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A characteristic feature of particulate systems that evolve due to competition between aggregation and
breakage is that they sometimes produce non-trivial steady-state particle size distributions. If such solu-
tions satisfy detailed balance conditions, then they are equilibrium solutions. The conditions that must be
satisfied by aggregation and fragmentation rate kernels in order for equilibrium solutions to be produced
are elaborated, and it is shown that the rate kernels are uniquely determined by the aggregation and
breakage rate constants for the reactions involving monomers. Consequently, for equilibrium systems
there is a significant reduction in the amount of information needed in order to infer the general form
for aggregation or breakage kernels, and we explore implications for constructing rate kernels by using
atomistic simulations such as molecular dynamics.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Population balance equations (PBEs) describing processes in
which particles undergo growth and decay through aggregation
and breakage have long been studied in connection with a variety
of physical phenomena, such as polymerization and the growth of
colloidal particles. Not surprisingly, these aggregation–fragmenta-
tion PBEs can exhibit the same kinetic behavior that is displayed by
more restrictive population balance models of either irreversible
aggregation or breakage, such as gelation, shattering, and self-pre-
serving size distributions [1]. However, aggregation–fragmentation
PBEs differ fundamentally from irreversible aggregation or irre-
versible fragmentation PBEs in at least one important respect.
Namely, the possibility exists that non-trivial steady-state particle
size distributions can be produced by a balance in the competition
between growth of particles by aggregation and degradation due to
breakage.

The possibility that steady-state solutions are produced by
competition between aggregation and breakage leads naturally to
the question of what conditions must be satisfied in order for this
to occur. For example, consider a system of well-mixed particles
that undergoes aggregation and binary fragmentation (two frag-
ments produced when a cluster undergoes fission). If the system
is closed to mass exchange, the relevant population balance equa-
tion can be expressed as

dck

dt
¼ 1

2

X
iþj¼k

Kijcicj � Fijciþj
� �

�
X1
j¼1

ðKkjckcj � FkjckþjÞ; ð1Þ
ll rights reserved.
where ck is the concentration of particles with mass k at time t. The
symmetric matrix Kij (aggregation kernel) specifies rate constants
for aggregation of i-mers with j-mers. Similarly, Fij is a symmetric ma-
trix of rate constants for breakage of iþ j-mers into i-mers and j-mers.
The long-time behavior of (1) therefore will depend upon the choice
of Kij and Fij, and possibly also on initial conditions. For aggregation
and breakage rate kernels that obey the homogeneity relations

Kai;aj � akKij;

Fai;aj � abFij; as a!1;
ð2Þ

several investigators have used scaling arguments to show that a
necessary condition for the system to always (irrespective of initial
conditions) attain a steady-state solution is given by [1–4]:

b� kþ 2 > 0: ð3Þ

Eq. (3) is useful for anticipating the existence or absence of steady-
state solutions for arbitrary homogeneous kernels Kij and Fij with-
out the need to analytically or numerically solve Eq. (1), but it does
not provide information concerning the nature of any steady-state
solutions produced, such as whether or not they are also equilib-
rium solutions.

The contrast between equilibrium and non-equilibrium steady
states can be explained as follows. Time-independent solutions of
Eq. (1), �ck, must satisfy

1
2

X
iþj¼k

ðKij�ci�cj � Fij�ciþjÞ ¼
X1
j¼1

ðKkj�ck�cj � Fkj�ckþjÞ: ð4Þ

As has been observed many times previously (e.g. [5–7]), Eq. (4) will
be satisfied if the steady-state solution �ck also obeys

Kij�ci�cj ¼ Fij�ciþj ð5Þ
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for all pairs of particle masses i and j. The condition (5) is a state-
ment of microscopic detailed balance that requires each aggrega-
tion or breakage pathway to be reversible and in dynamic
equilibrium at steady state. Therefore, solutions of Eq. (4) that sat-
isfy Eq. (5) are equilibrium steady states. For a given set of aggrega-
tion and breakage kernels, however, there may exist steady-state
solutions that satisfy Eq. (4) but not Eq. (5), and it follows that
any such steady-state solutions are non-equilibrium solutions.

