion for particles, bubbles, and droplets,” J. Fluids Eng. 119, 233 (1997).
17.
17.D. I. Pullin and P. G. Saffman, “Vortex dynamics in turbulence,” Annu. Rev. Fluid Mech. 30, 31 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.31
18.
18.H. Mouri, A. Hori, and Y. Kawashima, “Vortex tubes in velocity fields of laboratory isotropic turbulence: Dependence on the Reynolds number,” Phys. Rev. E 67, 016305 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.016305
19.
19.H. Mouri, A. Hori, and Y. Kawashima, “Vortex tubes in turbulence velocity fields at Reynolds numbers Reλ3001300,” Phys. Rev. E 70, 066305 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.066305
20.
20.S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech. 11, 47 (1961).
21.
21.P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech. 22, 385 (1965);
21.P. G. Saffman, corrigendum, J. Fluid Mech.31, 385 (1965).
22.
22.J. B. McLaughlin, “Inertial migration of a small sphere in linear shear flows,” J. Fluid Mech. 224, 261 (1991).
23.
23.K. Miyazaki, D. Bedeaux, and J. B. Avalos, “Drag on a sphere in slow flow,” J. Fluid Mech. 296, 373 (1995).
24.
24.T. R. Auton, J. C. R. Hunt, and M. Prud’Homme, “The force exerted on a body in inviscid unsteady non-uniform rotational flow,” J. Fluid Mech. 197, 241 (1988).
25.
25.J. Magnaudet, M. Rivero, and J. Fabre, “Accelerated flows past a rigid sphere or a spherical bubble. Part I. Steady straining flow,” J. Fluid Mech. 284, 97 (1995).
26.
26.R. Mei, C. J. Lawrence, and R. J. Adrian, “Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity,” J. Fluid Mech. 233, 613 (1991).
27.
27.L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1960).
28.
28.R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Academic, New York, 1978).
29.
29.V. Armenio and V. Fiorotto, “The importance of the forces acting on particles in turbulent flows,” Phys. Fluids 13, 2437 (2001).
http://dx.doi.org/10.1063/1.1385390
30.
30.F. Candelier, J. R. Angilella, and M. Souhar, “On the effect of the Boussinesq–Basset force on the radial migration of a Stokes particle in a vortex,” Phys. Fluids 16, 1765 (2004).
http://dx.doi.org/10.1063/1.1689970
31.
31.M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids 26, 883 (1983).
http://dx.doi.org/10.1063/1.864230
32.
32.C. T. Crowe, T. R. Troutt, and J. N. Chung, “Particle interactions with vortices,” in Fluid Vortices, edited by S. I. Green (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 829861.
33.
33.M. J. Manton, “On the motion of a small particle in the atmosphere,” Boundary-Layer Meteorol. 6, 487 (1974).
34.
34.M. W. Reeks and S. McKee, “The dispersive effects of Basset history integrals on particle motion in a turbulent flow,” Phys. Fluids 27, 1573 (1984).
http://dx.doi.org/10.1063/1.864812
35.
35.R. Mei, “Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number,” J. Fluid Mech. 270, 133 (1994).
36.
36.C. J. Lawrence and R. Mei, “Long-time behavior of the drag on a body in impulsive motion,” J. Fluid Mech. 283, 307 (1995).
37.
37.R. Mei and C. J. Lawrence, “The flow field due to a body in impulsive motion,” J. Fluid Mech. 325, 79 (1996).
38.
38.P. M. Lovalenti and J. F. Brady, “The temporal behavior of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number,” J. Fluid Mech. 293, 35 (1995).
39.
39.I. Kim, S. Elghobashi, and W. A. Sirignano, “On the equation for spherical-particle motion: Effect of Reynolds and acceleration numbers,” J. Fluid Mech. 367, 221 (1998).
