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Abstract. We present results from an individual particle
based model for the collision, coagulation and fragmentation
of heavy drops moving in a turbulent flow. Such a model
framework can help to bridge the gap between the full hy-
drodynamic simulation of two phase flows, which can usu-
ally only study few particles and mean field based approaches
for coagulation and fragmentation relying heavily on param-
eterization and are for example unable to fully capture par-
ticle inertia. We study the steady state that results from a
balance between coagulation and fragmentation and the im-
pact of particle properties and flow properties on this steady
state. We compare two different fragmentation mechanisms,
size-limiting fragmentation where particles fragment when
exceeding a maximum size and shear fragmentation, where
particles break up when local shear forces in the flow exceed
the binding force of the particle. For size-limiting fragmen-
tation the steady state is mainly influenced by the maximum
stable particle size, while particle and flow properties only in-
fluence the approach to the steady state. For shear fragmen-
tation both the approach to the steady state and the steady
state itself depend on the particle and flow parameters. There
we find scaling relationships between the steady state and the
particle and flow parameters that are determined by the sta-
bility condition for fragmentation.

1 Introduction

Inertial particles in fluid flows have recently been subject of
increasing interest in several disciplines from dynamical sys-
tems (Benczik et al., 2006; Vilela and Motter, 2007; Zah-
now and Feudel, 2008) to atmospheric science (Shaw, 2003;
Jaczewski and Malinowski, 2005; Falkovich and Pumir,
2007) and turbulence (Wilkinson and Mehlig, 2005; Bec
et al., 2005; Calzavarini et al., 2008). Almost all the works
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have been devoted to the motion of inertial particles trans-
ported by a flow. This problem displays already complex fea-
tures, such as inhomogeneous spatial distributions (Maxey,
1987; Wilkinson et al., 2007) and multivalued velocity fields
(Falkovich et al., 2002; Wilkinson and Mehlig, 2005) whose
implications have yet to be understood completely. In most
of these works a dilute regime is assumed, where particle
collisions can be neglected. Some authors keep track of par-
ticle collisions numerically without considering the outcome
of a collision, for example to calculate collision rates (Wang
et al., 2000; Bec et al., 2005).

However, in many interesting applications, for example
the growth of cloud droplets (Pruppacher and Klett, 1997)
collisions of inertial particles play an important role. Previ-
ously, this has mainly been studied using a mean field ap-
proach, in the framework of which one treats the problem of
particle motion as a field equation. The Smoluchowski equa-
tion (Smoluchowski, 1917) is then used to model coagulation
and fragmentation of these particle concentration fields, in-
stead of individual particles. Such an approach exhibits a
number of problems. For example, the particle velocity may
take on several values even at the same location of inertial
particles when the dynamical attractor of the particles folds
in the full velocity-position phase space (Bec et al., 2005).
Due to the presence of such ’caustics’ (Falkovich et al., 2002;
Bec, 2003; Wilkinson and Mehlig, 2005), a mean field ap-
proach cannot be well founded and therefore relies on many
assumptions and parameterizations. On the other hand, the
simulation of multiphase flows using full hydrodynamical
models for each particle, e.g. with a finite element approxi-
mation in an arbitrary Lagrange Eulerian framework (see e.g.
Maury, 1999) can be very detailed but is usually restricted to
an extremely small number of particles (Higashitani et al.,
2001; Zeidan et al., 2007). In Zahnow et al.(2008) we there-
fore proposed a model for coagulation and fragmentation
based on inertial particle dynamics to help bridge the gap be-
tween the full hydrodynamic simulations and the mean field
approaches. In the same yearWilkinson et al.(2008) used a
similar approach to model coagulation and fragmentation of
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dust particles in an astrophysical context. There small dust
particles can grow into larger fractal clusters due to turbulent
collisions. InZahnow et al.(2009a) the incorporation of such
a fractal structure of the particle clusters in an inertial particle
model was studied for marine aggregates.

In this work we present results from such an inertial parti-
cle based model for coagulation and fragmentation of heavy
drops suspended in a synthetic turbulent flow as described in
Sect.2. Generally, we follow the model approach presented
in Zahnow et al.(2008, 2009b) but focus here on the impact
of particle properties and flow properties on the steady state
size distribution of the drops that develops from the balance
between coagulation and fragmentation. We study two dif-
ferent fragmentation mechanisms. First, particles break up if
their size exceeds a certain maximum allowed size. This is
motivated by the hydrodynamical instability of liquid drops,
for example rain drops settling due to gravity (Villermaux,
2007). Second, particles fragment if the shear forces due to
the fluid flow are too strong (see e.g.Thomas et al., 1999).
In contrast to our previous approach we use here a lognormal
distribution for the number of fragments, and compare this
with other common approaches, such as binary or ternary
fragmentation.

Section3 presents our results obtained from this model.
We see that the distribution of particles as well as the mean
average size in the steady state depends on the type of frag-
mentation mechanism taking place. First, when fragmenta-
tion occurs solely due to the particles exceeding a maximum
stable size, the distribution is fairly uniform over all the ap-
pearing coagulate sizes. Second, for fragmentation occurring
under sufficiently large shear, the distributions typically de-
cay exponentially beyond a certain coagulate size. In the case
of shear fragmentation the mean average size of the coagu-
lates depends strongly on the particle properties and the flow
properties, such as the coagulate strength or the volume frac-
tion of the particles. We show numerically that as a good
approximation the influence of each parameter on the steady
state can be treated separately and determine a decomposi-
tion of the average coagulate size in the steady state with
respect to the particle and flow properties. We find that the
average coagulate size changes as a power law function of
the particle and flow parameters, where the exponents of the
power law are determined by the exponent in the stability
condition for the shear fragmentation.

The fluctuations over time in the coagulate size distribu-
tion increase for larger mean average coagulate sizes. This is
found to be a nonlinear effect resulting from the shear frag-
mentation process. A similar decomposition and power law
relationship with respect to the particle and flow properties
as for the average coagulate size can be found here.

For fragmentation due to particles exceeding a maximum
allowed size the dependence on the particle properties is
much weaker, instead the steady state depends mainly on the
maximum stable coagulate size. However, the time to reach
the steady state can vary greatly for different particle and

flow properties. For example, flows with weak dissipation
of turbulent energy allow for very large coagulates because
there is almost no shear fragmentation, but since collisions
also occur mainly due to shear the growth of coagulates is
extremely slow.

