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Abstract – We compute the fractal dimension of clusters of inertial particles in random flows at
finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St,
the theory includes clustering by Maxey’s non-ergodic “centrifuge effect”. In the limit of St→∞
and Ku→ 0 (so that Ku2St remains finite) it explains clustering in terms of ergodic “multiplicative
amplification”. In this limit, the theory is consistent with the asymptotic perturbation series in
Mehlig B. et al., Phys. Rev. Lett., 92 (2004) 250602. The new theory allows to analyse how the
two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-
dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku< 0.2
for St∼ 1. The ergodic mechanism is found to contribute significantly unless St is very small. For
higher values of Ku the new series is likely to require resummation. But numerical simulations
show that for Ku∼ St∼ 1, ergodic multiplicative amplification makes a substantial contribution
to clustering.

Copyright c© EPLA, 2011

Introduction. – The dynamics of independent parti-
cles in complex mixing flows is a problem of fundamental
importance in natural sciences, and in technology. The
motion of the particles is commonly approximated by

r̈= γ[u(r, t)−v] . (1)

Here r is the position of a suspended particle, and v= ṙ
is its velocity. Dots denote time derivatives, γ is the rate
at which the inertial motion is damped relative to the
fluid, and u(r, t) is the velocity of a randomly mixing
or turbulent incompressible flow. It is a surprising fact
that even though u is incompressible, the suspended
particles may nevertheless cluster together [1]. The effect
is illustrated in figs. 1(a), (b). Possible consequences of
this phenomenon have been discussed in a wide range
of contexts: rain initiation from turbulent clouds [2–4],
grain dynamics in circumstellar accretion disks [5,6], and
plankton dynamics [7], to name but a few.
Despite its significance, clustering of particles in mixing

flows is still not well understood. Two very different
explanations of the phenomenon have been put forward.
Maxey [1] discussed the problem in the limit of small
inertia, corresponding to small values of the “Stokes
number” St = (γτ)−1. Here τ is the relevant characteristic
time scale of the flow (the Kolmogorov time in turbulent
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flows, for example). For 0< St� 1, the particles are
argued to be centrifuged out of regions of high vorticity of
u(r, t). The approach rests on instantaneous correlations
between particle positions and fluid velocities. It has
been refined by many authors [8–10]. The mechanism
is also referred to as “preferential concentration” and is
commonly used to interpret results of experiments [11,12],
and of direct numerical simulations [13]. But the
“centrifuge mechanism” relies on a small-St expansion,
while clustering in turbulent flows is observed to be
strongest and thus of most interest at St∼ 1.
A very different clustering mechanism was proposed [14]

in the limit of large St and small “Kubo numbers”. The
Kubo number [14,15] Ku= u0τ/η characterises fluctua-
tions of u(r, t) (u0 and η being its characteristic velocity
and length scales). In the limit St→∞ (and Ku→ 0 so
that ε2 ≡Ku2St/2 remains constant [16]), the particles
experience the velocity field as a white-noise signal, and
sample it in an ergodic fashion: the fluctuations of u(rt, t)
(and its derivatives) along a particle trajectory rt are
indistinguishable from the fluctuations of u(r0, t) at the
fixed position r0. This case corresponds to region 1 in the
phase diagram fig. 1(c), and in this limit the instantaneous
configuration of u(rt, t) is irrelevant to the dynamics of
the suspended particles (because the particle response
time 1/γ is much larger than τ in the limit St→∞).
But they may nevertheless cluster by the mechanism of
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Fig. 1: (a) Clustering of particles in a two-dimensional incompressible flow u(r, t) =∇∧ψ(r, t)e3. Here e3 is the unit vector
⊥ to the plane. The Gaussian random function ψ(r, t) satisfies 〈ψ〉= 0 and 〈ψ(r, t)ψ(0, 0)〉= (u20η2/2) exp[−|r|2/(2η2)− |t|/τ ].
Green contours correspond to high vorticity of u(r, t), blue contours to high strains. Particle number density: white (low density)
to red (high density). Parameters: Ku= 0.1, St = 10, t= 165τ . (b) Same but for Ku= 10, St = 0.025, t= 0.32τ . (c) Parameter
plane for inertial particles in mixing flows. Region 1: clustering is caused by ergodic multiplicative amplification, see text. Region
2: the non-ergodic centrifuge mechanism is important. In turbulent flows Ku∼ 1 (u0, τ and η are interpreted as Kolmogorov
scales [21]). Strong clustering is observed for St∼ 1, region 3.

