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Abstract. We present results from an individual particle have been devoted to the motion of inertial particles trans-
based model for the collision, coagulation and fragmentatiorported by a flow. This problem displays already complex fea-
of heavy drops moving in a turbulent flow. Such a model tures, such as inhomogeneous spatial distributidfexgy,
framework can help to bridge the gap between the full hy-1987 Wilkinson et al, 2007) and multivalued velocity fields
drodynamic simulation of two phase flows, which can usu- (Falkovich et al.2002 Wilkinson and Mehlig 2005 whose
ally only study few particles and mean field based approachesnplications have yet to be understood completely. In most
for coagulation and fragmentation relying heavily on param-of these works a dilute regime is assumed, where particle
eterization and are for example unable to fully capture par-collisions can be neglected. Some authors keep track of par-
ticle inertia. We study the steady state that results from aicle collisions numerically without considering the outcome
balance between coagulation and fragmentation and the imef a collision, for example to calculate collision rat®gang
pact of particle properties and flow properties on this steadyet al, 200Q Bec et al, 2005.
state. We compare two different fragmentation mechanisms, However, in many interesting applications, for example
size-limiting fragmentation where particles fragment whenthe growth of cloud dropletsPfuppacher and Klettt997)
exceeding a maximum size and shear fragmentation, whereollisions of inertial particles play an important role. Previ-
particles break up when local shear forces in the flow exceeausly, this has mainly been studied using a mean field ap-
the binding force of the particle. For size-limiting fragmen- proach, in the framework of which one treats the problem of
tation the steady state is mainly influenced by the maximumparticle motion as a field equation. The Smoluchowski equa-
stable particle size, while particle and flow properties only in- tion (Smoluchowski1917) is then used to model coagulation
fluence the approach to the steady state. For shear fragmenand fragmentation of these particle concentration fields, in-
tation both the approach to the steady state and the steadstead of individual particles. Such an approach exhibits a
state itself depend on the particle and flow parameters. Theraumber of problems. For example, the particle velocity may
we find scaling relationships between the steady state and thake on several values even at the same location of inertial
particle and flow parameters that are determined by the staparticles when the dynamical attractor of the particles folds
bility condition for fragmentation. in the full velocity-position phase spacBdc et al, 2005.
Due to the presence of such 'caustidsalkovich et al.2002
Bec 2003 Wilkinson and Mehlig 2005, a mean field ap-
) proach cannot be well founded and therefore relies on many
1 Introduction assumptions and parameterizations. On the other hand, the
_ ) i _ . simulation of multiphase flows using full hydrodynamical
Inertial particles in fluid flows have recently been subject of o 4els for each particle, e.g. with a finite element approxi-
increasing interest in severa! disciplines from dynamical SyS+ation in an arbitrary Lagrange Eulerian framework (see e.g.
tems Benczik et al, 200§ Vilela and Motter 2007 Zah-  \14,ry, 1999 can be very detailed but is usually restricted to
now and Feudgl00§ to atmospheric scienc&law 2003 5 extremely small number of particledigashitani et al.

Jaczewski and Malinowski2005 Falkovich and Pumir 5001 7eidan et al.2007%. In Zahnow et al(2008 we there-
2007 and turbulence Wilkinson and Mehlig 2005 BeC  ¢5r6 proposed a model for coagulation and fragmentation

et al, 2005 Calzavarini et al.2008. Almost all the works 5564 on inertial particle dynamics to help bridge the gap be-
tween the full hydrodynamic simulations and the mean field

@ Correspondence tal. C. Zahnow approaches. In the same ya#lilkinson et al.(2008 used a
(zahnow@icbm.de). ' similar approach to model coagulation and fragmentation of
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dust particles in an astrophysical context. There small dusflow properties. For example, flows with weak dissipation
particles can grow into larger fractal clusters due to turbulentof turbulent energy allow for very large coagulates because
collisions. InZahnow et al(20093 the incorporation of such  there is almost no shear fragmentation, but since collisions
a fractal structure of the particle clusters in an inertial particlealso occur mainly due to shear the growth of coagulates is
model was studied for marine aggregates. extremely slow.

In this work we present results from such an inertial parti- In Sect.4 we show how in principle a scaling relation-
cle based model for coagulation and fragmentation of heavyship for the average size of coagulates in the steady state can
drops suspended in a synthetic turbulent flow as described ibe derived, if size distributions, collision rates and fragmen-
Sect.2. Generally, we follow the model approach presentedtation rates are known. Using approximate expressions for
in Zahnow et al(2008 20091 but focus here on the impact these quantities we again find a power-law relationship for
of particle properties and flow properties on the steady stat¢he average coagulate size as a function of the particle and
size distribution of the drops that develops from the balanceflow properties. Our calculations illustrate the dependency
between coagulation and fragmentation. We study two dif-of the exponents of the power-law on the stability condition
ferent fragmentation mechanisms. First, particles break up ifor the shear fragmentation.
their size exceeds a certain maximum allowed size. Thisis Section5 gives a brief summary and states some conclu-
motivated by the hydrodynamical instability of liquid drops, sions.
for example rain drops settling due to gravitillermaux,

2007. Second, particles fragment if the shear forces due to
the fluid flow are too strong (see elfhomas et a).1999. 2 Mathematical model

In contrast to our previous approach we use here alognormal . . .
distribution for the number of fragments, and compare this!n this section we present the mathematical model that will

with other common approaches, such as binary or ternary® the framework of our study. It contains a detailed de-
fragmentation. scription of the dynamics of particles with inertia in a dilute
Section3 presents our results obtained from this model. SUSpension, a fairly general model for coagulation and frag-
We see that the distribution of particles as well as the meadnentation of spherical drops. Additionally, the construction
average size in the steady state depends on the type of fra@f @ model flow is shown. We use a smooth random flow as a
mentation mechanism taking place. First, when fragmentas'mple model for a turbulent flow below the dissipative scale.
tion occurs solely due to the particles exceeding a maximum2 1D . £ dil .
stable size, the distribution is fairly uniform over all the ap- < ynamics o dilute suspensions

pearing coagulate sizes. Second, for fragmentation occurrin . . S
L . ; this paper we study suspensions of spherical inertial par-
under sufficiently large shear, the distributions typically de- . : ; . . ,
i ) . ticles of radius-, transported in an incompressible flow with
cay exponentially beyond a certain coagulate size. In the cas C ! .
ynamic viscosityu. The particles are assumed to be much

of shear fragmentation the mean average size of the coaglLeavier than the surrounding fluid. We assume that the sus-
lates depends strongly on the particle properties and the flow =~ .~ . . . ) o
ension is very dilute, i.e. particle-particle hydrodynamic in-

propertles, Such as the coagulate strength or the volume fra(?eractions and feedback from the particles on the flow can
tion of the particles. We show numerically that as a good

