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a b s t r a c t

The incorporation of particle inertia into the usual mean field theory for particle aggregation and
fragmentation in fluid flows is still an unsolved problem. We therefore suggest an alternative approach
that is based on the dynamics of individual inertial particles and apply this to study steady state particle
size distributions in a 3D synthetic turbulent flow. We show how a fractal-like structure, typical of
aggregates in natural systems, can be incorporated in an approximate way into the aggregation and
fragmentation model by introducing effective densities and radii. We apply this model to the special case
of marine aggregates in coastal areas and investigate numerically the impact of three different modes
of fragmentation: large-scale splitting, where fragments have similar sizes, erosion, where one of the
fragments is much smaller than the other and uniform fragmentation, where all sizes of fragments occur
with the same probability. We find that the steady state particle size distribution depends strongly on the
mode of fragmentation. The resulting size distribution for large-scale fragmentation is exponential. As
some aggregate distributions found in published measurements share this latter characteristic, this may
indicate that large-scale fragmentation is the primary mode of fragmentation in these cases.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In recent years there has been a great effort to investigate the
advection of inertial particles in fluid flows [1–6]. Understanding
the behavior of inertial particles like aggregates, dust or bubbles
moving in incompressible flows plays an important role in such di-
verse fields as cloud physics [7], engineering [8], marine snow and
sediment dynamics [9,10] as well as wastewater treatment [11].
The dynamics of individual inertial particles is dissipative. This
leads to a behavior that is very different from passive tracers, for
example to a preferential accumulation in certain regions in space,
i.e. on attractors [12–14]. Previous studies concentrated mainly
on non-interacting particles, in spite of the fact that accumulation
leads unavoidably to mutual interactions of different kinds.

It is well known that as a result of collisions between particles,
aggregates can be formed that consist of a large number of primary
particles. Inmany areas of science the formation of such aggregates
and their break-up due to shear forces in the flow plays a very
important role, e.g. in sedimentation of particles in oceans and
lakes [15], chemical engineering systems such as solid–liquid
separation [16,17], aggregation of marine aggregates [18] and
flocculation of cells [19].
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Most approaches of aggregation and fragmentation models are
based on the pioneering work of Smoluchowski [20] and use
usually amean field approachwith kinetic rate equations tomodel
these processes (see e.g. Jackson [9]). However, for particles with
inertia a field theory for the particle velocity has not yet been
formulated. The existence of caustics, meaning that the dynamics
of inertial particles would lead at some points to a multi-valued
particle velocity field [21,22], has prevented such an approach
so far. While attempts have been made to incorporate particle
inertia in approximate ways in a mean field approach [23,24], no
completely satisfying solution has been found yet.

Here we therefore choose a different, individual particle-based
approach, where the dynamics of finite size particles are taken
directly into account. The approach has recently been introduced
in Ref. [25], and discussed in more detail with respect to different
flows in [26]. In the present study we adopt this approach to
study the long-term behavior of particle size distributions that
develop from a balance between aggregation and fragmentation.
In particular, we examine the influence of fragmentation and
aggregate structure on these size distributions.

In most previous works the particles were considered to be
sphereswith a specific density. Inmany realistic cases, for example
for marine aggregates, this is a crude approximation. The complex
structure of particles can have a great influence on particle
dynamics as well as aggregation and fragmentation processes.
Both the actual motion of aggregates and the probabilities for
aggregation and fragmentation are influenced by the structure of
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the particles. In the context of a mean field approach, a complex
particle structure has been incorporated in the past in terms of
a density modification for the particles, e.g. by Kranenburg [27]
or Maggi et al. [28]. However, so far there have been very few
attempts to treat this problem for inertial particles in a flow.
Wilkinson et al. [29] used a model for fractal particles in an
aggregation model for dust particles during planet formation. Our
present work expands the consideration of spherical particles
to model more realistic aggregates. We focus specifically on the
problem of aggregation and fragmentation in systems where the
aggregates can be described as having a fractal-like structure, as is
for example the case for marine aggregates [27]. By this we mean
that on average there exists a power-law relationship between
the characteristic length and the mass of such aggregates. The
exponent of the power law is called the fractal dimension. Such
a characterization in terms of a fractal dimension leads to a
modification of the radii and effective densities of the aggregates
compared to a solid sphere of the same mass. Nevertheless, we
still treat them as effectively spherical for the particle motion,
allowing us to apply the Maxey–Riley equations of motion [30]
with modified parameters.

