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Preferential concentration of particles by turbulence 
Kyle D. Squires and John K. Eaton 
Department of Mechanical Engineering, Stanford University, Stanford, California 94305 

(Received 28 August 1990; accepted 11 December 1990) 

Direct numerical simulation of isotropic turbulence was used to investigate the effect of 
turbulence on the concentration fields of heavy particles. The hydrodynamic field was 
computed using 643 points and a statistically stationary flow was obtained by forcing the low- 
wave-number components of the velocity field. The particles used in the simulations were time 
advanced according to Stokes drag law and were also assumed to be much more dense than the 
fluid. Properties of the particle cloud were obtained by following the trajectories of 1 000 000 
particles through the simulated flow fields. Three values of the ratio of the particle time 
constant to large-scale turbulence time scale were used in the simulations: 0.075,O. 15, and 
0.52. The simulations show that the particles collect preferentially in regions of low vorticity 
and high strain rate. This preferential collection was most pronounced for the intermediate 
particle time constant (0.15) and it was also found that the instantaneous number density was 
as much as 25 times the mean value for these simulations. The fact that dense particles collect 
in regions of low vorticity and high strain in turn implies that turbulence may actually inhibit 
rather than enhance mixing of particles. 

I. INTRODUCTION 
The mixing of particles by turbulent flow fields is cer- 

tainly one of the most interesting problems in fluid mechan- 
ics. The range of applications in which particles are trans- 
ported and mixed by turbulence are as diverse as the 
dispersion of pollutants in the atmosphere to the pneumatic 
transport of particles in coal power plants. Aside from the 
technological relevance of these and other applications, par- 
ticle motion in turbulent flow fields is also an area of funda- 
mental interest. 

There are a number of techniques available by which 
one may study particle mixing or, more generally, scalar 
transport. As is well known, Taylor* has shown that scalar 
dispersion in a turbulent fluid lends itself most suitably to a 
Lagrangian analysis, i.e., an analysis in which one utilizes 
information obtained along the trajectory of individual par- 
ticles. Batchelor’ and Corrsin3 have also demonstrated the 
usefulness of this approach in their analyses of turbulent dif- 
fusion. This approach to the study of scalar transport might 
be termed “statistical” since these theories require only the 
statistical properties of the flow field. The theories are useful 
for predicting the overall transport characteristics of a parti- 
cle cloud, e.g., the particle mean-square displacement and 
eddy diffusivity. One may not, however, use them to esti- 
mate instantaneous properties of particle transport such as 
the instantaneous value of the particle concentration at a 
region in space. 

For applications in which instantaneous properties of 
the particle concentration field are important it is necessary 
to incorporate information concerning the structural prop- 
erties of the flow. Incorporation of the structural features of 
a turbulent flow field will also assist in increasing the basic 
understanding of particle transport and mixing. Both experi- 
mental and computational research has shown that certain 
regions in turbulent flow fields have significant effects on 
particle concentration fields. Experimental measurements 

of particle dispersion in free shear layers have shown that the 
particle concentration field is well correlated with the large- 
scale vertical structures in these flows (e.g., see Kobayashi et 
al.,4 Kamalu et al.,’ Lazaro and Lasheras,” and Longmire 
and Eaton’ ) . For example, the experimental measurements 
of particle dispersion in a round jet by Longmire and Eaton 
have shown that dense particles collect in the saddle regions 
between successive vortex rings. 

Analytical and computational approaches have also 
provided useful information concerning particle motion in 
turbulent flow fields. Maxey8 used asymptotic methods to 
demonstrate that the effect of inertia was to cause dense par- 
ticles to accumulate in regions of low vorticity and high 
strain rate. This bias in the particle trajectory causes a subse- 
quent increase in the particle settling velocity over the still- 
fluid value. Fung and Perkins9 have examined particle dis- 
persion in flow fields comprised of random Fourier modes 
and find that for certain ratios of the particle time constant 
to tluid time scale it is possible that particles may become 
“trapped” within eddies. In a previous study of turbulence 
modification by particles Squires and Eaton” found that 
there was a significant etfect of turbulent motions on the 
particle concentration fields. 