S ; be neglected. Additionally, we focus on a carrier flow with
approximation the influence of each parameter on the stead oderate Reynolds number and study only spatial scales be-
state can be treated separately and determine a decompo§|- ; -
. N . Iow the Kolmogorov scale) where the flow is sufficiently
tion of the average coagulate size in the steady state with . )

smooth. We therefore rescale space, time and velocity by the

respect to the particle and flow properties. We find that the . > )
) : olmogorov lengthy, time n</v and velocityv/n (wherev
average coagulate size changes as a power law function o|§

. is the kinematic viscosity of the fluid). Assuming that the
the particle and flow parameters, where the exponents of thﬁeynolds number based on the particle size as well as the

power law are determined by the_ exponent in the StaIOIIItydifferenc:e between the particle veloci¥(¢) and the flow
condition for the shear fragmentation. : : ) o
The fluctuations over time in the coagulate size distribu—V?IOC'ty"(X’t) IS smgll and the particle d'ensuy.» is much
higher than the densityr of the surrounding fluid, the mo-

tion increase for larger mean average coagulate sizes. This 151 can be approximately described by the Stokes equation

found t_o be a nonlmear_ef_fect resulting f_r(_)m the shear frag'(Maxey and Riley1983 Michaelides 1997). In dimension-
mentation process. A similar decomposition and power law :
less form it reads as

relationship with respect to the particle and flow properties
as for the average coagulate size can be found here. . 1
i i i i V=—-wX,n-V), 1)
For fragmentation due to particles exceeding a maximum Sty
allowed size the dependence on the particle properties is
much weaker, instead the steady state depends mainly on thehere X (r) is thed dimensional position of the particle and
maximum stable coagulate size. However, the time to react$s, = (2r2ppv)/(9n?w) is the dimensionless Stokes number.

the steady state can vary greatly for different particle andThe effect of gravity has been neglected.
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2.2 Coagulation and fragmentation model Taylor (1934 and laterDelichatsiog(1975 derived an
expression for the critical shedgi;(r) across the drop

Next, we briefly describe the model for coagulation and frag- required for fragmentation, under the condition that the

mentation that is used in this study. A more detailed descrip-  characteristic time of drop deformations is small com-

tion can be found iahnow et al(2009Y andZahnow et al. pared to the time where this shear occurs. For our pur-

(20093. poses this expression can be written as

The smallest particles considered will be called primary o
particles. These can combine upon collision to form larger Serit (r(oc)> _rr- _ ya~ Y3 @)
particles, called coagulates. All coagulates are assumed to r(@ ’

consist of an integer number of these primary particles,
i.e. the primary particles can never be broken up. A coagulate
consisting ofx primary particles has a radiu&’ = o%/3,@,
wherer® is the radius of the primary particles. The coagu-
late’s Stokes number depends on the radius, and therefore on
o, with Si{ =a2/3515Y. HereSt{V is the Stokes number
for the primary particles. After the coagulation of two parti-  The centers of the fragments are placed at a distance equal
cles the velocity of the new particle follows from momentum to the sum of their radii, perpendicular to the direction of the
conservation and the position is the center of gravity of thevelocity and keeping the original center of gravity. The mag-
two old particles. To ensure that no collisions are missednitude of the velocity remains the same to ensure momentum
we use an efficient event-driven algorithm for particle ladenconservation.
flows (cf. Sigurgeirsson et gl2001for details). Since hydro-
dynamic interactions between coagulates, that may affectthe 3 Nodel flow
collision rates, are not included in such a model we approx-
imate this by implementing a collision efficiengy;, which
is the probability to coagulate upon collision. If particles do
not coagulate upon collision they collide elastically.

For fragmentation two different cases will be discussed.

wherey is a constant, the coagulate strength parameter.
If the shear force, calculated across the radius of the
drop exceeds the threshold value given by B, the
particle is broken up in the same way as for size-limiting
fragmentation.

We restrict ourselves to smooth, incompressible fluid veloc-
ity fields since we focus on effects typically taking place on

scales smaller than the Kolmogorov scale of a turbulent flow.
To be able to perform long-term simulations at reasonable

() Size-limiting fragmentatiarif a particle becomes larger COmputational costs we consider synthetic turbulence in the
than some maximum number of primary partidlgs,,  orm of a space-periodic, isotropic and homogeneous Gaus-
itis broken up intck smaller fragments. For thi¢h frag-  Sian random floweg 2009. Such flows are constructed to
ment, where ki < k we set the new number of primary reproduce certain features of turbulent flows, but can not cap-
particlese; to a random number drawn from a normal ture all aspects of real turbulence, such as non-Gaussian tails
distribution centered aroun@gg — Zi'_:ll )/ (k—i+ of the velocity fluctuations and the energy cascade between
1) and with a standard deviation one, rounded to thescales.
nearest integer greater or equal to one. The last frag- We write the flow as a Fourier series
ment contains the remaining primary particles. This . 2n g
means that typically fragments will be of very similar (X1 = Z i (k, e THY ©)
sizes. This mechanism is motivated by the hydrodynam- keZ\(0)

ical instability of large water drops (e.g. cloud drops) whereii(k.1) € C? are the Fourier components, with the

settling due to gravity. We set the number of fragments A ~ .

tok =2+¢&, wheret is arandom number from a lognor- _ﬁ’_?pe{%la(_nk’tt) - um(kl’ t))( beﬁguseﬁ(i‘(,g ISt rlfiil_\zg%ltued.

mal distribution with standard deviation one, rounded thee Sroa'lectieor?oefsa((:j(i)ffe?eentSgc:ggz to ' Cdyoﬁto tge I;%e

towards the nearest integer. Such a distribution of frag_peryr))enj dicular to the wave vectla'; ir’lc)ofnpressibility |ps en

ments is a very common assumption for the fragmen- N i )
y P 9 sured. The vectob(k,r) is assumed to be an Ornstein-

tation of drops, but later we will also comment on the Uhlenbeck process. It is a solution of the complex-valued
implications of different choices for the number of frag- cKp - . P
stochastic differential equation

ments.