http://dx.doi.org/10.1017/S0022112098001657
40.
40.D. J. Vojir and E. E. Michaelides, “Effect of the history term on the motion of rigid spheres in a viscous fluid,” Int. J. Multiphase Flow 20, 547 (1994).
http://dx.doi.org/10.1016/0301-9322(94)90028-0
41.
41.O. A. Druzhinin and L. A. Ostrovsky, “The influence of Basset force on particle dynamics in two-dimensional flows,” Physica D 76, 34 (1994).
http://dx.doi.org/10.1016/0167-2789(94)90248-8
42.
42.L. Boltzmann, Lectures on Gas Theory (University of California Press, Berkeley, CA, 1964).
43.
43.D. ter Haar, Elements of Statistical Mechanics (Rinehart, New York, 1954).
44.
44.See EPAPS Document No. for an appendix to this paper. A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.[Supplementary Material]
45.
45.R. Mei and K. C. Hu, “On the collision rate of small particles in turbulent flow,” J. Fluid Mech. 391, 67 (1999).
http://dx.doi.org/10.1017/S0022112099005212
46.
46.S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulation,” J. Fluid Mech. 335, 75 (1997).
http://dx.doi.org/10.1017/S0022112096004454
47.
47.L.-P. Wang, A. S. Wexler, and Y. Zhou, “Statistical mechanical description and modeling of turbulent collision of inertial particles,” J. Fluid Mech. 415, 117 (2000).
http://dx.doi.org/10.1017/S0022112000008661
48.
48.P. G. Saffman and J. S. Turner, “On the collision of drops in turbulent clouds,” J. Fluid Mech. 11, 16 (1956).
49.
49.J. M. Burgers, “A mathematical model illustrating the theory of turbulence,” Adv. Appl. Mech. 1, 171 (1948).
50.
50.A. Pumir, “A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence,” Phys. Fluids 6, 2071 (1994).
http://dx.doi.org/10.1063/1.868213
51.
51.B. Marcu, E. Mieburg, and P. K. Newton, “Dynamics of heavy particles in a Burgers vortex,” Phys. Fluids 7, 400 (1995).
http://dx.doi.org/10.1063/1.868778
52.
52.J. Davila and J. C. R. Hunt, “Settling of small particles near vortices and in turbulence,” J. Fluid Mech. 440, 117 (2001).
http://dx.doi.org/10.1017/S0022112001004694
53.
53.B. Marcu, E. Mieburg, and N. Raju, “The effect of streamwise braid vorticies on the particle dispersion in a plane mixing layer. II. Nonlinear particle dynamics,” Phys. Fluids 8, 734 (1996).
http://dx.doi.org/10.1063/1.868858
54.
54.R. J. Hill, “Length scales of acceleration for locally isotropic turbulence,” Phys. Rev. Lett. 89, 174501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.174501
55.
55.R. Mei and R. J. Adrian, “Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number,” J. Fluid Mech. 237, 323 (1992).
56.
56.J. C. H. Fung, “Residence time of inertial particles in a vortex,” J. Geophys. Res. 105, 14261 (2000).
http://dx.doi.org/10.1029/2000JC000260
57.
57.M. J. Manton, “The equation of motion for a small aerosol in a continuum,” PAGEOPH 115, 547 (1977).
http://dx.doi.org/10.1007/BF00876120
58.
58.S. Kim and S. J. Karrila, Microhydrodymanics: Principles and Selected Applications (Butterworth-Heinemann, Boston, 1991).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/17/3/10.1063/1.1858191
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color). Trajectories of droplets of 10μm radius are shown for the gentle vortex case. Top graph: Speed is in color. Bottom graph: Concentration change defined in (27) is in color. Vortex center is marked by +.