Of interest in the present work is to identify which re- 
gions of turbulent flow fields significantly influence particle 
transport and mixing. Identification of specific regions that 
influence particle transport and mixing may simplify analy- 
sis of flow field dynamics and scalar mixing and should also 
provide insight into the development of models of turbulent 
flows. To this end’it is necessary to have an objective set of 
criteria for characterizing regions of turbulent flow fields. 
Much of the previous work into the characterization of tur- 
bulent fow fields has been concerned with the development 
of criteria for defining vertical regions, i.e., regions of strong 
rotational motions and low pressure (e.g., see Hussain,‘l 
Herring,” Perry and Chong,i3 and Chong et al.‘4 ). Hunt et 
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al. ls and Wray and Hunt I6 (hereafter denoted HWM and 
WH, respectively) have developed a set of criteria for defin- 
ing not only vertical, or eddy, regions but also regions in 
which streamlines converge and the regions of relatively 
high-speed l-low between eddies. Using the databases genera- 
ted from direct numerical simulation (DNS), HWM con- 
cluded that turbulent flows can be objectively classified in 
terms of characteristic flow zones. HWM and WH also 
found that the classified flow zones contribute significantly 
to the overall dynamics of the flow field. One of the principal 
objectives of the present work is therefore to examine parti- 
cle transport and mixing within the context of the flow clas- 
sification technique developed by WH. Based upon their 
method for classifying various regions these investigators 
were able to deduce a characteristic structure in turbulent 
flow fields. Therefore, it is also desired to examine the inter- 
action of a particle cloud with the characteristic structure 
defined by HWM. 

II. OVERVIEW OF THE SIMULATIONS 
The three-dimensional, time-dependent Navier-Stokes 

equations were solved for an incompressible fluid using the 
pseudospectral method originally developed by Rogallo.” 
This method is used to compute homogeneous turbulent 
Rows and since homogeneous turbulence is in principle un- 
bounded, numerical simulations of these flows employ peri- 
odic boundary conditions in a finite computational domain. 
Using a series representation, the velocity field is expressed 
as a truncated Fourier series, i.e., 

uj (x,t) = C fij (k,t] exp I&X. 
k 

(1) 

In Eq. ( 1) uj (x,t) is the jth component of the velocity in 
physical space and fi, (k,t) is the Fourier coefficient of u, at 
wave vector k. Substituting expressions such as that given by 
( 1) into the Navier-Stokes equations and then applying the 
orthogonality property of exp &ax yields ordinary differen- 
tial equations for 8j (k,t). An advantage of using a series 
representation of the dependent variables is that extremely 
accurate evaluation of spatial derivatives is possible because 
of the exponential convergence of the series (Gottlieb and 
Orszag’* >. 

Evaluation of the nonlinear terms in a pseudospectral 
method is efficient since computation of these terms in phys- 
ical space is less costly than in spectral or Galerkin methods. 
The transformation between wave-number space and phys- 
ical space can be accomplished efficiently using the fast 
Fourier transform algorithm (Cooley and Tukey ” ). Evalu- 
ation of the nonlinear terms in physical space gives rise to 
aliasing errors that are eliminated in the present code using a 
combination of coordinate shifts and truncation. The ordi- 
nary differential equations for the Fourier coefficients are 
time advanced using a second-order Runge-Kutta scheme. 
For further details of the method see Rogalloi’ and Lee and 
Reynolds.‘(’ 

A. Properties of the Eulerian field 

The transport properties of dense particles were investi- 
gated using simulations of forced isotropic turbulence. For 

each simulation 643 points were used for the numerical solu- 
tion of the Navier-Stokes equations. The computations were 
run on the Numerical Aerodynamic Simulation (NAS) fa- 
cility Cray-2 supercomputer at the NASA-Ames Research 
Center. 

Statistically stationary isotropic turbulence was 
achieved by artificially forcing the low wave numbers (large 
scales) of the velocity field using the scheme developed by 
Hunt er aL2’ At each time step of the computation a time- 
independent, nonuniform force is added to each of the Four- 
ier coefficients of the fluid acceleration within a radius wave 
vector of k = 82. Starting from an arbitrary initial condi- 
tion, a statistically stationary state is achieved after some 
time, in which the average rate of energy addition to the 
velocity field is equal to the average energy dissipation rate. 
To generate isotropic turbulence the moments of the force 
field must also satisfy isotropy. This could only be done ap- 
proximately in the present computations by constraining the 
moments of the Fourier coefficients of the force field up to 
fourth order to satisfy isotropy. The force field was also con- 
strained to be solenoidal. 