(i) Shear fragmentatiortakes place when the hydrody- 49 =—§&)bdt +o(k)dW , (4)

namic force acting on the particle exceeds the forces . . . ,
holding the coagulate together by a certain factor.W'th §(k),o (k) € R, whered W is ad dimensional complex

The hydrodynamic force in this case is proportional Wiener increment. The parameteyek),o (k) need to be

. e \(1/2) o chosen in such a way that the flawx,7) reproduces some
tlo the shear forces := (25;;5;;) "', where S;; = features of a real turbulent flow, in this case the energy spec-

i(%ﬁLain) is the rate-of-strain tensor in the flow. trum in the dissipative range of a turbulent flow. Here we use
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the exponential spectrum suggested by Kraichnan 6 E
E(k)=C-(2nki/L)%exp(—B[27kl/L)) , (5) S

with 8 =5.2 (see e.gMartinez et al. 1997 and a suitably

chosen normalization constatit The constantis the length 23
scale of coherent structures in the flow dhi$ the spatial pe-
riod of the flow. We choosé (k) = c ando (k) = +/cE (k).

The constant is then the inverse correlation time of the
flow. The normalization constant is chosen in such a way
that 2k2E (k) sums to a desired value of the dissipation of
turbulent kinetic energy. The flow is then characterized
by the correlation time A, the correlation length and the

dissipatione. Fig. 1. Snapshot of the position of 50 000 particles with= 1.
If a fluid velocity field with few Fourier modes is cho- transported in a synthetic turbulent flow with dissipatica 1. Due

sen, no interpolation of the velocity at particle position is to dissipation the particles collect on a random attractor.

required, since it can be calculated from direct summation

of the Fourier series. This allows for a resolution of the fine

structures of the particle distribution in space.

o B

of primary particles, only a certain range of system parame-
ters is available. In particular the “standard” values for the
maximum stable coagulate size and the coagulate strength
parameters are chosen such that in the steady state most pri-

In this section we show results from the numerical simula-Mary particles have formed larger coagulates, but the number

tion of the model described in Se@. we examine average of coagulates is still large enough to allow reasonable statis-

quantities of the system and present size distributions for thdicS- For size-limiting fragmentation the standard value is set
different cases. atamax= 80 and for shear fragmentation the standard coag-

ulate strength iy = 3.5. The standard value for the collision
3.1 Model parameters efficiency isy. = 1. Unless mentioned otherwise, these are
the parameters used to obtain the following results.

To reduce the computational effort we treat the case where

the fluid flow depends only on two coordinates, i.e. we study3.2 Mean sizes

athree dimensional flow where the velocity in the third direc-

tion is negligible compared to the other two directions. We We examine the numerical results for the full model with
can then represent such a flow as two dimensional. Comparoagulation and fragmentation in terms of average guanti-
isons were made with the full three dimensional case and naies such as the mean size of the coagulates. To character-
significant difference was found, except for a slowing down ize the steady state for the average number of primary parti-
of the whole process due to a decreased number of collisiongles per coagulate in the case of size-limiting fragmentation
For the fluid flow we take a total of 8 spatial Fourier modes we could simply use the value for— oo. This is not very

in two dimensions into account, this is the lowest numberprecise, because the steady state is not static as shear forces
for which isotropy is guaranteed. The period of the flow is fluctuate randomly over time. However, because the veloc-

3 Coagulation and fragmentation in smooth random
flows

L =27. We set the correlation length of the flow te-=1, ity field is stationary, the mean number of primary particles
the correlation time to A =1 and the dissipation of turbu- in a coagulatéa/(r)) will converge towards a constant value
lent kinetic energy te = 1. This choice of parameters results +T

_ lim 1 ime inter-
in large coherent structures in the flow (compare Ejgand %o = M = [ds({a(s)) when averaged over a time inter
t

a fast convergence to a steady state, due to sufficient colliyal 7 to remove random fluctuations. We use this quantity
sions. The primary particles have aradit8/L =5x10"*  tg characterize average coagulate sizes in steady state. We
and the Stokes parameté,ﬂl) =0.05. For a “typical” flow  also compute the standard deviating of the size distribu-
situation in a cloud this corresponds to primary particles intion as a measure of the width of the distribution. To remove
the range of 10°m radius. We choos¥ = 10° primary par-  random fluctuations is also calculated as an average over
ticles as initial condition. This implies a two dimensional a time intervalT, in the same way as... Here, we choose
volume fraction of particles of approximately 0.08. T=100 for the averaging time, which was found to be a suf-

The primary particles are uniformly distributed in the flow, ficiently long time interval to remove the fluctuations in the
with velocity V(0) = u(X (0),0). Due to the limited number steady state.
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In the following we examine how these limiting values (a) 120
. . T T T T T T T T T T T
a0 and o depend on the properties of the particles and - average —v— 1
the properties of the flow for the different fragmentation me- & 100 [ fit (average) ]
chanisms. The large parameter space makes it difficult toZ 80 St deviation +—s—
. . 3 fit (std. deviation)
interprete results from the model. We therefore consider the © 60

sensitivity of the results to each of the parameters separately. z

m

We restrict ourselves to the four most relevant parameters,s 40 [ e et @
namely the maximum stable coagulate sizgy (for size- g 20t geeesseee ettt e i
limiting fragmentation), the coagulate strength(for shear ol o 0]
fragmentation), the collision efficiency,, the volume frac- 60 80 100 120 140 160
tion of the particles, characterized by the total numienf Olmax

primary particles and the dissipation of turbulent kinetic en- ®) 180 ——————————————
ergye in the flow.