In Sect.4 we show how in principle a scaling relation-
ship for the average size of coagulates in the steady state can
be derived, if size distributions, collision rates and fragmen-
tation rates are known. Using approximate expressions for
these quantities we again find a power-law relationship for
the average coagulate size as a function of the particle and
flow properties. Our calculations illustrate the dependency
of the exponents of the power-law on the stability condition
for the shear fragmentation.

Section5 gives a brief summary and states some conclu-
sions.

2 Mathematical model

In this section we present the mathematical model that will
be the framework of our study. It contains a detailed de-
scription of the dynamics of particles with inertia in a dilute
suspension, a fairly general model for coagulation and frag-
mentation of spherical drops. Additionally, the construction
of a model flow is shown. We use a smooth random flow as a
simple model for a turbulent flow below the dissipative scale.

2.1 Dynamics of dilute suspensions

In this paper we study suspensions of spherical inertial par-
ticles of radiusr, transported in an incompressible flow with
dynamic viscosityµ. The particles are assumed to be much
heavier than the surrounding fluid. We assume that the sus-
pension is very dilute, i.e. particle-particle hydrodynamic in-
teractions and feedback from the particles on the flow can
be neglected. Additionally, we focus on a carrier flow with
moderate Reynolds number and study only spatial scales be-
low the Kolmogorov scaleη where the flow is sufficiently
smooth. We therefore rescale space, time and velocity by the
Kolmogorov lengthη, timeη2/ν and velocityν/η (whereν

is the kinematic viscosity of the fluid). Assuming that the
Reynolds number based on the particle size as well as the
difference between the particle velocityV (t) and the flow
velocityu(X,t) is small and the particle densityρP is much
higher than the densityρF of the surrounding fluid, the mo-
tion can be approximately described by the Stokes equation
(Maxey and Riley, 1983; Michaelides, 1997). In dimension-
less form it reads as

V̇ =
1

Stη
(u(X,t)−V ) , (1)

whereX(t) is thed dimensional position of the particle and
Stη = (2r2ρP ν)/(9η2µ) is the dimensionless Stokes number.
The effect of gravity has been neglected.
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2.2 Coagulation and fragmentation model

Next, we briefly describe the model for coagulation and frag-
mentation that is used in this study. A more detailed descrip-
tion can be found inZahnow et al.(2009b) andZahnow et al.
(2009a).

The smallest particles considered will be called primary
particles. These can combine upon collision to form larger
particles, called coagulates. All coagulates are assumed to
consist of an integer numberα of these primary particles,
i.e. the primary particles can never be broken up. A coagulate
consisting ofα primary particles has a radiusr(α)

= α1/3r(1),
wherer(1) is the radius of the primary particles. The coagu-
late’s Stokes number depends on the radius, and therefore on
α, with St

(α)
η = α2/3St

(1)
η . HereSt

(1)
η is the Stokes number

for the primary particles. After the coagulation of two parti-
cles the velocity of the new particle follows from momentum
conservation and the position is the center of gravity of the
two old particles. To ensure that no collisions are missed,
we use an efficient event-driven algorithm for particle laden
flows (cf.Sigurgeirsson et al., 2001for details). Since hydro-
dynamic interactions between coagulates, that may affect the
collision rates, are not included in such a model we approx-
imate this by implementing a collision efficiencyχc, which
is the probability to coagulate upon collision. If particles do
not coagulate upon collision they collide elastically.

For fragmentation two different cases will be discussed.

(i) Size-limiting fragmentation: if a particle becomes larger
than some maximum number of primary particlesαmax,
it is broken up intok smaller fragments. For theith frag-
ment, where 1≤ i < k we set the new number of primary
particlesαi to a random number drawn from a normal
distribution centered around(αold−

∑i−1
j=1αj )/(k− i +

1) and with a standard deviation one, rounded to the
nearest integer greater or equal to one. The last frag-
ment contains the remaining primary particles. This
means that typically fragments will be of very similar
sizes. This mechanism is motivated by the hydrodynam-
ical instability of large water drops (e.g. cloud drops)
settling due to gravity. We set the number of fragments
to k = 2+ξ , whereξ is a random number from a lognor-
mal distribution with standard deviation one, rounded
towards the nearest integer. Such a distribution of frag-
ments is a very common assumption for the fragmen-
tation of drops, but later we will also comment on the
implications of different choices for the number of frag-
ments.

(ii) Shear fragmentationtakes place when the hydrody-
namic force acting on the particle exceeds the forces
holding the coagulate together by a certain factor.
The hydrodynamic force in this case is proportional

to the shear forceS :=
(
2SijSij

)(1/2), where Sij =

1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
is the rate-of-strain tensor in the flow.

Taylor (1934) and laterDelichatsios(1975) derived an
expression for the critical shearScrit(r) across the drop
required for fragmentation, under the condition that the
characteristic time of drop deformations is small com-
pared to the time where this shear occurs. For our pur-
poses this expression can be written as

Scrit

(
r(α)

)
=

γ r(1)

r(α)
= γα−1/3 , (2)

whereγ is a constant, the coagulate strength parameter.
If the shear force, calculated across the radius of the
drop exceeds the threshold value given by Eq. (2), the
particle is broken up in the same way as for size-limiting
fragmentation.

The centers of the fragments are placed at a distance equal
to the sum of their radii, perpendicular to the direction of the
velocity and keeping the original center of gravity. The mag-
nitude of the velocity remains the same to ensure momentum
conservation.

2.3 Model flow

We restrict ourselves to smooth, incompressible fluid veloc-
ity fields since we focus on effects typically taking place on
scales smaller than the Kolmogorov scale of a turbulent flow.
To be able to perform long-term simulations at reasonable
computational costs we consider synthetic turbulence in the
form of a space-periodic, isotropic and homogeneous Gaus-
sian random flow (Bec, 2005). Such flows are constructed to
reproduce certain features of turbulent flows, but can not cap-
ture all aspects of real turbulence, such as non-Gaussian tails
of the velocity fluctuations and the energy cascade between
scales.