“multiplicative amplification”: small line-, area-, and
volume-elements randomly expand and contract. Depend-
ing upon whether the random product of expansion
and contraction factors increases or decreases as t→∞,
one may observe fractal clustering in region 1. The
fractal dimension dL is determined by the history of
these factors. It can be computed in terms of “Lyapunov
exponents” [14,17].
Figures 1(a), (b) show both mechanisms at work: at

large values of St, (region 1 in fig. 1(c)) there is no
discernible correlation between the instantaneous velocity
distribution and the particle distribution. At small St,
(region 2 in fig. 1(c)), by contrast, the particles are seen to
avoid regions of high vorticity (fig. 1(b), similar to fig. 8
in [18]). In short, in limiting cases (regions 1 and 2 of
fig. 1(c)) the mechanisms of clustering are understood.
But how ergodic and non-ergodic effects compete in the
major part of the phase diagram fig. 1(c) is not known
(in particular not for the experimentally most relevant
region 3 where Ku and St are of order unity). In [19]
non-ergodic effects were characterised by correlating the
degree of clustering with the probability of particles
avoiding rotational regions of the flow. The interpretation
of these numerical results, however, is complicated by
the fact that this probability is significantly enhanced
even when clustering is weak. The aim of this letter is
to understand the relative importance of ergodic and
non-ergodic mechanisms in the different regions of the
parameter plane fig. 1(c).

Summary. – We derive a perturbation expansion for
the Lyapunov exponents of particles in random flows, valid
at finite St and Ku. We compute the Lyapunov frac-
tal dimension dL, and characterise fractal clustering in
terms of the “dimension deficit” ∆L = d− dL. For particles
suspended in two-dimensional random Gaussian incom-
pressible flows, the new theory yields reliable results for
Ku< 0.2 for St∼ 1. We find, first, that for small values
of St, the centrifuge mechanism dominates, and ∆L =
6Ku2St2, consistent with [20,21]. Second, in the limit of

Ku→ 0 at finite values of St, non-ergodic effects remain
important. Third, in region 1 of fig. 1(c), clustering is
found to be entirely due to ergodic multiplicative ampli-
fication [14], and ∆L = 12ε

2 ∝ St. Fourth, in general we
find that the ergodic mechanism contributes substantially
to clustering, unless St is very small. Fifth, we show
by numerical simulations of the model that at Ku∼ 1
and St∼ 1, ergodic multiplicative amplification makes a
substantial contribution to the observed clustering.

Method and results. – Equation (1) cannot be
explicitly solved, since u depends upon the particle posi-
tion rt at time t. An implicit solution of eq. (1) is (in
the following we use dimensionless coordinates r′ = r/η,
t′ = t/τ , v′ = v/u0, and u′ =u/u0, and we drop the primes
to simplify the notation)

δrt ≡ rt−r0 =Ku
[
St(1− e−t/St)v0

+St−1
∫ t
0

dt1

∫ t1
0

dt2 e
−(t1−t2)/Stu(rt2 , t2)

]
. (2)

We seek an approximate solution by expanding u(rt, t) in
powers of δrt. Since according to eq. (2), δrt is of order
Ku, iteration generates an expansion of u(rt, t) in powers
of Ku. To second order, for example, we find

uα(rt, t) = uα(r0, t)+
Ku

St

∫ t
0

dt1

∫ t1
0

dt2e
−(t1−t2)/St

×
∑
β

∂uα

∂rβ
(r0, t)uβ(r0, t2)