160-— 16 ]

3.2.1 Coagulate strength 40 b 414 ] ] i
3 o) " 3 4 4

First, we examine the dependence of the average number of 120 | "3, _{f{%ii%_ -
primary particles per coagulate, on the maximum stable 3; 100 i T ] . ]
coagulate sizemax and the coagulate strength These two i I 1 ] Ex“ ]
parameters determine the binding strength of aggregates foz 80 15 25 35 45 55 .
the different fragmentation cases. ® sl ! " 4

~%  average —v—

Figure 2a shows the results for the case of size-limiting g fit (average)

fragmentationas, ando both increase with the maximum 4O r - " gl e —— ]

; T [ gty fit (std. deviation) =+«e+::
stable coagulate siz@nax. Here, we find thati. o amax 20F -
andos X amax. The proportionality constant is determined ]
by the distribution of fragments during breaking, a fit gives 15 2 25 3 35 4 45 &5 55
a proportionality constant of approximately 0.5 tag, and Y

0.25 foro. The proportionality constant depends on the
details of the fragmentation mechanism. For example, therig. 2. Variation of the binding strength of coagulatéa) For the
case of binary fragmentation, i.e. splitting into two fragments case of size-limiting fragmentation the average number of primary

ShOWS the same Sca“ng but propor“ona“ty constants Of apparticles per Coagulate (triangles) and width of the size distribution
proximately 0.66 and 0.2, respectively. in the steady state (squares) as a function of the maximum stable

coagulate sizermax. The fits are (bamax for the average (solid

Figure2b shows the results for the case of shear fragmen line) and 025xmax for the standard deviation (dashed lin@y) For

tation. A first qualitative estimate of the shape of daig(y) . .

. . X the case of shear fragmentation the average number of primary par-
curve can b.e derl\(ed from a scaling argument, which was aI'ticles per coagulate (triangles) and width of the size distribution in
ready mentioned iZahnow et al(200§. Solving Eq.2for  he steady state (squares) as a function of the coagulate strength
a given value of the shear in the fluid we obtain a critical co- The fits are 22 for the average (solid line) and® 25 for the
agulate size for this shear. This critical coagulate size is prostandard deviation (dashed line). All error bars are obtained from
portional toy 3. We therefore expect that,, scales the same an ensemble of 10 different simulation runs. The inset illustrates
way. This is indeed close to the result of the numerical simu-the scaling behavior of the average and the width of the size distri-
lations, where we determine a relationshig(y) oc 2601 bution, the dashed line is the mean.

(dashed line in Fig2b). A more detailed theoretical argu-
ment for this scaling will be given in Sect.

However, since the shear in the flow fluctuates over spacérvidth of the size distribution will also increase proportional
and time there is no single critical size for coagulates. Wet0 ¥°. This is again similar to the result of the simulations,
therefore expect that the width of the size distribution will Where we findro () o<y 26£01 (dotted line in Fig2b).
depend, among other factors, on the fluctuations of the shear o o
in the flow. From Eq2 it follows that larger coagulates are 3.2.2  Collision efficiency
more sensitive to fluctuations in the shear. This can be seen ) ) o o
by considering how a change of the shear fréo S+ AS Second, we examine the influence of the collision efficiency

changes the value ofi;. We obtain Xxc on the average number of primary particles per coagulate.
y .3 For size-limiting fragmentation the simulations indicate
Aagyit = y3((S+AS)3— (S) ) , (6) (Fig. 3b) that in this case there is almost no dependence of

the average number of primary particles per coagulate in
i.e. the fluctuations in the value of;i; are expected to in- steady state on the collision efficiency. Bath, and the
crease proportionally tg-3. We therefore expect that the width of the size distribution, remain almost constant with
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@ 6o creased collision efficiency requires a corresponding increase
r ' alverage —v—i ' T in the fragmentation, whiph in turn requires larger coagu-
S0 std. deviation —a— ] lates. Unfortunately, deriving an equation for these moments

OF v + hd v v v 4 of the size distribution from this balance condition requires
I ] the apriori knowledge of the shape of the size distribution
and equations for the collision and fragmentation rates. It is

a‘oc(X& 1 Goo(xa
3 8

O = = @ = = = therefore not a trivial task. In secti@ghwe show how such a
0L ] calculation can be carried out if size distributions, as well as
0 ] collision rates and fragmentation rates are known. This cal-
0 0.2 0.4 0.6 0.8 1 culation will formalize the above argument and show more
X clearly how the scaling of the steady state with the particle
b) 70 - ¢ - and flow properties can be understood.
I ~ average —=— ] The reason why such a scaling does not happen in the case
60 stfét gaé\’/‘?ra??;)] . of size-limiting fragmentation is that this specific fragmenta-
it (std. 'deviaﬁon) ......... 1 tion rule serves as a “brick wall” for the size distribution. For
~ S0 ; 7 all coagulates below the critical size the fragmentation proba-
3% 20 P 2 T e A ] bility is zero, for all coagulates above ititis one. Therefore, a
° . N SO ] balance between coagulation and fragmentation is only pos-
g ok ¥ o oLeEwT 8 ST ] sible for one specific size, independent of how coagulation is
8 L T i 1 | i
S 20 I E‘w.m \:8 11 {F{H J} H‘{ }_: ] increased or decreased.
o i 1 | 3.2.3 Volume fraction
09 Lt
101 0 05 1 7 o .
I X ] The third important parameter of the system is the volume
0 —_ fraction of particles in the flow. This is defined as the ratio
0 0.2 04 06 08 1 of particle volume to fluid volume. The volume fraction is a

function of both the total number of primary particles in the
Fig. 3. Average number of primary particles per coagulate (trian- flow N and of the radiug; of the primary particles. Since
gles) and width of the size distribution (squares) in the steady statehe impact of varying is very similar to that for varyingv

as afunction of the collision efficiengy., i.e. the probability to co- e only focus on the variation of the total number of primary
agulate upon collision in the case(@f size-limiting fragmentation particles (Fig4).

and(b) shear fragmentation. The fits areGZXCO-?’l for the average For size-limiting fragmentation we again find almost no