For example, consider the kernels Kij ¼ iþ j and Fij ¼ 2, which
have homogeneity exponents k ¼ 1 and b ¼ 0, and therefore satisfy
the steady-state condition (3). The fact that these kernels always
produce a steady state can be verified by deriving analytical solu-
tions for the moments of the size distribution, Mn ¼

P1
k¼1knck. The

general expression for the moments is easily obtained by multiply-
ing Eq. (1) by kn and summing over all k, which yields

dMn

dt
¼ 1

2

X1
i¼1

X1
j¼1

ðKijcicj � FijciþjÞ ðiþ jÞn � in � jn� �
: ð6Þ

By choosing n ¼ 0 and substituting Kij ¼ iþ j and Fij ¼ 2 into Eq. (6),
it is not difficult to show that the steady-state mean particle size
S1 ¼ M1=M0 is given by

S1 ¼ M1 þ 1; ð7Þ

independent of the initial conditions. Thus, the mean particle size
depends only on the first moment, M1, which represents the total
particle mass density and is time-independent, as can be seen from
Eq. (6). Although there is no known analytical solution for the par-
ticle size distribution ckðtÞ for this combination of aggregation and
breakage kernels, the steady-state solutions �ck for small values of
k can be found by solving Eq. (4):

�c1 ¼ 2M1

M2
1þ4M1þ2

;

�c2 ¼ 1
2

M3
1þ6M2

1þ12M1þ6
� �

M2
1þ6M1þ3

�c2
1;

�c3 ¼ 1
4

M6
1þ14M5

1þ83M4
1þ248M3

1þ380M2
1þ272M1þ72

� �
M2

1þ8M1þ4
� �

M2
1þ6M1þ3

� � �c3
1:

ð8Þ
Substitution of the above expressions into the detailed balance rela-
tions required by Eq. (5), such as K11�c2

1 ¼ F11�c2 and K12�c1�c2 ¼ F12�c3,
shows that microscopic reversibility is not satisfied and we there-
fore conclude that the steady-state solution produced by this partic-
ular combination of aggregation and breakage kernels is a non-
equilibrium solution.

The foregoing example gives rise to the question of how to se-
lect a combination of kernels Kij and Fij that will produce an equi-
librium steady-state particle size distribution. In the remainder of
this paper, we review and expand on the answer to this question
and explore some ramifications for constructing kernels for physi-
cally-relevant problems. We also consider how detailed balance
requirements might be used to better understand the link between
aggregation–fragmentation population balance equations and
atomistic descriptions of aggregation–fragmentation processes,
such as molecular dynamics simulations.
2. Existence of equilibrium solutions

As others have observed previously [6], equilibrium solutions of
Eq. (1) (should they exist) can be derived by using the recurrence
property of Eq. (5). For example, the equilibrium concentrations,
�ck, can be expressed as
�c2 ¼ /11�c2
1;

�c3 ¼ /12�c1�c2 ¼ /11/12�c3
1;

�c4 ¼ /13�c1�c3 ¼ /22�c2
2 ¼ /2

11/22�c4
1 ¼ /11/12/13�c4

1;

�c5 ¼ /14�c1�c4 ¼ /23�c2�c3 ¼ /2
11/12/23�c5

1 ¼ /11/12/13/14�c5
1;

�c6 ¼ /15�c1�c5 ¼ /24�c2�c4 ¼ /33�c2
3 ¼ /2

11/12/13/24�c6
1 ¼ /2

11/
2
12/33�c6

1

¼ /11/12/13/14/15�c6
1;

..

. ..
.