The hydrodynamic properties of the flow corresponding 
to the statistically stationary portion of the simulation are 
summarized in Table I. The Reynolds number, Re,, in Table 
I is based on twice the turbulence kinetic energy and the 
Taylor microscale. For isotropic turbulence the Taylor mi- 
croscale, il, is given by the relation 

A = (51//E) “$ (2) 
The quantities 412 and E are twice the turbulence kinetic ener- 
gy and homogeneous dissipation rate, respectively, and are 
determined from the three-dimensional energy spectrum: 

+ $ = jkm” E(k)dk, (3) 
0 

J- 

k nlr.x 

E=Y k ‘E(k)dk, (41 
0 

where k is the radial wave vector in Eqs. (3) and (4). 
Another important quantity is L/L,,, , the ratio of the 

longitudinal integral length scale to the computational box 
size. The integral length scale Lf is obtained by integrating 
the area under the correlation of longitudinal velocities, i.e., 

L,-L 
s 

kw,,d” 

(.4> 0 
(u, (x>u, (x + ye, )Mr 

(no sum on a). (5) 
The integral scale Lf was computed by averaging over a! = 1, 
2, and 3. The computational box size L,,, was 2~ for all 
simulations. A dimensionless measure of the simulation res- 

TABLE I. Properties of the Eulerian field from simulations of forced iso- 
tropic turbulence. 

Grid Re, L&x!* 
1 

k,, 77 $/‘(ELtm 1 Y=/(-c) 

64’ 38.7 0.078 1.41 0.538 4.25 
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olution in Table I is k,,, v where k,,, is the maximum useful 
wave number and 77 is the Kolmogorov length scale. The 
maximum useful wave number is determined by the dealias- 
ing scheme and for Rogallo’s code is &V/3 where N is the 
number of grid points in one direction. The Kolmogorov 
length scale is given by the relation 

77 = (d/E> “4, (6) 
where Y is the kinematic viscosity of the fluid. Yeung and 
PopeZ2 have shown that km,,7 should be greater than one 
for adequate resolution of lower-order time series statistics. 

The eddy turnover time re shown in Table I is estimated 
8S 

r, = A/g, (7) 

where A is the length scale obtained from the three-dimen- 
sional energy spectrum, i.e., 

kmax E(k) dk 
k * 

(8) 

The spatial energy and dissipation spectra from the sim- 
ulations are shown in Fig. 1. The energy spectra at wave 
number k are obtained by summing the magnitudes of the 
Fourier coefficients falling into a wave-number band about 
k. These spectra were subsequently smoothed by multiply- 
ing by the ratio of the expected value of the modes in each 
band to the actual value contained therein (see Eswaran and 
PopeZ3 for further details). As is evident from the figures, a 
distinct peak in the spectra occur where the Fourier modes 
are forced. 

B. Particle parameters 

The particle equation of motion integrated in the simu- 
lations was 

Jf$=a{u,[XJ(t),t] -vi(t)), (9) 

where X, (t) and u, (t) are the position and velocity of the 
particle, respectively. The coefficient a is the inverse of the 
particle response time and, assuming that the flow around 
the particle follows Stokes law of resistance, is given by 

a = l/rp = 18,u/ppd2, (10) 

wherep is the dynamic viscosity of the carrier fluid, pp is the 
particle density, and d is the particle diameter. Equation 
(10) is appropriate if the Reynolds number based on the 
relative velocity between the particle and fluid is significant- 
ly less than one. The particle is also assumed to be smaller 
than the smallest length scales of the flow field. For a turbu- 
lent flow this means that the particle diameter is smaller than 
the Kolmogorov microscale ?;I (Maxey and RileyZ4 ) . It is 
also assumed the concentration of particles is small enough 
such that particle-particle interactions are negligible and the 
turbulence is not modified by the presence of the particles. 
Since it is desired to examine the transport and mixing prop- 
erties of dense particles suspended in turbulent flow fields 
the effect of an external body force has been neglected in (9). 