+
Ku2

St2

∫ t
0

dt1

∫ t1
0

dt2

∫ t2
0

dt3

∫ t3
0

dt4e
−(t1−t2+t3−t4)/St

×
∑
β,δ

∂uα

∂rβ
(r0, t)

∂uβ

∂rδ
(r0, t2)uδ(r0, t4)

+
1

2

Ku2

St2

∫ t
0

dt1

∫ t
0

dt2

∫ t1
0

dt3

∫ t2
0

dt4e
−(t1+t2−t3−t4)/St

×
∑
β,δ

∂2uα

∂rβ∂rδ
(r0, t)uβ(r0, t3)uδ(r0, t4)+O(Ku

3) . (3)
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λ1 = Ku
2−Ku4 6+16St+16St

2+15St3+5St4

(1+St)3
+Ku6

[
1692+16464St+68987St2+165269St3

6(1+St)5(2+St)2(1+2St)2

+
258832St4+301534St5+296820St6+247404St7+153480St8+62136St9+14400St10+1440St11

6(1+St)5(2+St)2(1+2St)2

]
, (8)

λ1+λ2 =−6Ku4 St
2(1+3St+St2)

(1+St)3
+2Ku6St2

8+92St+598St2+2509St3+5760St4+7176St5+5052St6+2076St7+480St8+48St9

(1+St)5(2+St)2(1+2St)2
, (9)

Here Greek indices denote the components of u, and for
our purposes v0 can be set to zero. The coefficients in
(3) are expressed in terms of u and its derivatives at the
fixed position r0, with known statistical properties. This
procedure can in principle be extended to any order in
Ku, but in practice it is limited by the number of nested
integrals appearing in (3) for higher orders. A C-program
was written to symbolically evaluate the integrals. One
may expand other functionals of the particle trajectories,
such as the strain matrix A(rt, t) with elements Aαβ =
∂uα/∂rβ . Previous analytical results on the clustering of
inertial particles [14,19] rest on the “ergodic assumption”
that the distribution of the strain matrix A(rt, t) at
the particle position rt can be approximated by its
distribution at r0. This is satisfied in region 1, but
what are the corrections outside this region? For the
two-dimensional incompressible (TrA= 0) random flow
described in fig. 1 we find

TrA2 ≡
〈
lim
T→∞

1

T

∫ T
0

dtTrA2(rt, t)

〉

=
6Ku2St

(1+St)2(1+2St)

−2Ku
4St(4+52St+293St2+548St3+297St4)

(1+St)4(2+St)(1+2St)2(1+3St)

(4)

to order Ku4. The average in (4) consists of a long-time
average along the particle trajectory rt, and an average
over initial conditions r0 (denoted by 〈· · ·〉). At finite
values of the Kubo number, TrA2 differs from its ergodic
average, 〈TrA(r0, t)2〉 (which vanishes in homogenous
incompressible flows): the dynamics is not strictly ergodic.
In compressible flows, we find TrA 	= 0 (the ergodic aver-
age 〈TrA(r0, t)〉 still vanishes). This is consistent with a
result [22] for the average strain in the advective limit
of a one-dimensional (compressible) model. It was shown
in [22] that the average strain must be taken into account
to obtain the known result [9] for the advective Lyapunov
exponent in this model.
The question is now: how does non-ergodicity affect the

spatial distribution of the particles? The latter is charac-
terised by the Lyapunov exponents of the particle flow,
obtained by linearising eq. (1). The maximal exponent λ1

is given by

λ1 =Ku lim
T→∞

1

T

∫ T
0

dtn1(rt, t) ·Z(rt, t)n1(rt, t) , (5)