In this work we choose a parameterization of our model for the
case of a suspension of marine aggregates in the ocean. In this way
we can study our modeling approach for a specific case, but we
emphasize that our model is a general one that can in principle be
used for a wide range of applications where aggregation and frag-
mentation of solid particles play a role. The concept of a fractal-like
structure has been found to be a reasonable first approximation in
many different applications, ranging from colloidal systems to the
flocculation of cells [31]. A different application would require a
different parameterization of the model, but the general approach
introduced here would remain the same.

Since the fractal dimension of marine aggregates can vary
greatly in natural systems [28], we examine its effect on the steady
state particle size distributions in our model. We find that while
the shape of the size distributions does not depend strongly on
the fractal dimension, the average particle size and relaxation time
towards the steady state depend strongly on this parameter.

Even though to a certain extent methods from dynamical
systems theory can usefully be applied, wemention that the entire
problem is much more complex than that of any usual dynamical
system.While particles of a single size move on specific attractors,
aggregation and fragmentation lead to repeated transitions from
one attractor to another one, depending on the aggregate size.
The skeleton of the new dynamics is therefore a superposition
of the different attractors, with transient motion in between. The
structure of the individual attractors and their superposition in
turn influence the aggregation probabilities due to different local
concentrations of particles. Fragmentation is also affected by the
particle dynamics, because shear forces can be locally different in
the flow. Therefore, break-upmay depend onwhether an attractor
for a certain particle size lies in a region with high shear or not.

We show that the combination of aggregation and fragmen-
tation of fractal-like aggregates, superimposed on inertial advec-
tion dynamics, leads to a convergence to a steady state in the
particle size distribution. This steady state is unique for a given set
of parameters. Mainly, we compare three different types of split-
ting, uniform fragmentation, erosion and large-scale fragmenta-
tion. These splitting modes differ in the size of the fragments that
are created during break-up. While erosion leads to one large and
one relatively small fragment, large-scale fragmentation leads to
two fragments of similar size. We find that the transient dynamics
as well as the size distribution in the steady state depend strongly
on the splitting mode. The steady state size distribution found for
large-scale fragmentation conforms best to observation reported
in the literature for the break-up of marine aggregates in tidal ar-
eas [32], indicating that this may be the primarymode of fragmen-
tation in these cases.

Section 2 describes the complete model for advection, aggre-
gation and fragmentation that is used in this work. The equations
of motion for heavy spherical particles (Stokes equation) are used,
but with modified parameters to take a fractal-like structure into
account. Rules governing the aggregation and fragmentation are
introduced. Finally, the model is applied to a simple 3D synthetic
turbulent flow field.

Section 3 then presents a complete analysis of the influence
of all major system parameters on the resulting steady state
size distributions, the average aggregate size in steady state
and the relaxation time towards the steady state. Namely, these
parameters are aggregate strength, fractal dimension of the
aggregates and total particle mass in the system.

Section 4 contains a discussion of the limitations of the model
and the conclusions.

2. Advection, aggregation and fragmentation model

In this section we will present the modeling approach
used in this study, that describes the motion, aggregation and
fragmentation of finite size particles. Firstly, the equations of
motion used for the advection of spherical particles heavier than
the surrounding fluid are presented. Secondly, a model to account
for the fractal-like structure of real aggregates is described. Thirdly,
a full model to include aggregation and fragmentation in this
context is introduced. Finally, a simple 3D synthetic turbulent flow
field is chosen, that will be used to study the aggregation and
fragmentation model in detail.

2.1. Equations of motion for spherical particles

For simplicity, we consider all primary (smallest, unbreakable)
particles to be spherical and denser than the ambient fluid.
We emphasize that the equations of motion presented here for
spherical particles will in the following also be used to describe
the motion of aggregates which usually cannot be assumed to
be spherical [27]. However, to account for properties related to
the fractal-like structure of aggregates some modifications to the
equations of motion (in the form of modified parameters) will
be introduced in the next section. While this represents only a
very simplified model and the surface forces acting on particles
with a complex structure are an extremely complex problem
where to date no satisfying expressions exist, we believe that
this is a reasonable starting point. On the one hand, if one wants
to employ the model discussed here to a specific case where
better expressions are known, this can easily be adapted without
changing the general idea of our approach. On the other hand, it has
been found in many cases (see for example [25,26]) that changes
in the motion of the individual particles usually do not lead to
significant changes in the dynamics of the particle ensemble and
in particular in the collision rates which are relevant for the overall
size distribution in an aggregation–fragmentation system.