For each simulation the Eulerian field was allowed to 
evolve to a statistically stationary state. Once the statistics of 
the hydrodynamic computation had become time indepen- 
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(b) Wv 

FIG. 1. Spatial spectra in 
forced isotropic turbu- 
lence. (a) Energy; (b) dis- 
sipation. 

dent, the particles were released in the simulation and time 
advanced according to Eq. (9). In order to compute statis- 
tics such as particle number density (i.e., number of particles 
per unit volume) it is necessary to use a large number of 
particles. For all of the results presented in this study the 
trajectories of lo6 particles were followed. Thus, each com- 
putational volume over which the number density is defined 
contained, on average, 3.81 particles. Once the particles 
were released, the simulations were advanced slightly over 
six eddy turnover times. The particles were initially distrib- 
uted uniformly throughout the computational volume and 
the initial velocity of the particle was taken to be identical to 
that of the fluid at the initial particle position. Because of 
particle inertia there is an adjustment period required for the 
motion of a particle to become independent of its initial ve- 
locity. Statistics were obtained only after the motion of the 
particles had become independent of their initial conditions. 
Since it is only by chance that a particle is located at a fixed 
grid point where the fluid velocity is calculated, vectorized 
trilinear interpolation was used to obtain fluid velocities at 
the instantaneous particle position. Numerical experiments 
showed that more accurate interpolation schemes do not sig- 

K. D. Squires and J. K. Eaton 1171 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to

IP:  134.106.80.178 On: Wed, 15 Jan 2014 14:09:15



nificantly change the results. Since periodic boundary condi- 
tions are used for the hydrodynamic computation there is no 
loss of accuracy of the interpolated part.icle properties when 
the particle is near a boundary. 

The properties of the particle used in the simulations are 
summarized in Table II. The particle time constant rP has 
been made dimensionless using the fluid time scale based on 
Lf and u’ = m. This time scale is denoted T, throughout 
this work. The total length of time the particles were ad- 
vanced in the simulations is denoted as AT in Table II. 

III. RESULTS 
The technique developed by HWM and WH for classi- 

fying zones within turbulent flow fields is summarized in 
Sec. III A. It is presented here for the sake of completeness 
since the development in Sec. III A borrows exclusively 
from their earlier work. The characterization of particle 
transport and mixing from the simulations is presented in 
Sec. III B. 

A. Flow field classification 
In their earlier work WH developed a set of criteria for 

classifying a turbulent flow field into four regions, or zones: 
eddy, convergence, stream, and rotational zones. Eddy 
zones are approximately defined as strong swirling regions 
with vorticity. In eddy zones irrotational straining is small 
compared to the vorticity. Thus, the second invariant of the 
deformation tensor is less than a negative threshold value, 
- II,: 

II < - II,, (11) 
where II is the second invariant of the deformation tensor 
and is defined through the relation 

ll=gg=sgsji -+~. 
J 1 

(121 

In Eq. (12) S, is the strain rate tensor, 
$(Jui/Jx, + du,/dx,) and wk is the k th component of the 
vorticity vector, eijk du,/dxj. 

Since eddy zones are regions of rotational motion an 
additional criteria is that the pressure within the zone is less 
than a threshold value, i.e., HWM and WH used 

Pint <PE, (13) 

where pint is the pressure in the eddy zone and pE is the 
threshold value. The criterion specified by ( 13) ensures that 
if the flow is.rotational, then the streamlines are curved. 
Thus, nearly straight shear layers are disqualified from being 
classified as eddy zones. 

TABLE II. Particle properties. 

rJTr A T/r,, 

0.075 79 I 
0.150 40 
0.520 11 

Convergence zones as considered by HWM and WH are 
regions in which there is irrotational straining motion and 
strong convergence and divergence of streamlines. Such re- 
gions will contain a stagnation point. For a region to be clas- 
sifled as a convergence zone two conditions must be satisfied. 
The first criterion is that the irrotational straining is large 
compared with the vorticity, thus 

II > II,, (14) 

where I& is a threshold value of II defining the convergence 
zone. The second criterion for a region to be classified as a 
convergence zone is that the pressure rises in the interior of 
the zone, thus 

Pint >Pc, (15) 

wherepint is the pressure in the interior of the zone andp, is 
the threshold value. 