We write the flow as a Fourier series

u(X,t) =

∑
k∈Zd\{0}

û(k,t)ei 2π
L

k·X , (3)

where û(k,t) ∈ Cd are the Fourier components, with the
propertyû(−k,t) = û∗(k,t) becauseu(X,t) is real-valued.
The star denotes complex conjugation. By taking forû(k,t)

the projection of a different vectorv̂(k,t) ∈ Cd onto the plane
perpendicular to the wave vectork, incompressibility is en-
sured. The vector̂v(k,t) is assumed to be an Ornstein-
Uhlenbeck process. It is a solution of the complex-valued
stochastic differential equation

d v̂ = −ξ(k)v̂dt +σ(k)dW , (4)

with ξ(k),σ (k) ∈ R, wheredW is ad dimensional complex
Wiener increment. The parametersξ(k),σ (k) need to be
chosen in such a way that the flowu(x,t) reproduces some
features of a real turbulent flow, in this case the energy spec-
trum in the dissipative range of a turbulent flow. Here we use

www.nonlin-processes-geophys.net/16/677/2009/ Nonlin. Processes Geophys., 16, 677–690, 2009



680 J. C. Zahnow and U. Feudel: Size distributions of heavy drops in a synthetic turbulent flow

the exponential spectrum suggested by Kraichnan

E(k) = C ·(2πkl/L)3exp(−β[2πkl/L]) , (5)

with β = 5.2 (see e.g.Martinez et al., 1997) and a suitably
chosen normalization constantC. The constantl is the length
scale of coherent structures in the flow andL is the spatial pe-
riod of the flow. We chooseξ (k) = c andσ (k) =

√
cE(k).

The constantc is then the inverse correlation time of the
flow. The normalization constant is chosen in such a way
that 2νk2E(k) sums to a desired value of the dissipation of
turbulent kinetic energyε. The flow is then characterized
by the correlation time 1/c, the correlation lengthl and the
dissipationε.

If a fluid velocity field with few Fourier modes is cho-
sen, no interpolation of the velocity at particle position is
required, since it can be calculated from direct summation
of the Fourier series. This allows for a resolution of the fine
structures of the particle distribution in space.

3 Coagulation and fragmentation in smooth random
flows

In this section we show results from the numerical simula-
tion of the model described in Sect.2, we examine average
quantities of the system and present size distributions for the
different cases.

3.1 Model parameters

To reduce the computational effort we treat the case where
the fluid flow depends only on two coordinates, i.e. we study
a three dimensional flow where the velocity in the third direc-
tion is negligible compared to the other two directions. We
can then represent such a flow as two dimensional. Compar-
isons were made with the full three dimensional case and no
significant difference was found, except for a slowing down
of the whole process due to a decreased number of collisions.
For the fluid flow we take a total of 8 spatial Fourier modes
in two dimensions into account, this is the lowest number
for which isotropy is guaranteed. The period of the flow is
L = 2π . We set the correlation length of the flow tol = 1,
the correlation time to 1/c = 1 and the dissipation of turbu-
lent kinetic energy toε = 1. This choice of parameters results
in large coherent structures in the flow (compare Fig.1) and
a fast convergence to a steady state, due to sufficient colli-
sions. The primary particles have a radiusr(1)/L = 5×10−4

and the Stokes parameterS
(1)
η = 0.05. For a “typical” flow

situation in a cloud this corresponds to primary particles in
the range of 10−5m radius. We chooseN = 105 primary par-
ticles as initial condition. This implies a two dimensional
volume fraction of particles of approximately 0.08.

The primary particles are uniformly distributed in the flow,
with velocityV (0) = u(X(0),0). Due to the limited number
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Fig. 1. Snapshot of the position of 50 000 particles withτη = 1.
transported in a synthetic turbulent flow with dissipationε = 1. Due
to dissipation the particles collect on a random attractor.

of primary particles, only a certain range of system parame-
ters is available. In particular the “standard” values for the
maximum stable coagulate size and the coagulate strength
parameters are chosen such that in the steady state most pri-
mary particles have formed larger coagulates, but the number
of coagulates is still large enough to allow reasonable statis-
tics. For size-limiting fragmentation the standard value is set
at αmax= 80 and for shear fragmentation the standard coag-
ulate strength isγ = 3.5. The standard value for the collision
efficiency isχc = 1. Unless mentioned otherwise, these are
the parameters used to obtain the following results.

3.2 Mean sizes

We examine the numerical results for the full model with
coagulation and fragmentation in terms of average quanti-
ties such as the mean size of the coagulates. To character-
ize the steady state for the average number of primary parti-
cles per coagulate in the case of size-limiting fragmentation
we could simply use the value fort → ∞. This is not very
precise, because the steady state is not static as shear forces
fluctuate randomly over time. However, because the veloc-
ity field is stationary, the mean number of primary particles
in a coagulate〈α(t)〉 will converge towards a constant value

α∞ = lim
t→∞

1
T

t+T∫
t

ds 〈α(s)〉 when averaged over a time inter-

val T to remove random fluctuations. We use this quantity
to characterize average coagulate sizes in steady state. We
also compute the standard deviationσ∞ of the size distribu-
tion as a measure of the width of the distribution. To remove
random fluctuationsσ∞ is also calculated as an average over
a time intervalT , in the same way asα∞. Here, we choose
T =100 for the averaging time, which was found to be a suf-
ficiently long time interval to remove the fluctuations in the
steady state.
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In the following we examine how these limiting values
α∞ and σ∞ depend on the properties of the particles and
the properties of the flow for the different fragmentation me-
chanisms. The large parameter space makes it difficult to
interprete results from the model. We therefore consider the
sensitivity of the results to each of the parameters separately.
We restrict ourselves to the four most relevant parameters,
namely the maximum stable coagulate sizeαmax (for size-
limiting fragmentation), the coagulate strengthγ (for shear
fragmentation), the collision efficiencyχc, the volume frac-
tion of the particles, characterized by the total numberN of
primary particles and the dissipation of turbulent kinetic en-
ergyε in the flow.

3.2.1 Coagulate strength

First, we examine the dependence of the average number of
primary particles per coagulateα∞ on the maximum stable
coagulate sizeαmax and the coagulate strengthγ . These two
parameters determine the binding strength of aggregates for
the different fragmentation cases.

Figure 2a shows the results for the case of size-limiting
fragmentation.α∞ andσ∞ both increase with the maximum
stable coagulate sizeαmax. Here, we find thatα∞ ∝ αmax
andσ∞ ∝ αmax. The proportionality constant is determined
by the distribution of fragments during breaking, a fit gives
a proportionality constant of approximately 0.5 forα∞ and
0.25 for σ∞. The proportionality constant depends on the
details of the fragmentation mechanism. For example, the
case of binary fragmentation, i.e. splitting into two fragments
shows the same scaling but proportionality constants of ap-
proximately 0.66 and 0.2, respectively.

Figure2b shows the results for the case of shear fragmen-
tation. A first qualitative estimate of the shape of thisαcrit(γ )

curve can be derived from a scaling argument, which was al-
ready mentioned inZahnow et al.(2008). Solving Eq.2 for
a given value of the shear in the fluid we obtain a critical co-
agulate size for this shear. This critical coagulate size is pro-
portional toγ 3. We therefore expect thatα∞ scales the same
way. This is indeed close to the result of the numerical simu-
lations, where we determine a relationshipα∞(γ ) ∝ γ 2.6±0.1

(dashed line in Fig.2b). A more detailed theoretical argu-
ment for this scaling will be given in Sect.4.