(solid line) and 447231 for the standard deviation (dashed line). - -
All error bars are obtained from an ensemble of 10 different Simu_dependence of the steady state on the initial number of pri

lation runs. The inset illustrates the scaling behavior of the averagénary particles (see Figa), only the time to reach the steady

and the width of the size distribution, the dashed line is the mean. Stat€ decreases with increasing number of primary particles.
For shear fragmentation our results show that the average

number of primary particle per coagulate in the steady state
varying x.. However, it should be noted that while the col- @S Wellas the width of the coagulate size distribution increase

lision efficiency does not seem to have a large impact on theVith N (see Fig4b). The numeoriscﬁ)l (Jrgsult; suggest a rela-
steady state, the transient behavior is greatly influenced by#Onship of the formueo, oo oc N5, This dependence
the collision efficiency. In particular, the time to reach the O the numbew of primary particles in the system can be

steady state increases greatly with decreagingfor both understood in the same way as for the collision efficiency
size-limiting and shear fragmentation. since both parameters increase the coagulation probability in

For shear fragmentation an increase in collision efficiencythecf‘iStem' We will also illustrate this in the calculations in

increases both the average number of primary particles pe‘?‘e

coagulateas, and the width of the size distribution,, 3.2.4 Dissipation of turbulent kinetic energy

(Fig. 3b). The numerical results suggest a dependency of

the formag, o0 o xO31E0-93, Finally, we examine the impact of the flow on the simulation
This increase of the average and width of the size distri-results. The mixing properties of the flow can be easily var-

bution with increasing collision efficiency can be understoodied by adjusting the dissipation of turbulent kinetic energy

in terms of the balance between coagulation and fragmentain the flow. A highere results in higher shear in the flow and

tion. In the steady state the size distribution, and therefore altherefore influences both the coagulation and the shear frag-

its moments, including the average and the width of the sizementation. Coagulation increases with increasirgince the

distribution are determined by the balance between coagueollision rate due to shear increases but shear fragmentation

lation and fragmentation. Increased coagulation due to in-also increases wité.
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Fig. 4. Average number of primary particles per coagulate (trian- _ . . )
gles) and width of the size distribution (squares) in the steady stat&19- 5- Average number of primary particles per coagulate (trian-
as a function of the total number of primary partichésn the flow  91€S) and width of the size distribution (squares) in the steady state
in the case ofa) size-limiting fragmentation angb) shear fragmen- @S @ function of the dissipation of turbulent kinetic energp the
tation. The fits are BN°-3 for the average (solid line) and1mvo3 flow in the_case oi(a_) suze-hmmngi 2fragmentat|on an¢b) ;hgar

for the standard deviation (dashed line). All error bars are obtainecfragmemat'olnz' The fits are 32~ for the average (solid line)
from an ensemble of 10 different simulation runs. The inset illus- @nd 2904e ™~ for the standard deviation (dashed line). All er-

trates the scaling behavior of the average and the width of the siz&0" Pars are obtained from an ensemble of 10 different simulation
distribution. the dashed line is the mean. runs. The inset illustrates the scaling behavior of the average and

the width of the size distribution, the dashed line is the mean. Stars
denote the respective quantities minus their offset.

3.2.5 Discussion

For size-limiting fragmentation, again we find almost 10, o\ mary. we find that for size-limiting fragmentation the

dtep%ndetn(;e Qoo an?%g on éhe pa(;anlet?rtéﬁg‘;ﬁ). The_ taverage number of primary particles per coagulate in the
steady state seems 1o be independent of Ine changes in Ig?eady state and the width of the coagulate size distribution
flow. For both fragmentation rules the transient behavior

is st v infl d by th | fF I | are mainly determined by the maximum stable coagulate size
IS strongly influénced by the value et For smalle col- amax For the fragmentation mechanism used here we find
lision rates in the flow are very low and the system takes " N

I t t h th t d tat = | O ~ 0.5Clmax andUoo ~ O.Z&Xmax.

? veLy onfg ime tot_reac 'thigiatﬁ/ st Ef[' or et?ila_mp €. For shear fragmentation the average number of primary
or shear ragmentation wita = 1.2, the system 1S still in particles per coagulate in the steady state and the width of

a trahnS|e.rt1t bteh?jwo: f?r:tsoo’ whﬂea;;:e 5: Il tthhe systemf the coagulate size distribution vary greatly with all system
reaches its steady state at approximates25. In the case o garameters. We obtain a relationship of the form

shear fragmentation, the average number of primary particle
per coagulate in the steady state is proportionalte**%, yryleNraeh @
and the width of the size distribution also decreases approx-

imately proportional ta~12*0-1 (Fig. 5b). This means that where the scaling exponents are given byi; =2.6+0.1,
fragmentation increases faster wétlthan coagulation. A2=0.31£0.03,1.3=0.3+0.03, 1.4 =—-1.2+0.1.
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(a formed. For example, changing the exponent for the criti-
A T A cal shear to-1/2 instead of-1/3 leads to a corresponding
change in the exponents for the parameters. In this case
we obtaini; =1.8+0.1, 1 =0.24+0.02,13 =0.23+0.02,
Aq=-0.771+0.05. Corresponding results were found for
several other exponents for the critical shear, see@-ighis
clearly illustrates how the dependence of the steady state on
the particle and flow properties is influenced by the frag-
mentation mechanism. We find that a fragmentation rule of
Serit = ya~¢ leads to a relationship of the form of Eg)(
where the scaling exponents are linear functionéof

We also mention that in addition to the steady state dis-
cussed here the transient behavior of the system is greatly
influenced by the particle and flow properties. One of the rel-
evant quantities for this transient is the time it takes for the
system to reach the steady state, which is for example very
important in the formation of rain in clouds. This time de-
creases strongly with an increase of the coagulation rate, for
example due to an increase of shear or collision efficiency.
An increase in fragmentation, for example due to increased
fluid shear or coagulate strength, also decreases the time to
reach the steady state (see astnow et al.20093. How-
ever, a detailed discussion of these transient times is beyond
the scope of this paper and will be published elsewhere.