Streaming zones classified by HWM and WH are re- 
gions in which the flow is relatively fast, not very curved, and 
not strongly convergent or divergent. The criteria proposed 
by WH for defining these zones are 

Uf> u; (16) 
and 

III( <II,. (17) 
The threshold value in ( 17) defining the streaming zone is 
denoted II, and provided that II, = min( II,&-) no point 
in the field can belong to more than one zone. The criteria 
given above, however, are also such that not every point will 
be included in one of the flow zones. 

A fourth zone not described by HWM but later incorpo- 
rated by HW are regions possessing significant vorticity, 
similar to eddy zones. Unlike the circulating flow patterns of 
eddy zones! however, these rotational zones are regions not 
characterized by curved streamlines. The criterion for defin- 
ing rotational zones is then 

II < ‘- II, (18) 
which is the same criterion satisfied by the eddy zones. The 
pressure criteria satisfied by rotational zones are different 
than those satisfied by eddy zones, i.e., 

- PE <Pint <PC. (19) 

For the results presented in this study the threshold val- 
ue of II used to define convergence zones, II,, was taken as 
II, = ( II2 ) I’,, the rms value of II from the entire flow field. 
For eddy zones the value of II, was II, = IIJ2. The 
threshold value of pressure used to define convergence 
zones, pc, wasp, = ( F’, I”, therms value of pressure from 
the entire flow. The value ofp, was identical to that ofp, 
and the value of uO used to define the streaming regions was 
uo = ( my2, the rms value of the turbulence velocity 
from the entire field. 

HWM and WH demonstrated that the above criteria 
could be successfully applied to both homogeneous turbu- 
lence as well as fully developed turbulent channel flow. Ap- 
plication of the classification scheme to a representative 
plane from the present simulations is shown in Fig. 2. Super- 
imposed on the figure are the corresponding velocity vec- 
tors. This figure shows that where the velocity vectors circle 
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5. 

4. 

a, 
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0. 
0.00 i.00 

i%r!v 5x?‘+? :gp”“erae”c* Zones 
i 

i.Llll 
Eddies 

a region the zone is typically identified as an eddy. In most 
cases, it may be observed from the figure that rotational 
zones surround the eddies. The stagnation regions in the 
figure have been identified as convergence zones and regions 
in which the velocity vectors indicate high speed regions 
with low curvature are identified as streaming zones. Using 
the threshold parameters defined in the preceding paragraph 
approximately 53% of the domain is classified. The break- 
down of the total volume is roughly as follows: 9% eddy 
zones, 10% rotational zones, 4% convergence zones, and 
30% stream zones. 

B. Properties of the particle number density field 
Shown in Figs. 3  (a)-3 (c) are contours of the number 

density field in an x-y plane for each of the particle time 
,constants used in the simulations: rp/Tf =  0.075, 
rp/Tb = 0.15, and r,,/Tf = 0.52. The contour surfaces 
shown in these figures correspond to identical times in the 
simulations and the same plane has been used for each of the 
figures. It is apparent from the figures that the particles are 
not uniformly distributed throughout the volume and there 
are distinct regions of particle accumulation. The peak num- 
ber density in the planes shown in Figs. 3  (a), 3  (b), and 3 (c) 
are 9,25, and 10 times the mean value, respectively. 

From Figs. 3 (a)-3 (c) it may also be observed that the 
nonuniformity of the concentration field is a function of the 

FIG. 2. Zone classification 
plane. Light gray with dots, 
zones; dark gray with dots, 
light gray, stream zones; da1 
tional zones. 

in a typical 
convergence 
eddy zones; 