However, since the shear in the flow fluctuates over space
and time there is no single critical size for coagulates. We
therefore expect that the width of the size distribution will
depend, among other factors, on the fluctuations of the shear
in the flow. From Eq.2 it follows that larger coagulates are
more sensitive to fluctuations in the shear. This can be seen
by considering how a change of the shear fromS̃ to S̃ +1S

changes the value ofαcrit. We obtain

1αcrit = γ 3
(

(S̃ +1S)−3
−

(
S̃
)−3

)
, (6)

i.e. the fluctuations in the value ofαcrit are expected to in-
crease proportionally toγ 3. We therefore expect that the
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Fig. 2. Variation of the binding strength of coagulates.(a) For the
case of size-limiting fragmentation the average number of primary
particles per coagulate (triangles) and width of the size distribution
in the steady state (squares) as a function of the maximum stable
coagulate sizeαmax. The fits are 0.5αmax for the average (solid
line) and 0.25αmax for the standard deviation (dashed line).(b) For
the case of shear fragmentation the average number of primary par-
ticles per coagulate (triangles) and width of the size distribution in
the steady state (squares) as a function of the coagulate strengthγ .
The fits are 2.2γ 2.6 for the average (solid line) and 2.0γ 2.6 for the
standard deviation (dashed line). All error bars are obtained from
an ensemble of 10 different simulation runs. The inset illustrates
the scaling behavior of the average and the width of the size distri-
bution, the dashed line is the mean.

width of the size distribution will also increase proportional
to γ 3. This is again similar to the result of the simulations,
where we findσ∞(γ ) ∝ γ 2.6±0.1 (dotted line in Fig.2b).

3.2.2 Collision efficiency

Second, we examine the influence of the collision efficiency
χc on the average number of primary particles per coagulate.

For size-limiting fragmentation the simulations indicate
(Fig. 3b) that in this case there is almost no dependence of
the average number of primary particles per coagulate in
steady state on the collision efficiency. Bothα∞ and the
width of the size distributionσ∞ remain almost constant with
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Fig. 3. Average number of primary particles per coagulate (trian-
gles) and width of the size distribution (squares) in the steady state
as a function of the collision efficiencyχc, i.e. the probability to co-
agulate upon collision in the case of(a) size-limiting fragmentation
and(b) shear fragmentation. The fits are 54.62χ0.31

c for the average
(solid line) and 44.7χ0.31

c for the standard deviation (dashed line).
All error bars are obtained from an ensemble of 10 different simu-
lation runs. The inset illustrates the scaling behavior of the average
and the width of the size distribution, the dashed line is the mean.

varyingχc. However, it should be noted that while the col-
lision efficiency does not seem to have a large impact on the
steady state, the transient behavior is greatly influenced by
the collision efficiency. In particular, the time to reach the
steady state increases greatly with decreasingχc, for both
size-limiting and shear fragmentation.

For shear fragmentation an increase in collision efficiency
increases both the average number of primary particles per
coagulateα∞ and the width of the size distributionσ∞

(Fig. 3b). The numerical results suggest a dependency of
the formα∞,σ∞ ∝ χ0.31±0.03

c .
This increase of the average and width of the size distri-

bution with increasing collision efficiency can be understood
in terms of the balance between coagulation and fragmenta-
tion. In the steady state the size distribution, and therefore all
its moments, including the average and the width of the size
distribution are determined by the balance between coagu-
lation and fragmentation. Increased coagulation due to in-

creased collision efficiency requires a corresponding increase
in the fragmentation, which in turn requires larger coagu-
lates. Unfortunately, deriving an equation for these moments
of the size distribution from this balance condition requires
the apriori knowledge of the shape of the size distribution
and equations for the collision and fragmentation rates. It is
therefore not a trivial task. In section4 we show how such a
calculation can be carried out if size distributions, as well as
collision rates and fragmentation rates are known. This cal-
culation will formalize the above argument and show more
clearly how the scaling of the steady state with the particle
and flow properties can be understood.

The reason why such a scaling does not happen in the case
of size-limiting fragmentation is that this specific fragmenta-
tion rule serves as a “brick wall” for the size distribution. For
all coagulates below the critical size the fragmentation proba-
bility is zero, for all coagulates above it it is one. Therefore, a
balance between coagulation and fragmentation is only pos-
sible for one specific size, independent of how coagulation is
increased or decreased.

3.2.3 Volume fraction

The third important parameter of the system is the volume
fraction of particles in the flow. This is defined as the ratio
of particle volume to fluid volume. The volume fraction is a
function of both the total number of primary particles in the
flow N and of the radiusr1 of the primary particles. Since
the impact of varyingr1 is very similar to that for varyingN
we only focus on the variation of the total number of primary
particles (Fig.4).

For size-limiting fragmentation we again find almost no
dependence of the steady state on the initial number of pri-
mary particles (see Fig.4a), only the time to reach the steady
state decreases with increasing number of primary particles.
For shear fragmentation our results show that the average
number of primary particle per coagulate in the steady state
as well as the width of the coagulate size distribution increase
with N (see Fig.4b). The numerical results suggest a rela-
tionship of the formα∞,σ∞ ∝ N0.3±0.03. This dependence
on the numberN of primary particles in the system can be
understood in the same way as for the collision efficiencyχc,
since both parameters increase the coagulation probability in
the system. We will also illustrate this in the calculations in
Sect.4.

3.2.4 Dissipation of turbulent kinetic energy

Finally, we examine the impact of the flow on the simulation
results. The mixing properties of the flow can be easily var-
ied by adjusting the dissipation of turbulent kinetic energyε

in the flow. A higherε results in higher shear in the flow and
therefore influences both the coagulation and the shear frag-
mentation. Coagulation increases with increasingε, since the
collision rate due to shear increases but shear fragmentation
also increases withε.
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Fig. 4. Average number of primary particles per coagulate (trian-
gles) and width of the size distribution (squares) in the steady state
as a function of the total number of primary particlesN in the flow
in the case of(a) size-limiting fragmentation and(b) shear fragmen-
tation. The fits are 1.3N0.3 for the average (solid line) and 1.1N0.3

for the standard deviation (dashed line). All error bars are obtained
from an ensemble of 10 different simulation runs. The inset illus-
trates the scaling behavior of the average and the width of the size
distribution, the dashed line is the mean.