Ż=St−1(A−Z)−KuZ2, ṅ1=Ku
(
n2 ·Zn1

)
n2 . (6)

Here n1 is the unit vector in the δr-direction, n2 is
a unit vector orthonormal to n1, and Z is the matrix
with elements Zαβ = ∂vα/∂rβ . In region 1, eqs. (5), (6)
were solved in [14,16]. At finite values of Ku and St,
we compute λ1 by generalising the procedure that led to
eq. (3). Starting from the implicit solution (2) of (1), and
the implicit solutions of (6),

Z(rt, t) = e
−t/StZ(r0, 0)+

∫ t
0

dt1e
−(t−t1)/St

×[A(rt1 , t1)/St−KuZ(rt1 , t1)2] ,
(7)

n1(rt, t) = n1(r0, 0)+Ku

∫ t
0

dt1[n2(rt1 , t1)

×Z(rt1 , t1)n1(rt1 , t1)]n2(rt1 , t1),
we expand A(rt, t), Z(rt, t), n1(rt, t), and n2(rt, t) in
powers of δrt. Iterating and averaging along particle
trajectories as well as over initial conditions yields an
expansion of λ1 in powers of Ku, with St-dependent
coefficients. The sum λ1+λ2 =KuTrZ is computed in
a similar fashion. For particles in a two-dimensional
incompressible random Gaussian flow (cf. fig. 1) we find

see eqs. (8) and (9) above

to order Ku6. This is our main result. In region 1, eq. (8)
yields the ergodic expansion [16] λ1/(γτ) = 2ε

2− 20ε4+
480ε6+ . . . and eq. (9) yields (λ1+λ2)/(γτ) =−24ε4+
192ε6+ . . . which is consistent with an ergodic expansion
similar to the one performed in [16].
As St→ 0, eq. (9) reflects Maxey’s non-ergodic

centrifuge mechanism: According to (1), a particle is
advected by an effective velocity field v with compress-
ibility ∇·v=TrZ. Maxey’s result [1,2] is obtained
by expanding Z≈Z(0)+Z(1)St in eq. (6). One finds
∇·v=−KuStTrA2∣∣

St=0
(note that A(rt, t) depends

upon the Stokes number because the particle trajectory
rt depends upon St). This result shows that particles
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Fig. 2: (a) Fractal dimension deficit as a function of ε2 =Ku2St/2. Numerical simulations of the model described in fig. 1
(Ku= 0.02 (�), Ku= 0.05 (	), Ku= 0.1 (◦), and Ku= 0.2 (�); theory according to eqs. (8), (9), solid lines, and limiting
behaviours ∆L ∝ St and ∆L ∝ St2 (dashed lines). (b) Same but for larger values of ε2 =Ku2St/2. Numerics, Ku= 0.1 (◦),
Ku= 0.2 (�), and Ku= 1 (squares); theory, eqs. (8), (9), Ku= 0.1, 0.2 (solid line). (c) Relative importance of non-ergodic and
ergodic contributions (see text), symbols and parameters as in (b). Note that when ε2 > 0.2 for Ku= 1, the ratio (∆L−∆ergL )/∆L
increases as ε grows because the dimension deficits ∆L and ∆

erg
L pass zero at different values of ε2.

tend to aggregate in regions of high strain or low vorticity.
However, since the velocity field is homogeneous, this
lowest-order term averages to zero in incompressible
flows. Expanding Z to second order in St, one finds

∇·v=−KuSt2∂StTr(A2)
∣∣
St=0
. Inserting eq. (4) yields

λ1+λ2=Ku∇ ·v=− 6Ku4St2+4Ku6St2+O(Ku8), con-
sistent with the St→ 0 limit of (9).
We conclude that our new expansion (8), (9) of the