(b)
0.35

7\,2,7\,3

025

02

: . ) 3.3 Size distributions
Fig. 6. Scaling exponents\; for the different parameters

(¥, xc,N,€) as a function of the inverse exponent for the critical

shear ¢ (Eq.2). The scaling exponents are linear functions of Finally, we discuss the size distributions of the coagulates

1/¢. (a) Scaling exponentsy for the coagulate strength andig and illustrate that. their shape dependg on th(_e frggmentatlon
for the dissipation of turbulent kinetic energy in the flewThe fits ~ Process. Let us first look at the size distribution in the case

arear; =0.27340.763- L andag = 0.091—0.429. L. (b) Scaling  ©f size-limiting fragmentation for the same parameter values
exponentsi, for the coﬁlision efficiencyx. andig for the num-  as in the previous part.

ber of primary particlesv. The fits are., = 0.126+ 0.061.5l and In this case the size distribution is fairly broad, covering
A3=0.117+0.063. él almost the complete range between the smallest size and the

maximum allowed size distribution (dashed line in Fig).
Comparison with other simulations for different fragmenta-

. . . ) ) ._tion mechanisms shows that the shape of the size distribution
Further simulations confirmed that the scaling relat'O”Sh'pdepends greatly both on the number and on the size distri-

for each parameter can indeed be approximately determinef, sion of the fragments that are created during fragmenta-
independently of _the value of the oth_er para_meters. Thistion. This was already noted for fractal aggregate&ahnow
means that Eq-7] is expected to be valid for this model for o 5 (20093 where varying size distributions of fragments,
all reasonable values of the system parameters, i.e. paramegs, example fragments of similar size or very different size,
ter values that lead t0 & aoc < N. We note that both for  ere studied in the case of binary fragmentation. Here, we

increasingV andy the average coagulate size scales with ang s, compare our results with binary, ternary and quarternary
exponent of B+0.03. This indicates that it is equivalent to fragmentation, i.e. the creation of two, three or four frag-

vary the number of particles or the collision efficiency since s instead of the lognormal distribution of the number of
both influence the average coagulate size in the same way. fragments described in the previous section (see8jigin

When looking at the exponents for each parameter, one particular, the width of the distribution is greatly influenced
can ask the question whether these are related to the speciffy this change in the number of fragments. Binary fragmen-
form of the stability condition Eq.2) and in particular to the  tation leads to a single, sharp peak. Ternary fragmentation
exponent appearing in this equation, as the simplified arguteads to two broader peaks in the distribution and for quar-
ment for the dependency af, ony in Sect.3.2.1suggests.  ternary fragmentation three peaks can be seen. These peaks

To examine this connection between the scaling exponentmerge into a broad plateau if the number of fragments is not
A; and the exponent of the fragmentation condition in Bjj. (  deterministic but instead can vary as is the case for the log-
simulations with different exponents in ER)(were per-  normal fragmentation mechanism.
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Fig. 8. Size distributions of the number of primary particles in
coagulates, normalized by the total number of coagulates for size-
limiting fragmentation for a critical size afmax= 60 for different
distributions of the number of fragments, two (binary, solid line),
three (ternary, dash-dotted line) and four (quarternary, dashed line).

mechanismsZahnow et al. 20093 showed that this expo-
nential tail is a typical feature, when the coagulates are as-
sumed to break into fragments of very similar sizes. How-
120 ever, different distributions of the fragments, for example an
erosion-like process where some very small and some larger
fragments are created lead to different size distributions of

Fig. 7. Size distributions of the number of primary particles in co- the coagulates.
agulates, normalized by the total number of coagulafapsize- We note that the shape of the size distributions remains
limiting fragmentation for two different values of the maximum sta- constant when the particle and flow properties, e.g. the co-
ble coagulate sizemax and(b) shear fragmentation, for two differ- agulate binding strengt or the collision efficier,mw‘ are
ent values of the coagulate strength. . . ¢

varied. As already shown idahnow et al. (2008 2009h

the size distributions will collapse into each other for differ-
ent parameter values when rescaled with the mean coagulate
In the case of shear fragmentation the situation is slightlyS'Z€: _ _

different. The distribution is fairly broad, but with a long ex- e also note that in the parameter ranges studied here,
ponential tail towards larger size classes (Fig). The fig- the tails of the size distributions conS|§t of coagulates with
ure clearly shows the increase in the width of the distributionStokes numbers of order & ¢- 100), which is of the order
with increasing coagulate strength, that was also indicate®f the correlation time of the flow. This strongly affects the
by the standard deviation (compare FR). However, here clustering properties of these partl_cles _(see@eycml etal.
it becomes obvious that the statistics degrades rapidly witi?008 Bec etal, 2007). However, since in our case there are

typically only a very few particles in this range of Stokes

increasingy, as the number of coagulates available in the y < S )
system is decreasing and hence the exponential tail becom@&IMPers, this is not expected to significantly influence the
less visible. Especially in the tails of the distributions fluctu- Properties of the steady state size distributions which we fo-

ations become very large, as only a few coagulates of thes&YS ON-
sizes exist at all. For shear fragmentation different numbers
of fragments, for example binary, ternary or quarternary frag-4 Scaling behavior of the average coagulate size

mentation do not influence the shape of the size distribution,
only the mean of the size distribution is shifted towards lower | this section we try to give some t heoretical insight into

values for an increasing number of fragments. the scaling of the average coagulate size in the steady state.

The exponential tail of the size distribution is a feature We emphasize that it is not possible to find a closed equation
that has also been observed for coagulation and fragmerfor this average size of coagulates in the steady state, mainly
tation of marine aggregates in tidal flats (eLgnau et al. because expressions for the collision rates and fragmentation

2009. A numerical comparison of different fragmentation rates are not known.
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The question of the collision rates of inertial particles is Using this equation the average number of primary parti-
a topic of ongoing research, and while some advances haveles can in principle be calculated for all times, if the rela-
been made (see eBec et al, 2005, even for the fairly sim-  tive growth rateu(a, 1) is known. However, this quantity is
ple flow situation used in this paper no equations exist thatexceedingly difficult to determine and to date no complete
could be applied. For the fragmentation rates, the situation iglerivation of u(«,t) even for very simple cases has been
slightly different. While the fragmentation rate correspond- found and only some approximations are known. We will
ing to the fragmentation model used here is known in princi-see in the next part that one of the reasons for this difficulty
ple, the integral involved can not be solved in closed form. is thatu(«,t) depends on many properties of the whole sys-