ð9Þ

where /ij ¼ Kij=Fij. By induction, it becomes immediately obvious
that the equilibrium particle size distribution is given by

�ck ¼
Yk�1

n¼1

/1n

 !
�ck

1 k P 2; ð10Þ

so that all �ck depend on the equilibrium monomer concentration, �c1.
The latter quantity must be determined independently by solving
the overall mass balance

M1 ¼
X1
k¼1

k�ck ¼
X1
k¼1

Yk�1

n¼1

/1n

 !
k�ck

1; ð11Þ

subject to the physical constraint

0 < �c1 < M1: ð12Þ

Eqs. (10) and (11) provide a general solution for equilibrium
particle size distributions in aggregation–fragmentation systems,
and this solution depends only on the ratios of corresponding
terms in the aggregation and breakage kernels that involve mono-
mers, /1n, where n P 1, and not on the /ij generally. However, the
existence of an equilibrium particle size distribution does depend
critically upon the other elements of the matrix /ij, because these
must satisfy an infinite set of constraints (not all of which are inde-
pendent) implied by the detailed balance criterion Eq. (9), such as

/12/13 ¼ /11/22;

/13/14 ¼ /11/23;

/14/15 ¼ /11/24;

/13/24 ¼ /12/33;

/13/14/15 ¼ /11/12/33;

..

. ..
.

ð13Þ

Although it has been suggested [8] that the /ij are overdetermined
by (13), these relationships can in fact be collapsed dramatically by
expressing /ij, where i; j–1, in terms of the /1n. The first few terms,
for example, can be written as

/22 ¼ /12/13
/11

;

/23 ¼ /13/14
/11

;

/24 ¼ /14/15
/11

;

/33 ¼ /13/24
/12

¼ /13/14/15
/11/12

;

..

. ..
.

ð14Þ

Continuing in this way, by induction it follows that for an equilib-
rium solution to exist, the /ij must obey

/ij ¼
Qiþj�1

n¼j /1nQi�1
n¼1/1n

: ð15Þ

Eq. (15) demonstrates that for equilibrium systems, once the func-
tional form of /1n ¼ K1n=F1n has been chosen, then the remaining
terms /ij and the equilibrium particle size distribution (10) are un-
iquely determined. This observation may have important applica-
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tions for certain physical problems, because it suggests that for sys-
tems that produce equilibrium particle size distributions, physically
accurate expressions for the rate constants of reactions involving
monomers (i.e. K1n and F1n) and knowledge of the general expres-
sion for either Kij or Fij is sufficient to compute the other kernel. This
significant reduction in the amount of information needed to infer
the functional form of either the aggregation or breakage kernel
may be particularly useful for facilitating the use of atomistic sim-
ulations such as molecular dynamics to develop rate kernels.

Eq. (15) may also be used to exclude kernel combinations that
do not lead to equilibrium, even if they lead to a steady state. For
example, using the aggregation and breakage kernels discussed
earlier, Kij ¼ iþ j and Fij ¼ 2, we find that /1j ¼ ðjþ 1Þ=2. Substitu-
tion of the latter expression into Eq. (15) shows that for an equilib-
rium solution to exist, the remaining elements of /ij are related to
the binomial coefficients according to

/ij ¼
1
2
ðiþ jÞ!

i!j!
; i; j > 1; ð16Þ

which is obviously inconsistent with /ij ¼ Kij=Fij ¼ ðiþ jÞ=2, and
hence the choice of Kij ¼ iþ j and Fij ¼ 2 cannot produce an equilib-
rium particle size distribution.

We conclude this section by noting that if any corresponding
elements i; j of the rate kernels are null so that Kij ¼ Fij ¼ 0, then
not all of the detailed balance constraints given by Eq. (15) are
operative. For example, in Ostwald ripening only monomer addi-
tion and breakage is allowed so that the only non-zero elements
of the symmetric rate kernels are K1n and F1n, and therefore Eq.
(15) does not apply at all. In the remainder of this paper we limit
our considerations to aggregation–fragmentations processes de-
scribed by fully populated kernels so that there are no zero ele-
ments in Kij and Fij.