Lyapunov exponents correctly describes the different clus-
tering mechanisms in regions 1 and 2 of fig. 1(c): the
centrifuge effect and ergodic multiplicative amplification.
More importantly, eqs. (8), (9) allow to determine how the
relative importance of the two mechanisms depends on Ku
and St, as follows.
In two-dimensional incompressible flows, the frac-

tal dimension deficit is given by ∆L = (λ1+λ2)/λ2.
Figure 2(a) shows that the new theory explains the
limiting cases in region 1 in the parameter plane
(∆L = 6Ku

2 St = 12 ε2), and in region 2 (∆L = 6Ku
2St2).

The theory also explains the crossover between these two
behaviours and compares well with results of numerical
simulations. In order to further increase the accuracy,
more terms than computed in eqs. (8), (9) must be
included. The series is likely to be asymptotically diver-
gent, requiring re-summation, and there may be additional
non-analytic contributions [14,19]. We note that for a
slightly different estimate of the fractal dimension (the
“correlation dimension”), the lowest-order behaviour of
the dimension deficit in region 2, ∆C ∝ St2, was computed
using different methods in [9,10,23–25]. For the model
described in fig. 1, we find ∆C = 12Ku

2St2 to lowest order
in Ku and in St in region 2, and ∆C = 24 ε

2 in region 1 (see
also [26]).
These results raise the question: how important are

non-ergodic contributions to fractal clustering at larger
values of St and at finite Kubo numbers? The answer
is summarised in figs. 2(b), (c) showing the dimension
deficit ∆L compared to an ergodic approximation, ∆

erg
L .

The latter incorporates finite-time correlations of the

velocity field u but neglects non-ergodic effects. Ergodic
approximations to the Lyapunov exponents and to ∆L
(referred to as λerg1,2 and ∆

erg
L ) are obtained by expanding

eqs. (5), (6) as before, but replacing A(rt, t) in (6) with
A(r0, t). The resulting analytical expressions for λ

erg
1,2

are determined by the fluctuations of A(r0, t). This is
in contrast to λ1,2, eqs. (8), (9), which are determined
by the fluctuations of u(r0, t) and its derivatives. The
ergodic approximation allows for finite values of Ku and
St but must fail in the limit St→ 0, since the centrifuge
mechanism is not accounted for. In particular, to lowest
order in Ku the exponents λerg1 and λerg2 are found to
depend upon St. The exact exponents (8), (9) by contrast,
are independent of St to lowest order in Ku: λ1 =Ku

2

and λ2 =−Ku2. This implies in particular that earlier
results for the Lyapunov exponents in region 1 [14,19]
are in fact exact to lowest order in Ku for arbitrary
values of St. This is due to the cancellation of two errors:
neglecting non-ergodic effects, and neglecting finite-time
correlations.
Non-ergodic effects dominate the clustering when (∆L−

∆ergL )/∆L is close to unity (they are negligible when this
ratio is close to zero). We have determined λerg1,2 and ∆

erg
L

to order Ku6 [27]. We have also performed computer simu-
lations of this ergodic model. We determine the Lyapunov
exponents in terms of monodromy matrices (eq. (30)
in [21]) where A(r0, t) is evaluated at the fixed posi-
tion r0. Figure 2(c) shows that for Ku= 0.1, non-ergodic
effects dominate at small values of ε2 but are negligible
when clustering is largest, near the peak in ∆L shown
in fig. 2(b). Also shown are the analytical result for ∆L
derived from eqs. (8), (9), and the corresponding expan-
sion of (∆L−∆ergL )/∆L. We observe good agreement.
For Ku= 1, by contrast, the first terms in the perturba-
tion expansion (8), (9) do not give reliable results. But
computer simulations show that non-ergodic effects are
present for the whole range of Stokes numbers displayed
in fig. 2(c). However, fig. 2(c) also clearly shows that both
mechanisms contribute in region 3. We emphasise that
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ergodic clustering by multiplicative amplification makes a
substantial contribution at ε2 ≈ 0.15 where the clustering
effect is strongest: (∆L−∆ergL )/∆L ≈ 0.3.
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