For size-limiting fragmentation, again we find almost no
dependence ofα∞ andσ∞ on the parameter (Fig.5a). The
steady state seems to be independent of the changes in the
flow. For both fragmentation rules the transient behavior
is strongly influenced by the value ofε. For smallε col-
lision rates in the flow are very low and the system takes
a very long time to reach the steady state. For example,
for shear fragmentation withε = 0.1, the system is still in
a transient behavior fort = 500, while forε = 1 the system
reaches its steady state at approximatelyt = 25. In the case of
shear fragmentation, the average number of primary particles
per coagulate in the steady state is proportional toε−1.2±0.1,
and the width of the size distribution also decreases approx-
imately proportional toε−1.2±0.1 (Fig. 5b). This means that
fragmentation increases faster withε than coagulation.
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Fig. 5. Average number of primary particles per coagulate (trian-
gles) and width of the size distribution (squares) in the steady state
as a function of the dissipation of turbulent kinetic energyε in the
flow in the case of(a) size-limiting fragmentation and(b) shear
fragmentation. The fits are 52.92ε−1.2 for the average (solid line)
and 29.04ε−1.2 for the standard deviation (dashed line). All er-
ror bars are obtained from an ensemble of 10 different simulation
runs. The inset illustrates the scaling behavior of the average and
the width of the size distribution, the dashed line is the mean. Stars
denote the respective quantities minus their offset.

3.2.5 Discussion

In summary, we find that for size-limiting fragmentation the
average number of primary particles per coagulate in the
steady state and the width of the coagulate size distribution
are mainly determined by the maximum stable coagulate size
αmax. For the fragmentation mechanism used here we find
α∞ ≈ 0.5αmax andσ∞ ≈ 0.25αmax.

For shear fragmentation the average number of primary
particles per coagulate in the steady state and the width of
the coagulate size distribution vary greatly with all system
parameters. We obtain a relationship of the form

α∞,σ∞ ∝ γ λ1χλ2
c Nλ3ελ4 , (7)

where the scaling exponentsλi are given byλ1 = 2.6±0.1,
λ2 = 0.31±0.03,λ3 = 0.3±0.03,λ4 = −1.2±0.1.
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Fig. 6. Scaling exponentsλi for the different parameters
(γ,χc,N,ε) as a function of the inverse exponent for the critical
shear 1/ξ (Eq. 2). The scaling exponents are linear functions of
1/ξ . (a) Scaling exponentsλ1 for the coagulate strengthγ andλ4
for the dissipation of turbulent kinetic energy in the flowε. The fits
areλ1 = 0.273+0.763·

1
ξ andλ4 = 0.091−0.429·

1
ξ . (b) Scaling

exponentsλ2 for the collision efficiencyχc andλ3 for the num-
ber of primary particlesN . The fits areλ2 = 0.126+0.061·

1
ξ and

λ3 = 0.117+0.063·
1
ξ .

Further simulations confirmed that the scaling relationship
for each parameter can indeed be approximately determined
independently of the value of the other parameters. This
means that Eq. (7) is expected to be valid for this model for
all reasonable values of the system parameters, i.e. parame-
ter values that lead to 1� α∞ � N . We note that both for
increasingN andχ the average coagulate size scales with an
exponent of 0.3±0.03. This indicates that it is equivalent to
vary the number of particles or the collision efficiency since
both influence the average coagulate size in the same way.

When looking at the exponentsλi for each parameter, one
can ask the question whether these are related to the specific
form of the stability condition Eq. (2) and in particular to the
exponent appearing in this equation, as the simplified argu-
ment for the dependency ofα∞ onγ in Sect.3.2.1suggests.

To examine this connection between the scaling exponents
λi and the exponent of the fragmentation condition in Eq. (2),
simulations with different exponents in Eq. (2) were per-

formed. For example, changing the exponent for the criti-
cal shear to−1/2 instead of−1/3 leads to a corresponding
change in the exponentsλi for the parameters. In this case
we obtainλ1 = 1.8±0.1,λ2 = 0.24±0.02,λ3 = 0.23±0.02,
λ4 = −0.77± 0.05. Corresponding results were found for
several other exponents for the critical shear, see Fig.6. This
clearly illustrates how the dependence of the steady state on
the particle and flow properties is influenced by the frag-
mentation mechanism. We find that a fragmentation rule of
Scrit = γα−ξ leads to a relationship of the form of Eq. (7),
where the scaling exponents are linear functions of1

ξ
.

We also mention that in addition to the steady state dis-
cussed here the transient behavior of the system is greatly
influenced by the particle and flow properties. One of the rel-
evant quantities for this transient is the time it takes for the
system to reach the steady state, which is for example very
important in the formation of rain in clouds. This time de-
creases strongly with an increase of the coagulation rate, for
example due to an increase of shear or collision efficiency.
An increase in fragmentation, for example due to increased
fluid shear or coagulate strength, also decreases the time to
reach the steady state (see alsoZahnow et al., 2009a). How-
ever, a detailed discussion of these transient times is beyond
the scope of this paper and will be published elsewhere.

3.3 Size distributions

Finally, we discuss the size distributions of the coagulates
and illustrate that their shape depends on the fragmentation
process. Let us first look at the size distribution in the case
of size-limiting fragmentation for the same parameter values
as in the previous part.

In this case the size distribution is fairly broad, covering
almost the complete range between the smallest size and the
maximum allowed size distribution (dashed line in Fig.7a).
Comparison with other simulations for different fragmenta-
tion mechanisms shows that the shape of the size distribution
depends greatly both on the number and on the size distri-
bution of the fragments that are created during fragmenta-
tion. This was already noted for fractal aggregates inZahnow
et al.(2009a) where varying size distributions of fragments,
for example fragments of similar size or very different size,
were studied in the case of binary fragmentation. Here, we
also compare our results with binary, ternary and quarternary
fragmentation, i.e. the creation of two, three or four frag-
ments instead of the lognormal distribution of the number of
fragments described in the previous section (see Fig.8). In
particular, the width of the distribution is greatly influenced
by this change in the number of fragments. Binary fragmen-
tation leads to a single, sharp peak. Ternary fragmentation
leads to two broader peaks in the distribution and for quar-
ternary fragmentation three peaks can be seen. These peaks
merge into a broad plateau if the number of fragments is not
deterministic but instead can vary as is the case for the log-
normal fragmentation mechanism.
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Fig. 7. Size distributions of the number of primary particles in co-
agulates, normalized by the total number of coagulates:(a) size-
limiting fragmentation for two different values of the maximum sta-
ble coagulate sizeαmax and(b) shear fragmentation, for two differ-
ent values of the coagulate strength.