3. Examples of equilibrium kernels

3.1. Blatz–Tobolsky model

Perhaps the best-known aggregation–fragmentation population
balance model was studied by Blatz and Tobolsky in the context of
reversible polymerization of linear polymers [9]. They derived a
complete time-dependent solution to Eq. (1) by assuming constant
aggregation and breakage kernels such that Kij=Fij ¼ a, where a
represents the relative strength of aggregation to breakage. It is
well known that the Blatz–Tobolsky model produces a steady-state
particle size distribution identical to the distribution predicted by
Eqs. (10) and (11), and it is therefore also an equilibrium solution.
Notice that if we substitute /1n ¼ a into Eq. (15), we find that
/ij ¼ a for all values of i and j (consistent with constant aggregation
and breakage kernels), and therefore an equilibrium solution for
this case is correctly anticipated by the equilibrium criterion
(15). Since the equilibrium criterion only requires that the ratios
/ij be constant and equal, one can conclude that any pair of aggre-
gation and breakage kernels Kij ¼ af ði; jÞ, Fij ¼ f ði; jÞ, where f ði; jÞ is
an arbitrary function of i and j, will produce the same equilibrium
solution as the Blatz–Tobolsky model, even though the kinetic
behavior may depend upon the specific form of f ði; jÞ. Also notice
that Eq. (3) will always be satisfied since the homogeneity expo-
nents of the kernels (assuming that f ði; jÞ obeys the homogeneity
relation) for this case are equal, k ¼ b.

3.2. Separable aggregation kernel

Gueron and Levin [10] have significantly expanded the known
sets of kernels that produce equilibrium steady states by observing
that if the aggregation kernel can be factored such that Kij ¼ agigj,
where gi is a function of i alone, then the microscopic reversibility
conditions (5) will be satisfied if Fij ¼ giþj. This can be demon-
strated by substituting the monomer kernel ratios

/1n ¼ a
g1gn

gnþ1
ð17Þ

into Eq. (15), which leads to

/ij ¼ a
gigj

giþj
: ð18Þ

Therefore, the Blatz–Tobolsky model discussed above is a special
case of the Gueron–Levin Kernel with gi ¼ 1. Another simple exam-
ple of a system with kernel ratios obeying (18) is obtained by select-
ing gi ¼ i, which leads to /ij ¼ aij=ðiþ jÞ. Lowe and Thorlacius [11]
have provided an analytical solution for the continuous analog of
Eq. (1) using the aggregation and breakage kernels Kij ¼ aij and
Fij ¼ iþ j, and it can be shown that at steady state their solution
is equivalent to the continuous analog of the equilibrium solution
predicted by Eq. (10). Although in principle many other examples
of kernel combinations of the form (18) could be generated by
choosing arbitrary functions gi, the steady-state criteria Eq. (3) im-
plies that not all choices for gi produce an equilibrium solution. In
particular, if we define the homogeneity exponent m using the
expression

gai � amgi; as a!1; ð19Þ

it follows from Eqs. (3) and (18) that

m ¼ k� b < 2 ð20Þ

for the system to reach a steady-state particle size distribution for
arbitrary initial conditions.

Eq. (18) imposes other limitations that may not be immediately
obvious. Specifically, the requirement that the breakage kernel is of
the form Fij ¼ giþj implies that the fragments produced by breakage
events are governed by a uniform probability distribution function.
This can be shown by factoring Fij so that

Fij ¼ aiþjbijiþj; ð21Þ

where aiþj is the overall rate coefficient for breakage of particles
with mass iþ j, and bijiþj is the conditional probability of producing
an i-sized fragment upon breakage of an iþ j-sized particle. Because
the rate of breakage of iþ j-sized particles depends linearly on ciþj,
aiþj is simply the sum over all the Fij,

aiþj ¼
1
2

Xiþj�1

i¼1

Fij ¼
1
2

giþjðiþ j� 1Þ: ð22Þ

Substitution of Eq. (22) into Eq. (21) shows that the conditional dis-
tribution function is given by

bijiþj ¼
2

iþ j� 1
: ð23Þ

Since Eq. (23) depends only upon the sum iþ j (mass of the particle
undergoing breakage) and not on i independently, we conclude that
choosing Fij ¼ giþj implies a uniform distribution of fragments. De-
spite this limitation, as well as the requirement given by Eq. (20),
Eq. (18) encompasses many possible kernel combinations that lead
to an equilibrium particle size distribution.