-k gray, rota- 

Rotot ional Zonsr 

particle time constant. It is interesting to note that the effect 
of turbulence on the particle concentration field is not a 
monotonic function of the time constant. It may be seen that 
the greatest effect of the turbulence on the concentration 
field occurs for rp/Tf = 0.15 [Fig. 3  (b) 1. For decreasing 
values of the time constant the particles behave more as fluid 
elements and therefore exhibit a  decreasing tendency for 
preferential concentration [cf. Figs. 3  (a) and 3 (b) 1. Com- 
parison of Figs. 3  (b) and 3 (c) shows that as the particle time 
constant is increased from rp/Tf =  0.15 to rp/Tf =  0.52 the 
particles also exhibit less tendency for preferential concen- 
tration. The fact that particles with rp/Tf =  0.15 are more 
preferentially concentrated than those with rp/Tf =  0.52 is 
consistent with the notion that as the time constant is in- 
creased the particles become proportionately less responsive 
to the fluid velocity spectrum. Thus, for large enough values 
of the time constant it should be expected that the number 
density field would become uniform since extremely dense 
particles would not be capable of responding to the sur- 
rounding fluid velocity. It is precisely this effect which is 
beginning to become apparent for particles with 
rP = T, = 0.52. It is important to note, however, that evi- 
dence of structure in the number density field is apparent 
even for the heavier particles. Finally, the results in Figs. 
3  (a)-3 (c) illustrate that there exists an optimum ratio of the 
particle time constant to fluid time scale such that particles 
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(a) 

(b) 

will exhibit the greatest tendency for preferential concentra- 
tion. For the present simulations this ratio is evidently quite 
close to 0.15. It should also be stressed that this conclusion is 
not based solely upon Figs. 3( a)-3 (c). These figures are 
representative planes from the three-dimensional computa- 
tions and the same conclusion is reached by examining the 
number density contours in other planes from the simula- 
tions at different times. Statistics used to quantify the effects 
observed in Figs. 3 (a)-3 (c) further corroborate the conclu- 
sion that particles with rp/Tf = 0.15 are the most preferen- 
tially concentrated (e.g., see Fii. 6). These statistics were 
obtained by ensemble averaging over enough flow fields such 
that statistical uncertainty is small. 
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FIG. 3. Particle number density contours in an x-y plane: (a) 
r,,/T,= 0.075; (b) r,/T/=O.15; (c) rpp/Tf= 0.52. 

The classification of the flow zones in the x-y plane used 
inFig.3isshownineachofFigs.4(a),4(b),and4(c).Also 
shown in these figures are the particle number density con- 
tours. As can be observed from the figures, regions of high 
particle concentration correspond to zones in which II is 
large, i.e., convergence zones. The concentration of particles 
is also large in the streaming regions between eddies. Finally, 
these figures show that the particle number density is low in 
eddy and rotational zones. The fact that the particle concen- 
tration is low in eddy zones is consistent with physical ideas 
that dense particles which are within a region of swirling 
flow will be unable to maintain their position because of cen- 
trifugal effects. These results are also consistent with Max- 
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P.0~ 1.01 i.00 4.00 &:~c-“.,.“c. z0n.r R~t~t‘ona, z%,nm* “&, q  Eddi.. g@“... 
la) 

0.a 

(b) 

ey’s8 analysis which showed that the effect of inertia is to 
bias the particle trajectory toward regions of high strain rate 
(convergence zones) and low vorticity. 

As mentioned in the Introduction, Fung and’perkins’ 
found that for certain ratios of the particle time constant to 
large-scale fluid time scale particles may become “trapped” 
within eddies. Based upon their findings it might then be 
expected that particles would accumulate in eddy zones. It 
was not possible to verify their finding in the present work 
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FIG. 4. Zone classification and particle number density contours, zone col- 
orssameasFig.2:(a) r/T,= 0.075; (b) 7,/T,= 0.15;(c) r,,/T,= 0.52. 

since individual time histories of the particles were not ex- 
amined. Thus, while particles may become temporarily 
trapped in eddies (for certain ratios of the time constant to ’ 
fluid time scale), it is not believed that this effect is statisti- 
cally significant. 

The distribution function of the particle number density 
provides a quantitative view of the preferential concentra- 
tion observed in Figs. 3  and 4. The distribution function of 
the number density is shown in Fig. 5  for each of the particle 
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time constants along with the Poisson distribution. The 
Poisson distribution is given by 

pk = (e-‘““/k!)(nc)k, (20) 
where (nc) is the mean value of the number density. The 
distribution function given by Eq. (20) describes the frac- 
tion of cells in the field containing k particles. The Poisson 
distribution results from a random distribution of the parti- 
cles by the flow (e.g., see Chung” ). The discrepancy 
between the measured distributions and the Poisson distri- 
bution for each of the time constants illustrates the nonuni- 
formity of the number density field. Figure 4 shows that, for 
a random distribution of particles, approximately 2.5% of 
the cells are expected to not contain any particles. For 
rp,/T,. = 0.15, however, about 42% of the cells contain zero 
particles due to particle accumulation in regions of low vorti- 
city and high strain rate. The figure also shows that the num- 
ber of cells containing more than twice the mean number 
density is greater than that predicted by the Poisson distribu- 
tion, again illustrating the preferential concentration of the 
particles by the turbulence. 