In the case of shear fragmentation the situation is slightly
different. The distribution is fairly broad, but with a long ex-
ponential tail towards larger size classes (Fig.7b). The fig-
ure clearly shows the increase in the width of the distribution
with increasing coagulate strength, that was also indicated
by the standard deviation (compare Fig.2). However, here
it becomes obvious that the statistics degrades rapidly with
increasingγ , as the number of coagulates available in the
system is decreasing and hence the exponential tail becomes
less visible. Especially in the tails of the distributions fluctu-
ations become very large, as only a few coagulates of these
sizes exist at all. For shear fragmentation different numbers
of fragments, for example binary, ternary or quarternary frag-
mentation do not influence the shape of the size distribution,
only the mean of the size distribution is shifted towards lower
values for an increasing number of fragments.

The exponential tail of the size distribution is a feature
that has also been observed for coagulation and fragmen-
tation of marine aggregates in tidal flats (e.g.Lunau et al.,
2006). A numerical comparison of different fragmentation
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Fig. 8. Size distributions of the number of primary particles in
coagulates, normalized by the total number of coagulates for size-
limiting fragmentation for a critical size ofαmax= 60 for different
distributions of the number of fragments, two (binary, solid line),
three (ternary, dash-dotted line) and four (quarternary, dashed line).

mechanisms (Zahnow et al., 2009a) showed that this expo-
nential tail is a typical feature, when the coagulates are as-
sumed to break into fragments of very similar sizes. How-
ever, different distributions of the fragments, for example an
erosion-like process where some very small and some larger
fragments are created lead to different size distributions of
the coagulates.

We note that the shape of the size distributions remains
constant when the particle and flow properties, e.g. the co-
agulate binding strengthγ or the collision efficiencyχc are
varied. As already shown inZahnow et al.(2008, 2009b)
the size distributions will collapse into each other for differ-
ent parameter values when rescaled with the mean coagulate
size.

We also note that in the parameter ranges studied here,
the tails of the size distributions consist of coagulates with
Stokes numbers of order 1 (α ∼ 100), which is of the order
of the correlation time of the flow. This strongly affects the
clustering properties of these particles (see e.g.Cencini et al.,
2006; Bec et al., 2007). However, since in our case there are
typically only a very few particles in this range of Stokes
numbers, this is not expected to significantly influence the
properties of the steady state size distributions which we fo-
cus on.

4 Scaling behavior of the average coagulate size

In this section we try to give some t heoretical insight into
the scaling of the average coagulate size in the steady state.
We emphasize that it is not possible to find a closed equation
for this average size of coagulates in the steady state, mainly
because expressions for the collision rates and fragmentation
rates are not known.
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The question of the collision rates of inertial particles is
a topic of ongoing research, and while some advances have
been made (see e.g.Bec et al., 2005), even for the fairly sim-
ple flow situation used in this paper no equations exist that
could be applied. For the fragmentation rates, the situation is
slightly different. While the fragmentation rate correspond-
ing to the fragmentation model used here is known in princi-
ple, the integral involved can not be solved in closed form.

In the following, we will make some approximations about
the collision rates and fragmentation rates and try to derive
an equation for the average coagulate size in the steady state.
While this approach makes it clear how a scaling of the av-
erage size with particle and flow properties comes about, the
result from the particle based model can not be fully recov-
ered. This derivation also illustrates many of the difficulties
associated with a mean field approach for coagulation and
fragmentation, which do not appear in the particle based ap-
proach described in this work.

4.1 Equation for the average size

To estimate the scaling behavior of the average number of
primary particles in the steady state we start by assuming
a continuous probability distributionp(α,t) =

N(α,t)
N(t)

of the

coagulates1. Here,N(α,t)dα is the number of coagulates
consisting of a number of primary particles in the range
[α,α + dα] at time t andN(t) =

∫
∞

0 dαN(α,t) is the total
number of coagulates at timet .

The average ofα with respect top is then defined as

〈α〉 :=

∞∫
0

dα αp(α,t) =

∞∫
0

dα α
N(α,t)

N(t)
. (8)

From this definition, we can derive the equation for the evo-
lution of 〈α〉 by taking the derivative with respect tot . We
obtain

d

dt
〈α〉 =

∞∫
0

dα α

d
dt

N(α,t)

N(t)

−

d
dt

N(t)

N(t)

∞∫
0

dα α
N(α,t)

N(t)
. (9)

Defining the relative rate of changeµ(α,t) as

µ(α,t) :=

d
dt

N(α,t)

N(α,t)
, (10)

Eq. (9) reduces to

d

dt
〈α〉 = 〈µα〉−〈α〉〈µ〉 . (11)

1In our model the distribution is in fact discrete, but the resulting
sums can not be evaluated analytically.

Using this equation the average number of primary parti-
cles can in principle be calculated for all times, if the rela-
tive growth rateµ(α,t) is known. However, this quantity is
exceedingly difficult to determine and to date no complete
derivation ofµ(α,t) even for very simple cases has been
found and only some approximations are known. We will
see in the next part that one of the reasons for this difficulty
is thatµ(α,t) depends on many properties of the whole sys-
tem, such as the full probability distributionp(α,t).

We emphasize that this is one of the key advantages of our
individual particle based approach, as it only requires knowl-
edge of the properties of the individual particles and not of
the whole system. In addition, our approach can be used
for the numerical calculation of the relative growth rate and
other global quantities if the individual particle properties are
known.

4.2 The relative growth rate

The equation for the relative growth rate for coagulation
µcoag(α,t) was developed bySmoluchowski(1917). For
each value ofα there is an increase inN(α,t) due to smaller
particles coagulating so that their combined size isα and a
decrease inN(α,t) due to particles of sizeα coagulating with
any other particles. Formally, this can be written as

µcoag(α,t) =
1

N(α,t)
·

[
1

2

α∫
0

dα′

(
χ

(
α′,α−α′

)
N

(
α′,t

)
·

·N
(
α−α′,t

)
C

(
α′,α−α′,t

))
(12)

−

∞∫
0

dα′

(
χ

(
α′,α

)
N

(
α′,t

)
N(α,t)C

(
α′,α

))]
,

whereχ(α′,α) is a collision efficiency, i.e. the probability
to coagulate upon collision andC(α′,α,t) is the collision
kernel, i.e. the collision rate between particles of sizeα and
α′ at time t . Similarly, a growth rate due to fragmentation
µfrag(α,t) can be developed, whereN(α,t) increases due to
larger particles breaking up so that the fragments are of size
α andN(α,t) decreases due to particles of sizeα breaking
up. This leads to

µfrag(α,t) =
1

N(α,t)
·

[ ∞∫
α

dα′

(
ϑ

(
α′,α

)
N(α,t)F

(
α′,t

))
− N(α,t)F (α,t)

]
, (13)

whereϑ(α′,α) is the probability that a coagulate of sizeα′

leads to a fragment of sizeα when it breaks. ϑ contains
therefore the information about the number and size distri-
butions of fragments, e.g. binary or ternary fragmentation.
F(α,t) is the fragmentation kernel, i.e. the fragmentation rate
for a particle consisting ofα primary particles.
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Both the coagulation and fragmentation kernels will in
general not only depend onα andα′ but also on system para-
meters, for example the coagulate strength or the turbulence
level in the flow. The total relative growth rate is then given
by µ(α,t) = µcoag(α,t)+µfrag(α,t).