3.3. Brownian aggregation

The aggregation and breakage of particles undergoing Brownian
motion is relevant to many problems, including the manufacture of
nanoparticles. For diffusion-limited aggregation of spheres, the
kernel first derived by Smoluchowski is given by the non-separable
expression
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ig. 1. Normalized equilibrium particle size distributions �ck=M1 computed from
qs. (10) and (11) using K1n ¼ að2þ n�1=3 þ n1=3Þ and F1n ¼ ns . Top panel: s ¼ 1=3.

Bottom panel: s ¼ 1.
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Kij ¼ a 2þ i
j

� 	1=3

þ j
i

� 	1=3
" #

; ð24Þ

where in this case a ¼ 2kBT=3l, kB is Boltzmann’s constant, T is tem-
perature, and l is the viscosity of the solvent. Far more elusive,
however, is the functional form of a physically-realistic breakage
kernel that, when coupled with the Brownian aggregation kernel
(24), will lead to an equilibrium solution. With few exceptions
(e.g. some relatively simple polymerization problems), the deriva-
tion of general analytical expressions for Fij to describe physical
problems is exceedingly difficult because the rate of breakage and
distribution of fragments depends upon many microscopic details
such as aggregate morphology and connectivity, as well as the
responsible breakage mechanisms (e.g. thermal fluctuations,
shear-induced breakage, aggregate-wall collisions, etc.). However,
in systems that are thermodynamically isolated, such as in an un-
stirred adiabatic batch reactor, any steady-state particle size distri-
bution that develops due to the competition between Brownian
aggregation and breakage must also satisfy the microscopic detailed
balance conditions (15). Hence, if the functional form for the ele-
ments of the breakage kernel involving monomers, F1n, is known
or assumed, then the remaining elements of Fij can be computed
from Eq. (15) and by using (24).

However, not all choices for F1n will produce equilibrium solu-
tions when coupled with the Brownian aggregation kernel, as can
be illustrated by the following example. Choosing K1n ¼ að2þ
n�1=3 þ n1=3Þ and F1n ¼ 1, we find from Eq. (11) that �c1 must satisfy

M1 ¼
1
a
X1
k¼1

Yk�1

n¼1

2þ n�1=3 þ n1=3� � !
kða�c1Þk: ð25Þ

The sum on the right hand side of (25) does not converge for any
value of �c1 > 0 and therefore no equilibrium solution exists for
Brownian aggregation with F1n ¼ 1. It does not follow from this con-
clusion, however, that a steady-state solution does not exist for a
system described by the Brownian aggregation kernel and Fij ¼ 1.
Indeed, the steady-state criterion (3) is satisfied for these choices
of kernels, and therefore a non-equilibrium steady-state solution
will be produced.

Lacking specific information concerning breakage mechanisms
and aggregate morphology, it could be hypothesized that the
breakage rate coefficients for monomer reactions scale according
to a power law,

F1n � ns: ð26Þ

By using this assumption for F1n and the Brownian aggregation ker-
nel, we find that the product term in the mass balance equation (11)
obeys

Yk�1

n¼1

/1n � CðkÞð Þ
1
3�s as k!1: ð27Þ

Because the gamma function (even when raised to a fractional
power) diverges faster than the exponential function, the summa-
tion in Eq. (11) will not converge for any value of �c1 if s < 1=3,
and therefore no equilibrium solution will exist. A maximal value
of s can be inferred from the following considerations. Aggregates
comprised of constituent monomers arranged so that they have
very low coordination numbers would seem to maximize F1n, be-
cause such arrangements require the fewest disruptions of nearest
neighbor contacts in order to separate monomers from the parent
cluster. Taken to the extreme, every monomer in an aggregate
would be accessible for breakage so that F1n � n. In view of the fore-
going observations, we conclude that 1=3 < s < 1. The resulting
steady-state size distributions obtained from Eqs. (10) and (11)
are plotted in Fig. 1 for these minimum and maximum values of
s. When s ¼ 1=3, dimers are the most abundant species, indepen-
dent of the value of a. Furthermore, for k P 2, the size distribution
�ck decays exponentially as k!1, as can easily by shown from a
log-normal plot. This result is reminiscent of the Blatz–Tobolsky
model, which is known to exhibit an exponential particle size distri-
bution. The similarity of the two models can be explained by the
fact that for s ¼ 1=3, it follows that the kernel ratio becomes con-
stant, /1n � a, in the limit n!1. In contrast, Fig. 1 shows that
for s ¼ 1 the equilibrium size distribution is marked by a relatively
narrow unimodal distribution, and the peak cluster size does de-
pend on the parameter a.