As was shown in Fig. 4, the particle concentration was 
low in eddy zones, which are characterized by high en- 
strophy. This effect may be quantified by examining the con- 
ditional expectation of the number density given the value of 
enstrophy. This quantity is shown in Fig. 6 for each of the 
particle time constants and it is clear that at low values of the 
enstrophy the number density is greater than the mean value 
while for higher values of the enstrophy the number density 
is decreased relative to the mean. Figure 6 also demonstrates 
that particles with rp/Tf. = 0. I5 are the most responsive to 
turbulent motions, i.e., at low values of the enstrophy the 
number density for these particles is greater than that for 
rp/Tf = 0.075 or rp/Tf = 0.52. At higher values of the en- 
strophy the number density for particles with TJT, = 0.15 
is less than that of the other two time constants. 

CL,6 ,  I  ,  ,  ,  ,  ,  ,  ,  ,  

FIG. 5. Particle number density distribution function: q L...CI, 
T,/T~=O.O~~;-O-,~~/T~=O.I~;-~-,~,/T, ~0.52; + '.. +, Poisson 
distribution. 

0 0.5 1 1.5 e 2.5 s 5.6 4 4.6 5 

404 

FIG. 6. Conditional expectation ofthe number density given enstrophy: -, 
7,/T,= 0.075;~---, rp/Tr= 0.15;-.? T~/T, =0.52. 

The average particle number density within each of the 
zones described in Sec. III A is shown in Fig. 7. The zone- 
averaged number density (nc, ) shown in this figure has been 
made dimensionless using the mean number density com- 
puted from the entire field, (nc). Consistent with both the 
physical arguments discussed earlier as well as ~klaxey’s’ 
analysis, the particle number density is smallest in the eddy 
zones and largest in the regions identified as convergence 
zones. It is important to remember that if the particles were 
randomly distributed, then the zone-averaged number den- 
sity would be identical to the global mean and the four values 
of (nc, ) for a given time constant would collapse to a single 
point (the global mean). This is presumably the effect that 
can be observed as the time constant is increased in Fig. 7, 
though values of rJTf much larger than 0.52 may be re- 
quired for this effect to become significant. The largest value 
of the zone-averaged number density is seen to occur for 

0.00 0.06 0.10 0.16 0.80 0.26 0.30 0.36 0.10 0.45 0.m 0.65 0.60 

r,lTf 

FIG. 7, Zone-averaged particle number density: Cl--Cl, eddy; -0, rota- 
tional; -A-, convergence; + h.. + , stream. 
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-I-,/T/ = 0.15 in the convergence zones and is over twice the 
global mean number density. This helps to further illustrate 
that these particles exhibit the greatest tendency for prefer- 
ential concentration. 

The fraction of the total number of particles contained 
within each flow zone is shown in Fig. 8. Figure 8 clearly 
shows that the fraction of particles contained within the 
stream zones is substantially greater than those in the eddy, 
rotational, or convergence zones. It can be observed in Fig. 8 
that, depending on the time constant, the fraction of parti- 
cles contained in the stream zones is between 3 1% and 36% 
of the total. Since the average number density in these zones 
is slightly greater than the global mean (see Fig. 7),’ the 
fraction of particles contained in the stream zones will be 
slightly larger than the volume occupied by these zones. For 
the threshold parameters used in these computations the 
stream zones occupy the largest volume of the classified do- 
main, approximately 30%. Thus, it is not surprising that the 
largest fraction of particles are within stream zones. Figure 8 
also shows that the fraction of particles contained within the 
convergence zones is between 7%. and 9% of the total. 
Though this is a rather small fraction of the total number of 
particles, it is important to remember that the average num- 
ber density in these regions is as much as twice the global 
mean (see Fig. 7). Thus, the fraction of the total number of 
particles contained within convergence zones is proportion- 
ally greater than the volume occupied by these zones. It is 
also interesting to note from Fig. 8 that while the fraction of 
particles contained within the stream zones decreases mono- 
tonically with increasing time constant, the fraction of parti- 
cles within the convergence zones shows a slight maximum 
for rp/Tf = 0.15. This is presumably due to the fact that 
these particles exhibit the greatest tendency for preferential 
concentration. 