In the following, we will make some approximations about tem, such as the full probability distributigne, ¢).
the collision rates and fragmentation rates and try to derive We emphasize that this is one of the key advantages of our
an equation for the average coagulate size in the steady statmdividual particle based approach, as it only requires knowl-
While this approach makes it clear how a scaling of the av-edge of the properties of the individual particles and not of
erage size with particle and flow properties comes about, théhe whole system. In addition, our approach can be used
result from the particle based model can not be fully recov-for the numerical calculation of the relative growth rate and
ered. This derivation also illustrates many of the difficulties other global quantities if the individual particle properties are
associated with a mean field approach for coagulation andknown.
fragmentation, which do not appear in the particle based ap-
proach described in this work. 4.2 The relative growth rate

4.1 Equation for the average size The equation for the relative growth rate for coagulation
Mcoage,t) was developed bysmoluchowski(1917). For

To estimate the scaling behavior of the average number oéach value of there is an increase iN («,t) due to smaller

primary particles in the steady state we start by assumingparticles coagulating so that their combined size snd a

a continuous probability distributiop(a, 1) = NA%;) of the decrease itV («, t) due to particles of size coagulating with

coagulates Here, N(a,t)da is the number of coagulates any other particles. Formally, this can be written as

consisting of a number of primary particles in the range «

[a,a +da] at timet and 1\{(t) = fo daN(a,t) is the total Jcoag(@t. 1) = [_ do’ a ,a—a’)N(a’,t)-
number of coagulates at time N((x 1) |2
The average ok with respect tg is then defined as 0
- - N N(a o t)C(a a—a t)) (12)
(o) 1= /dot ap(a,t) = /da o (@1 ) (8)
J ¥ N - /doz (e ,a)N(a,t)N(a,t)c(aca))],

0
From this definition, we can derive the equation for the evo-

lution of («) by taking the derivative with respect to We where x (¢/, ) is a collision efficiency, i.e. the probability

obtain to coagulate upon collision an@l(«/,a,) is the collision
kernel, i.e. the collision rate between patrticles of sizand
%N(a,t) o’ at timer. Similarly, a growth rate due to fragmentation
o (a) = /da GW Itrag(er, 1) can be developed, wheré(a, ) increases due to

larger particles breaking up so that the fragments are of size
4N (1) TN o and N(«,t) decreases due to particles of sizdoreaking
di do o MED. (9)  up. This leads to

—_—— oo
N(t) N(1t)
0

1 ,
Defining the relative rate of changgw,t) as Itrag (1) = N [[d“ (19 (O‘/’O‘)N(“’I)F(“/J))
 EN(a.)
ulet) = Naon (10 - N(oz,t)F(oc,t)i| , (13)
Eq. () reduces to where® («/, ) is the probability that a coagulate of sizé
d leads to a fragment of size when it breaks.# contains
T {a) = (o) — {a) () - (12) therefore the information about the number and size distri-

butions of fragments, e.g. binary or ternary fragmentation.
1in our model the distribution is in fact discrete, but the resulting F («,t) is the fragmentation kernel, i.e. the fragmentation rate
sums can not be evaluated analytically. for a particle consisting af primary particles.
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Both the coagulation and fragmentation kernels will in (Thomas et a.1999. In addition, we use a constant colli-
general not only depend @nanda’ but also on system para- sion efficiency, i.ex (o/,a) = Xe.
meters, for example the coagulate strength or the turbulence Using these approximations, the relative growth rate due
level in the flow. The total relative growth rate is then given to coagulation in Eq.12) can be calculated. We obtain

by u(o, 1) = pcoag e, t) + itfrag(@, 1). X V2N (1) |:9+47“/—
c 2

In recent years much effort has gone into finding approx- [icoad@,t) =

imations for the collision kernels. But in particular when (o) 18
particle inertia plays a role, effects such as preferential con- 2
centration and the occurrence of caustics lead to drastic mod- — (a) 2F< ) (a)?/31/3
ifications of the collision kernels that are still not fully under-
stood Bec et al, 2005. an
The fragmentation kernel poses a very different problem. - a)¥Pa?3 (a)a} , (15)
On the one hand it seems to be easier because it only involves 3F( )

individual coagulates. On the other hand it can be extremely
complicated because the microscopic properties of the coad’-v For f ) he fi imation for th b
ulates play a very important role and generally both the frag- 0" ragmentation, the first approximation for the proba-

HH / H / _ ’_ H
mentation kernel and the distribution of fragments are notPility 0 (') is thatl?(“ ’0‘)_ =25 (o —2a), whered(x) is
well understood the Dirac delta function. This is the case of binary fragmen-

tation, where both fragments are of the same size.
4.3 Estimating the scaling of the average coagulate size N our model all coagulates of the same size have the same
critical shears, («,y). Here we studied the casg=ya ¢,
It is clear from the previous section that estimating the rel-where¢ >0 and in particular the case t=1/3, see Eq.3).
ative growth rate and with that the average coagulate sizéf the fluid shears = (25;;S; ])1/ wheres;; is the rate-of-
requires some information about collision and fragmenta-strain tensor in the flow, at the position of the coagulates ex-
tion kernels. We mention again that particularly for estimat- ceeds this critical sheaS,. they fragment. The probability
ing these quantities and for comparing them with theoreticalfor fragmentation of a given size is then only determined by
predictions of these quantities our individual particle basedthe probability distribution of the shear(S, ), the influence
modeling approach is most useful. of individual particle properties for the fragmentation kernel
The size distribution of the coagulates in the steady stat€see e.gRuiz and Izquierdp1997) is not considered. Again
(see Fig.7) can be well approximated by an exponential. neglecting inertia effects and assuming a homogeneous dis-
Therefore we takeV («, 1) = N(g) —a/{a), tribution of the particles in the flow, the fragmentation kernel,
As a first approximation for the coagulation, we assumei.€. the fragmentation rate is given by
that differences in radius between particles are small. Then

herec; is a proportionality constant.

o
the problem of the collision rates reduces to that of two par- [ dS p(S,1)/t(S,1)
ticles with the same Stokes number, which is given by theF(a = Se(a.y) (16)
mean Stokes number of the two particles. Since there is "’ Se(et,y) ’
no interaction between particles through the fluid the colli- [ dSp(S.0)
sion kernel in our model is then approximated Bg€ et al, 0
2005, wheret(S,t) is the characteristic time of the shefy see
e.g.Babler et al(2008. In our caseF («,) can not be de-
C (o) oce™?(r(@)+r (a’))9(<5’”>) , (14)  termined analytically. Generally,(S, 1) is a function of four