Image of FIG. 2.

Click to view

FIG. 2.

(Color). Trajectories of droplets of 20μm radius are shown for the gentle vortex case. Top graph: Speed is in color. Bottom graph: Concentration change defined in (27) is in color. Vortex center is marked by +.

Image of FIG. 3.

Click to view

FIG. 3.

(Color). Trajectories of droplets of 40μm radius are shown for the gentle vortex case. Top graph: Speed is in color. Bottom graph: Concentration change defined in (27) is in color. Vortex center is marked by +.

Image of FIG. 4.

Click to view

FIG. 4.

(Color). For the gentle vortex case, collision rates of droplets of radii 10 and 20μm are shown in color on the trajectories of the 10μm droplets. Vortex center is marked by +.

Image of FIG. 5.

Click to view

FIG. 5.

(Color). For the gentle vortex case, collision rates of droplets of radii 10 and 40μm are shown in color on the trajectories of the 10μm droplets. Vortex center is marked by +.

Image of FIG. 6.

Click to view

FIG. 6.

(Color). For the gentle vortex case, collision rates of droplets of radii 20 and 40μm are shown in color on the trajectories of the 20μm droplets. Vortex center is marked by +.

Image of FIG. 7.

Click to view

FIG. 7.

(Color). Trajectories of droplets of 10μm radius are shown for the strong vortex case. Top graph: Speed is in color. Bottom graph: Concentration change defined in (27) is in color. The extent of the horizontal axis is reduced relative to the top graph to better show the concentration change. Vortex center is marked by +.

Image of FIG. 8.

Click to view

FIG. 8.

(Color). Trajectories of droplets of 20μm radius are shown for the strong vortex case. Top graph: Speed is in color. Bottom graph: Concentration change defined in (27) is in color. The extent of the horizontal axis is reduced relative to the top graph to better show the concentration change. Vortex center is marked by +.

Image of FIG. 9.

Click to view

FIG. 9.

(Color). Trajectories of droplets of 40μm radius are shown for the strong vortex case. Top graph: Speed is in color. Bottom graph: Concentration change defined in (27) is in color. Vortex center is marked by +.

Image of FIG. 10.

Click to view

FIG. 10.

(Color). For the strong vortex case, collision rates of droplets of radii 10 and 20μm are shown in color on the trajectories of the 10μm droplets. Vortex center is marked by +.

Image of FIG. 11.

Click to view

FIG. 11.

(Color). For the strong vortex case, collision rates of droplets of radii 10 and 40μm are shown in color on the trajectories of the 10μm droplets. Vortex center is marked by +.

Image of FIG. 12.

Click to view

FIG. 12.

(Color). For the strong vortex case, collision rates of droplets of radii 20 and 40μm are shown in color on the trajectories of the 20μm droplets. Vortex center is marked by +.

Image of FIG. 13.

Click to view

FIG. 13.

(Color). For the gentle vortex case, the absolute magnitudes of the horizontal component of terms in (9) are shown vs t/τd for the trajectory that passes closest to the vortex center. Solid black: dwx/dt. Dotted red: Awx. Short-dashed orange: BDux/Dt. Dash-dot green: (w+gˆ)ux. Dash-dot-dot-dot light blue: history integral. Long-dashed dark blue: BDux/Dt(w+gˆ)ux. Text states which trajectory was used.

Image of FIG. 14.

Click to view

FIG. 14.

(Color). Same as Fig. 13 except for the strong vortex case.

Tables

Generic image for table

Click to view

Table I.

Flow parameters: left to right, maximum vorticity, vortex radius, maximum azimuthal speed, and Froude number. Gentle vortex, second row; strong vortex, bottom row.

Generic image for table

Click to view

Table II.

Droplet parameters: left to right, radius, drift speed, relaxation time, Reynolds number RdUda/ν.

Generic image for table

Click to view

Table III.

Stokes number and equilibrium positions. Gentle vortex: second and third columns. Strong vortex: fourth and fifth columns.

Loading

Article metrics loading...

/content/aip/journal/pof2/17/3/10.1063/1.1858191
2005-02-22
2013-12-11
Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/17/3/1.1858191.html?itemId=/content/aip/journal/pof2/17/3/10.1063/1.1858191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2

Most read this month

Article
+ More - Less
content/aip/journal/pof2
Journal
5
3
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Geometric collision rates and trajectories of cloud droplets falling into a Burgers vortex
http://aip.metastore.ingenta.com/content/aip/journal/pof2/17/3/10.1063/1.1858191
10.1063/1.1858191
SEARCH_EXPAND_ITEM