In recent years much effort has gone into finding approx-
imations for the collision kernels. But in particular when
particle inertia plays a role, effects such as preferential con-
centration and the occurrence of caustics lead to drastic mod-
ifications of the collision kernels that are still not fully under-
stood (Bec et al., 2005).

The fragmentation kernel poses a very different problem.
On the one hand it seems to be easier because it only involves
individual coagulates. On the other hand it can be extremely
complicated because the microscopic properties of the coag-
ulates play a very important role and generally both the frag-
mentation kernel and the distribution of fragments are not
well understood.

4.3 Estimating the scaling of the average coagulate size

It is clear from the previous section that estimating the rel-
ative growth rate and with that the average coagulate size
requires some information about collision and fragmenta-
tion kernels. We mention again that particularly for estimat-
ing these quantities and for comparing them with theoretical
predictions of these quantities our individual particle based
modeling approach is most useful.

The size distribution of the coagulates in the steady state
(see Fig.7) can be well approximated by an exponential.
Therefore we takeN(α,t) =

N(t)
〈α〉

e−α/〈α〉.
As a first approximation for the coagulation, we assume

that differences in radius between particles are small. Then
the problem of the collision rates reduces to that of two par-
ticles with the same Stokes number, which is given by the
mean Stokes number of the two particles. Since there is
no interaction between particles through the fluid the colli-
sion kernel in our model is then approximated by (Bec et al.,
2005),

C
(
α,α′

)
∝ ε1/2(

r (α)+r
(
α′

))θ(〈Stη〉) , (14)

whereε is the average dissipation of turbulent kinetic en-
ergy in the flow and the exponentθ is a function of the mean
Stokes number

〈
Stη

〉
of the two particles.r(α) is the radius

of a particle consisting ofα primary particles, here this is
given byr(α) ∝ α1/3. No analytical expression is known for
θ(

〈
Stη

〉
), only two limit cases. For no inertia the exponent

is 3 and for
〈
Stη

〉
→ ∞ the exponent approaches 2. Numeri-

cal results e.g. byBec et al.(2005) suggest thatθ decreases
monotonically for increasing

〈
Stη

〉
, but no explicit equations

are given.
To illustrate in principle the calculation of the average

size we concentrate on the limit case of no inertia, where
θ
(〈
Stη

〉)
= 3. This is the so-called rectilinear shear kernel

(Thomas et al., 1999). In addition, we use a constant colli-
sion efficiency, i.e.χ

(
α′,α

)
≡ χc.

Using these approximations, the relative growth rate due
to coagulation in Eq. (12) can be calculated. We obtain

µcoag(α,t) = ĉ1
χcε

1/2N(t)

〈α〉

[
9+4π

√
3

18
α2

− 〈α〉
2
−20

(
2

3

)
〈α〉

5/3α1/3

−
2π

√
3

30
(

2
3

) 〈α〉
4/5α2/3

−〈α〉α

]
, (15)

whereĉ1 is a proportionality constant.
For fragmentation, the first approximation for the proba-

bility ϑ(α′,α) is thatϑ
(
α′,α

)
= 2δ

(
α′

−2α
)
, whereδ(x) is

the Dirac delta function. This is the case of binary fragmen-
tation, where both fragments are of the same size.

In our model all coagulates of the same size have the same
critical shearSc(α,γ ). Here we studied the caseSc = γα−ξ ,
whereξ > 0 and in particular the case ofξ = 1/3, see Eq. (2).
If the fluid shearS =

(
2SijSij

)1/2, whereSij is the rate-of-
strain tensor in the flow, at the position of the coagulates ex-
ceeds this critical shearSc they fragment. The probability
for fragmentation of a given size is then only determined by
the probability distribution of the shearp(S,t), the influence
of individual particle properties for the fragmentation kernel
(see e.g.Ruiz and Izquierdo, 1997) is not considered. Again
neglecting inertia effects and assuming a homogeneous dis-
tribution of the particles in the flow, the fragmentation kernel,
i.e. the fragmentation rate is given by

F (α,t) =

∞∫
Sc(α,γ )

dS p(S,t)/τ (S,t)

Sc(α,γ )∫
0

dS p(S,t)

, (16)

whereτ(S,t) is the characteristic time of the shearS, see
e.g.Bäbler et al.(2008). In our case,F(α,t) can not be de-
termined analytically. Generally,p(S,t) is a function of four
(or nine, in three dimensions) random variablesSij . Even in
the simple case of independent normally distributed random
variables which we have here,p(S,t) can not be calculated.

For largerα Bäbler et al.(2008) argued that the fragmen-
tation kernel is approximately given by a power law function.
They estimated that the fragmentation kernel can be approx-
imated byF(α,t) ≈ ĉ2ε

1
Sc

, with some constant̂c2. Similar
power-law approximations for the fragmentation kernel have
been found in other cases, see e.g.Ruiz and Izquierdo(1997).
We will therefore continue our calculation using this expres-
sion.

We emphasize that the relationship betweenF and its ar-
gumentsα andγ depends on the specific form of the sta-
bility condition for fragmentation, i.e. the specific model for
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Sc. It is through this dependence that the exponent ofξ of
the stability condition Eq. (2) appears in the final result. For
Sc=γα−ξ we obtain

µfrag(α,t) = ĉ2εγ
−1

[
2e

−
α

〈α〉 (2α)ξ −αξ

]
. (17)

These approximations for the relative growth rate can then
be used in Eq. (11). To find the scaling behavior in the steady
state we setd

dt
〈α〉=0, which leads to

χcε
1/2N 〈α〉 ∝ εγ −1

〈α〉
ξ+1 , (18)

whereN=N(t) · 〈α〉 is the total number of primary particles
in the system2. The terms on the left side are the contribu-
tion from the coagulation Eq. (15) and the terms on the right
hand side follow from the fragmentation Eq. (17). Solving
Eq. (18) for 〈α〉 leads to

〈α〉 ∝ γ 1/ξχ
1/ξ
c N1/ξ ε

−
1
2ξ . (19)

We find an equation for the scaling of the average coagu-
late size in the steady state as a function of the particle and
flow properties. While the scaling forγ andε is similar to
what was found in our numerical simulations using the indi-
vidual particle based model (see Eq.7 and Fig.6), the scaling
with χc andN is not entirely correct. This can therefore not
be explained fully with the approximations made here. How-
ever we do find that the scaling exponents depend on 1/ξ , as
was found in the numerical simulations.