4. Rate kernels, equilibrium, and atomistic simulations

Mean-field population models such as Eq. (1) provide the math-
ematical framework for a macroscopic description of aggregation
phenomena, but their usefulness for obtaining quantitatively accu-
rate predictions depends upon the availability of accurate rate ker-
nels that correctly describe the microscopic mechanisms of
aggregation and breakup. Although it is possible, by invoking
sweeping assumptions, to derive kernels for some problems (e.g.
diffusion-limited Brownian aggregation or branched polymeriza-
tion) using analysis alone, the application of such kernels for com-
puting particle size distributions of real systems may still require
empiricism (for example determining sticking coefficients for
aggregation). As was mentioned earlier, fragmentation kernels
are even more difficult to construct from first principles analyses,
and consequently empirical or semi-empirical approaches must of-
ten be employed.

Atomistic simulations, such as molecular dynamics, could poten-
tially provide the microscopic details needed to develop accurate
kernels (assuming that reasonably accurate pairwise interaction
F
E
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potentials are available for the system constituents). However, these
methods are not well-suited for evolving fully developed particle
size distributions because the time and length scales accessible are
far smaller than the characteristic time and length scales of aggrega-
tion in physically-realistic systems. Hence, there is a strong motive
for developing a means for distilling microscopic information pro-
duced by atomistic simulations in order to construct accurate aggre-
gation and breakage kernels without having to carry out simulations
using astronomically large numbers of particles and time scales that
are practically unachievable. In this section, we outline a possible ap-
proach for overcoming this problem by making use of a statistical
mechanical analysis of reversible aggregation.

By constructing a partition function and minimizing Gibbs free
energy, Cohen and Benedek [7] derived an equilibrium particle size
distribution for reversible polymerization given by

�ck ¼ Dke�Gk=kBT�ck
1; ð28Þ

which bears striking resemblance to Eq. (10). In the above expres-
sion, the function Dk is a degeneracy factor that describes the num-
ber of distinct ways of assembling k monomers into a k-mer (and
therefore it depends upon factors that affect cluster structure, such
as monomer functionality), and Gk is the local standard free energy
change associated with removing k monomers from the system and
adding a k-mer, which in turn depends upon bond strength, solvent
interactions, etc. Two important assumptions were used to derive
Eq. (28). First, it was assumed that the solute phase is sufficiently
dilute so that non-specific interactions between aggregates are neg-
ligible. Second, Cohen and Benedek assumed that clusters com-
prised of k monomers are held together by k� 1 bonds. The first
assumption is consistent with the dilute approximation implicit in
mean-field population balance descriptions of aggregation–frag-
mentation such as Eq. (1). The second assumption is more restric-
tive, but it appears to manifest itself only by limiting the
functional forms of Dk, and therefore Eq. (28) should be applicable
to any dilute reversible aggregation process even if the second
assumption is relaxed.

Combining Eqs. (28) and (10), which were derived by com-
pletely different methods, provides the crucial relationship be-
tween the macroscopic (/1n) description of aggregation and
breakage events and the microscopic description represented by
Gk and Dk:

Yk�1

n¼1

/1n ¼ Dke�Gk=kBT : ð29Þ

Atomistic simulations are well-suited for computing Gk and Dk, at
least for sufficiently small cluster sizes k, and therefore the kernel
ratios for monomer interactions /1n could in principle be computed
sequentially using Eq. (29) until the functional form of /1n is in-
ferred. Subsequently, Eq. (15) could be used to find the general
expression for /ij. The practical usefulness of this approach remains
to be demonstrated, but its validity seems to be supported by con-
sidering a simple example leading to a known solution. In particu-
lar, Cohen and Benedek [7] demonstrated that if one assumes that
the standard free energy of bond formation is independent of clus-
ter size or position within the cluster, then Gk ¼ ðk� 1ÞE, where E is
the bond strength. In addition, for the special case of reversible
polymerization of linear polymers, the degeneracy factor is given
by Dk ¼ 1 and it follows from Eq. (29) that /1n ¼ a, where
a ¼ e�E=kBT . Substituting /1n into Eq. (15) gives the expected result
that /ij ¼ a, which is the Blatz–Tobolsky model for reversible poly-
merization of linear polymers. Notice that a, which represents the
relative strength of aggregation compared to breakage, depends
only on the reduced bond energy E=kBT , and this suggests that at
equilibrium the particle size distribution depends not on the partic-
ular details of the pairwise particle interaction potential used in an
atomistic simulation of this process, but only on the depth of the
potential energy well for the bonded state.
5. Discussion and summary
As a consequence of the detailed balance criterion (5), equilib-
rium solutions of aggregation–fragmentation population balance
are given by Eqs. (10) and (11), which depend only upon the ratios
/1n ¼ K1n=F1n. Although the equilibrium solution does not depend
explicitly on the other elements of the matrix /ij ¼ Kij=Fij where
i; j–1, the detailed balance criterion imposes restrictions on these
terms in order for an equilibrium solution to exist, and it has not
generally been appreciated that these restrictions establish a rela-
tionship between /ij and /1n given by Eq. (15). Hence, the specifi-
cation of the ratio of monomer reaction rate constants /1n alone is
sufficient to determine both the equilibrium particle size distribu-
tion and the kernel ratios /ij. However, as was shown in Section 3,
the /1n cannot be chosen arbitrarily, because the steady-state cri-
terion (3) must also be satisfied in order for an equilibrium solu-
tion to exist.

The fact that aggregation and breakage kernels for equilibrium
systems must obey Eq. (15) also potentially simplifies the con-
struction of kernels suitable for quantitatively describing specific
physical problems, particularly if either an appropriate aggregation
or breakage kernel is already known, such as in the case of Brown-
ian aggregation. Furthermore, the significant reduction in the
amount of information required to find /1n rather than /ij may also
play a crucial role in making it feasible to use atomistic simulations
to construct rate kernels for specific chemical systems, as was out-
lined in the previous section. However, complete validation of this
approach will require carrying out atomistic simulations for a spe-
cific physical system in order to compute /1n, and comparing the
resulting prediction for the equilibrium particle size distribution
�ck using Eqs. (10) and (11) to the equilibrium size distribution ob-
tained from experiments. Subsequently, if the functional forms of
either Kij or Fij are known or assumed, then the other kernel can
be determined from Eq. (15). The population balance (1) could then
be used to predict the kinetic behavior of the size distribution and
the results compared with experimental observations.

Although significant simplifications occur in the analysis of pro-
cesses that produce equilibrium size distributions due to competi-
tion between aggregation and fragmentation, questions remain
concerning the applicability of these results to real problems. In
particular, limitations concerning the physical circumstances and
the aggregation and breakage mechanisms that produce steady
states that obey the detailed balance requirements (5) have not
been fully elaborated. For example, is true microscopic reversibility
only possible for thermodynamically isolated systems in which the
aggregation and fragmentation mechanisms are driven by thermal
fluctuations, such as in the case of reversible polymerization in an
adiabatic unstirred batch reactor, or could other processes such as
aggregation and breakage driven by fluid shear also satisfy detailed
balance constraints? Are droplet systems inherently non-equilib-
rium because coalescence results in loss of distinguishability of
the original droplets, which appears to violate the detailed balance
criterion? Further work is needed to resolve these questions and
also to establish the limitations of invoking microscopic detailed
balance as an approximation for systems that may not satisfy the
assumption exactly. Despite these remaining problems, the equi-
librium analysis of aggregation–fragmentation systems may yet
prove to be a useful tool for developing better models for these
processes.
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