Another interesting result from the simulations is the 
mean-square relative velocity between fluid and particles in 
each of the zones. This quantity is shown in Fig. 9 and it may 
be observed from the figure that the mean-square velocity 
difference is greatest in the convergence zones. WH found 

1 
C-,.. . . . .._. 

+ ” ‘-““‘. “’ ‘-“‘---- . . . . . . . . . . . . . .._ ..__.__,,.. ,_,_,,, ,,,,,I, _-,,_,_.,_, + 

t--P-.-- ___ _,_ - - -.-‘- 
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IO 0.0~ 0.10 0.11 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.56 0.00 

~FplTf 

FIG. 8. Fraction of particles contained within flow zones: U-U, eddy; 
-07 rotational; -A-, convergence; + . .. + , stream. 

0.10 I ., ., ( I. ( I. I. I. I,, 

%Pf 

FIG. 9. Zone-averaged mean-square relative velocity. U--O, eddy; -O-, 
rotational; -A-, convergence; + . . ’ + , stream. 

that the contribution of the convergence zones to the kinetic 
energy of the flow was less than their volume fraction. Thus, 
the convergence zones are relatively low-speed regions and 
this contributes to the increase in the velocity difference 
between particles and fluid. An additional effect increasing 
the velocity difference between particles and fluid in these 
regions is particle inertia. As dense particles move into these 
regions they are not able to decelerate as quickly as the fluid 
and this acts to further amplify the velocity difference in 
these zones. It was found that, for a given time constant, the 
velocity difference between particles and fluid in the conver- 
gence and stream zones was greater than the global value 
while the mean-square velocity difference in the eddy and 
rotational zones was less than the velocity difference com- 
puted from the entire field. This result that the mean-square 
velocity difference is greatest in the convergence and stream 
zones is directly relevant to problems such as turbulence 
modification by dense particles. For particles whose motion 
is governed by Stokes drag, the source term in the Navier- 
Stokes equations representing turbulence modification by 
particles is proportional to the velocity difference between 
the fluid and particles and the local particle concentration. 
Based on these results, it should be expected that the conver- 
gence and stream zones will be modified much differently 
than the eddy or rotational zones. 

IV. SUMMARY AND CONCLUSIONS 
Results from simulations of forced isotropic turbulence 

show that there is a significant effect of turbulence structure 
on the concentration fields of dense particles. In agreement 
with Maxey’s’ analysis it was found that particle inertia 
causes a bias in the trajectory toward regions of low vorticity 
and high strain rate. Instantaneous values of the particle 
number density were as much as 25 times the mean value in 
these regions. The preferential concentration of particles by 
turbulence has interesting implications concerning the mix- 
ing of dense particles in turbulent flow fields. Conventional 
thinking that views particle mixing by turbulence as a homo- 
geneous process in which particles are uniformly dispersed 
by the turbulence can be grossly in error. It has been demon- 
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strated that the mixing of particles by turbulence is strongly 
depkndent upon the relative time scales of the two phases. 
For certain ratiosaf rp/TJ the turbulence may “de-mix” the 
particles (see also OttinoZ6 > . 

The flow classification scheme of HWM and WH helps 
to clarify particle transport and mixing in turbulent flows. In 
their previous work HWM deduced that the characteristic 
three-dimensional structure consistent with the flow zones 
defined in Sec. III A was one of vortex lines concentrating in 
smaller regions into vortex tubes. These vortices induce mo- 
tion in each other and produce stream zones between the 
vortices. Convergence zones occur where stream zones meet 
one another. Particle transport and mixing consistent with 
this three-dimensional structure is that particles move 
through the flow via the streaming zones. Since the stream 
zones often terminate into other streaming zones to produce 
convergence zones, one should expect that the number den- 
sity in these regions will be greater than the global mean 
number density (see Sec. III B and Fig. 7). 
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