(or nine, in three dimensions) random variab$gs Even in
wheree is the average dissipation of turbulent kinetic en- the simple case of independent normally distributed random
ergy in the flow and the exponefiis a function of the mean variables which we have herg(S,t) can not be calculated.
Stokes numbe{rSt,,) of the two particles.r(«) is the radius For largera Babler et al (2008 argued that the fragmen-
of a particle consisting of primary particles, here this is tation kernel is approximately given by a power law function.
given byr(e) oca’/3. No analytical expression is known for They estimated that the fragmentation kernel can be approx-
9((St,7)) only two limit cases. For no inertia the exponent imated by F («,1) che , with some constant,. Similar
is 3and for(Stn) — oo the exponent approaches 2. Numeri- power-law approxmatlons for the fragmentation kernel have
cal results e.g. bBec et al.(2005 suggest thafl decreases been found in other cases, see &giz and lzquierd§1997).
monotonically for increasinQStn), but no explicit equations  We will therefore continue our calculation using this expres-
are given. sion.

To illustrate in principle the calculation of the average We emphasize that the relationship betwéeand its ar-
size we concentrate on the limit case of no inertia, wheregumentsae andy depends on the specific form of the sta-
9(<St,,)) =3. This is the so-called rectilinear shear kernel bility condition for fragmentation, i.e. the specific model for
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Sc. Itis through this dependence that the exponeng of processes such as initiation of rain in a cloud. Mean field
the stability condition Eq.Q) appears in the final result. For models on the other hand are capable of describing coagu-

S.=ya~¢ we obtain lation and fragmentation on such scales, but rely on many
approximations and parameterizations.

[itrag(@, 1) = 526)/—1[28(3) (20)% _aé} ) (17) Our individual particle based approach was used to gain
insights into the principle behavior of coagulates under dif-

These approximations for the relative growth rate can therf€rent fragmentation mechanisms and to study the depen-

be used in Eq.X1). To find the scaling behavior in the steady dence of the steady state of the coagulates on particle and
state we Seg (@)=0, which leads to flow properties. We used synthetic turbulence in the form of
t L

a smooth random flow to approximate the motion of particles
xe€Y2N (o) ocey o)L (18) in a turbulent flow, focusing on processes which take place
below the Kolmogorov scale. Even though not all features
whereN=N (1) - («) is the total number of primary particles of turbulent flows are captured, the results are expected to
in the systeri. The terms on the left side are the contribu- remain qualitatively similar in more realistic flows. In realis-
tion from the coagulation Eq16) and the terms on the right  tic turbulent flows clustering and collisions between particles
hand side follow from the fragmentation Eq.7]. Solving  may depend on non-Gaussian statistics and intermittency in

Eq. (18) for («) leads to the velocity field, as well as the Reynolds number and could
also be affected by clustering at an inertial range, where the
() oy Y& Xc.l/gNl/fe‘% . (19)  velocity field is not smooth. However, as long as the system

is well mixed, we do not expect a strong qualitative change.

We find an equation for the scaling of the average coagu-The same is true for the extension to three dimensional flows,
late size in the steady state as a function of the particle andvhere coagulation slows down, due to less frequent colli-
flow properties. While the scaling for ande is similar to  sions, thereby mostly affecting the time scale of the approach
what was found in our numerical simulations using the indi- to a steady state.
vidual particle based model (see Ea@nd Fig.6), the scaling The applicability of the model used here to more realis-
with x. andN is not entirely correct. This can therefore not tic problems is limited due to the computational restriction
be explained fully with the approximations made here. How-of the number of primary particles. However, it is well
ever we do find that the scaling exponents depend/énds  suited for small systems and principal studies of underly-
was found in the numerical simulations. ing mechanisms. A great advantage is that an individual

However, the calculation in this section illustrates that theparticle approach can easily incorporate experimental results
average coagulate size can indeed be expected to scale wittnd results from full hydrodynamic simulations to calculate
the particle and flow parameters and also makes it clear hovaverage quantities such as collision or fragmentation rates
the dependency of the scaling exponents on the expdnent which can then be incorporated into larger mean field mod-
of the stability condition Eq.2) appears. Additionally, this els.
calculation illustrates the special role ofthat affects both In this work we numerically studied the steady state that
the coagulation and the fragmentation in the system. It isresults from a balance between coagulation and fragmenta-
rather remarkable that even though the analytical calculationtion. Mainly, we examined average quantities that character-
of the scaling is only possible in a very simplified case, a sim-ize the steady state, such as the average number of primary
ilar, simple scaling of the average coagulate size can be foungarticles per coagulate. We compared two different frag-
numerically for the full individual particle based model. mentation mechanisms, size-limiting fragmentation which is
motivated by the hydrodynamical instability of large drops
settling under gravity and shear fragmentation, where parti-
cles break due to hydrodynamic shear forces. For both size-
In the present study we described results from a CoupleAimiting gnd shear f_ragmentationthe tran_sient behavior of the
model for advection, coagulation and fragmentation of indi- system IS strongly influenced by Fh.e particle and flow proper-
vidual inertial coagulates. The model represents an approacﬁes' In particular, enhanced collision rates, for example due

i ! . 0 increased shear or increased collision efficiency greatly
h - o
to bridge the gap between the mean field theory that is Comdecrease the time it takes to reach the steady state.

monly used to describe larger coagulation and fragmenta- ) e . .
y g g 9 For size-limiting fragmentation this steady state shows few

tion systems and a full simulation of a multiphase flow. Full . .
o . . . fluctuations and almost no dependence on the particle or flow
hydrodynamic simulations of coagulation and fragmentation . )
parameters. The main parameter that determines the coagu-

are computationally limited to systems with very few parti- : T . i
. . te size distribution in this case is the maximum stable co-
cles and are therefore not appropriate to describe large-sca ) . AN .
agulate size. The size distribution in this case is very broad,

2This follows from the assumption of an exponential size and covers almost all the available coagulate sizes. Diffe-
distribution. rent size distributions can appear if the number of fragments

5 Conclusions
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