However, the calculation in this section illustrates that the
average coagulate size can indeed be expected to scale with
the particle and flow parameters and also makes it clear how
the dependency of the scaling exponents on the exponentξ

of the stability condition Eq. (2) appears. Additionally, this
calculation illustrates the special role ofε that affects both
the coagulation and the fragmentation in the system. It is
rather remarkable that even though the analytical calculation
of the scaling is only possible in a very simplified case, a sim-
ilar, simple scaling of the average coagulate size can be found
numerically for the full individual particle based model.

5 Conclusions

In the present study we described results from a coupled
model for advection, coagulation and fragmentation of indi-
vidual inertial coagulates. The model represents an approach
to bridge the gap between the mean field theory that is com-
monly used to describe larger coagulation and fragmenta-
tion systems and a full simulation of a multiphase flow. Full
hydrodynamic simulations of coagulation and fragmentation
are computationally limited to systems with very few parti-
cles and are therefore not appropriate to describe large-scale

2This follows from the assumption of an exponential size
distribution.

processes such as initiation of rain in a cloud. Mean field
models on the other hand are capable of describing coagu-
lation and fragmentation on such scales, but rely on many
approximations and parameterizations.

Our individual particle based approach was used to gain
insights into the principle behavior of coagulates under dif-
ferent fragmentation mechanisms and to study the depen-
dence of the steady state of the coagulates on particle and
flow properties. We used synthetic turbulence in the form of
a smooth random flow to approximate the motion of particles
in a turbulent flow, focusing on processes which take place
below the Kolmogorov scale. Even though not all features
of turbulent flows are captured, the results are expected to
remain qualitatively similar in more realistic flows. In realis-
tic turbulent flows clustering and collisions between particles
may depend on non-Gaussian statistics and intermittency in
the velocity field, as well as the Reynolds number and could
also be affected by clustering at an inertial range, where the
velocity field is not smooth. However, as long as the system
is well mixed, we do not expect a strong qualitative change.
The same is true for the extension to three dimensional flows,
where coagulation slows down, due to less frequent colli-
sions, thereby mostly affecting the time scale of the approach
to a steady state.

The applicability of the model used here to more realis-
tic problems is limited due to the computational restriction
of the number of primary particles. However, it is well
suited for small systems and principal studies of underly-
ing mechanisms. A great advantage is that an individual
particle approach can easily incorporate experimental results
and results from full hydrodynamic simulations to calculate
average quantities such as collision or fragmentation rates
which can then be incorporated into larger mean field mod-
els.

In this work we numerically studied the steady state that
results from a balance between coagulation and fragmenta-
tion. Mainly, we examined average quantities that character-
ize the steady state, such as the average number of primary
particles per coagulate. We compared two different frag-
mentation mechanisms, size-limiting fragmentation which is
motivated by the hydrodynamical instability of large drops
settling under gravity and shear fragmentation, where parti-
cles break due to hydrodynamic shear forces. For both size-
limiting and shear fragmentation the transient behavior of the
system is strongly influenced by the particle and flow proper-
ties. In particular, enhanced collision rates, for example due
to increased shear or increased collision efficiency greatly
decrease the time it takes to reach the steady state.

For size-limiting fragmentation this steady state shows few
fluctuations and almost no dependence on the particle or flow
parameters. The main parameter that determines the coagu-
late size distribution in this case is the maximum stable co-
agulate size. The size distribution in this case is very broad,
and covers almost all the available coagulate sizes. Diffe-
rent size distributions can appear if the number of fragments
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is chosen differently, for example if fragmentation is binary.
The shape of the size distribution is then related to the num-
ber of fragments that are created during fragmentation.

The size distributions for shear fragmentation have a sin-
gle peak with an exponential tail. This is a typical feature
of a fragmentation mechanism where coagulates break into
similar sized fragments (compareZahnow et al., 2009a). For
shear fragmentation strong fluctuations in the average num-
ber of primary particles per coagulate due to statistical fluc-
tuations of the carrier flow appear. In this case, both the
average number of primary particles per coagulate and the
standard deviation of the coagulate size distribution in the
steady state change strongly with the particle and flow prop-
erties. Simulations showed that the variation of each para-
meter within a reasonable range is approximately indepen-
dent of the values of the other parameters. For variations of
the coagulate strengthγ the scaling relationships for both the
average and the standard deviation can be inferred from the
fragmentation mechanism. Scaling relationships for varia-
tions of the volume fraction, the collision efficiency and the
dissipation of turbulent energy in the fluid were derived from
the simulation results. For each of these parameters we find
a power-law dependence, where the exponents appear to be
closely connected to the shape of the stability condition for
fragmentation. We illustrated this by showing how an equa-
tion for the average coagulate size in the steady state can be
derived. From this we calculated scaling relationships for
the average coagulate size in the steady state using severe
approximations. This calculation also clarified how our in-
dividual particle based approach can be connected with the
mean field theory that is commonly used to describe larger
coagulation and fragmentation systems. However, this ap-
proach requires expressions for the collision and fragmen-
tation rates as well as some knowledge of the coagulate size
distribution. By contrast, our individual particle based model
only requires knowledge if the individual particle properties,
which turns out to be a great advantage of our approach. It
can therefore be a very useful tool, both for obtaining esti-
mates of global quantities such as collision and fragmenta-
tion rates and as a comparison for results from mean field
models.

Our results emphasize the great importance of the frag-
mentation mechanism for the final size distribution of coagu-
lates in the steady state. As a consequence it is very desirable
to design experiments to investigate the fragmentation of par-
ticles in different applications.

In general, the dependence of the average quantities as
well as the size distributions on the particle and flow prop-
erties can change quantitatively for different fragmentation
mechanisms, in particular for different number and size dis-
tributions of fragments created during fragmentation. How-
ever, the qualitative picture that has emerged can be expected
to remain the same.
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