Finite size particles usually do not follow exactly the motion
of the surrounding fluid, instead inertia effects lead to deviations
of the particle motion from that of the fluid. For small particle
Reynolds numbers the equations of motion for spherical particles
of finite size are the Maxey–Riley equations [30]. This implies that
locally the flow around the particle is laminar, even though the
overall fluid flow can still be turbulent. While inertia effects can
be fairly small for the primary particles in the case of marine
aggregates (see Section 2.6), the influence of particle inertia
increases with aggregate size and can become quite important for
larger marine aggregates.
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In reality every particle produces perturbations in the flow that
decay inversely proportional to the distance from the particle [33].
In this work we keep the particle concentration n low enough to
be in a diluted regime. For particles of radius r and density ρp
moving coherently within the dissipative scale lp of a flow the
feedback from the particle motion on the flow can be neglected
if nrl2p ≪ 1 [34]. Particle–particle interactions mediated by flow
perturbations are neglected; see the discussion in Section 4.1.

Assuming that the difference between the particle velocity V(t)
and the fluid velocity u = u(X(t), t) at the position X(t) =

(X1(t), X2(t), X3(t)) of the particle is sufficiently small, the drag
force is proportional to this difference. This is called Stokes drag.
With these restrictions the dimensionless form of the governing
equation for the path X(t) of such a particle under the influence of
drag and gravity can then be approximated from the Maxey–Riley
equations as:

V̇ =
1
St

(u − V − Wn), (1)

where n is the unit vector pointing upwards in the vertical
direction (which is the X2-axis in this study).

The particle Stokes number St , i.e. the ratio between particle
response time and flow time scale is defined as

St = (ρP2r2)/(9µτf ) (2)

and the dimensionless settling velocity in a medium at rest W is
defined as

W = 2r2(ρP − ρF )τf g/(9µlf ). (3)

Here, ρF and µ are the fluids’ density and dynamic viscosity and lf
and τf are characteristic length and time scales of the flow.

2.2. Fractal-like aggregates

When looking at real aggregates they are typically not solid
spherical particles but instead canhave a complex structure as they
consist of a number of primary particles. In this model the primary
particles are assumed to be solid spherical particles, following
the equations of motion as described in the last subsection. All
aggregates are assumed to consist of an integer number of such
spherical primary particles. The description of the motion of an
aggregate with a complex structure is still an unsolved problem.
Therefore we only consider the influence of the structure of the
aggregates on their size and effective density. Here,we assume that
aggregates have a fractal-like structure,meaning that there exists a
power-law relationship between the characteristic length and the
mass of such aggregates. The structure of the aggregates can then
be characterized by a fractal dimension df < 3 [35]. Their size can
still be defined approximately by a radius, that can be considered
as the characteristic length scale of the aggregate. This radius rα
of an aggregate that consists of α primary particles and has a given
fractal dimension df is derived in the following.We emphasize that
the number of primary particles α in an aggregate is here also used
as an index to describe a quantity, e.g. the radius or the volume,
that corresponds to an aggregate consisting of α primary particles.

The solid volume, i.e. the volume of an aggregate that is filled
with particulate matter follows from the definition of the fractal
dimension df (see e.g. [31]) as

Vα,solid = cdf r
df
α , (4)

where cdf is a proportionality constant that can depend on df . As
mass conservation must be fulfilled we get

Vα,solid = αV1 = α
4
3
πr31 , (5)
where r1 and V1 are the radius and volume of a primary particle,
respectively. The proportionality constant cdf can be derived from
Eqs. (4) and (5) by setting α = 1 [36]

cdf =
4
3
πr

3−df
1 . (6)

In combination with Eqs. (4) and (5) this leads to

rα = α1/df r1 (7)

for the radius of an aggregate. It is evident that due to the fractal-
like structure the radius rα is greater than that for a completely
solid particle of the same mass.

A part of a fractal-like aggregate, i.e. of the total volume encased
by an aggregate

Vα,total =
4
3
πr3α, (8)

is not filled with matter but with the surrounding fluid. The
aggregate density therefore decreases with an increasing number
α of primary particles in the aggregate. From mass conservation it
follows that

ραVα,total = ρ1Vα,solid + ρF (Vα,total − Vα,solid). (9)

Solving Eq. (9) for ρα and substituting Vα,total and Vα,solid leads to

ρα = ρF + (ρ1 − ρF )α
1−3/df . (10)

Going back to the equations of motion we now see that as far
as the particle dynamics are concerned, a first approximation for
the fractal-like aggregates is to treat them as spheres with an
increased radius rα compared to solid spheres of the same mass,
but a reduced density ρα , because of the fluid encased in their
spherical volume.

This leads to amodification of the particle Stokes number St and
dimensionless settling velocityW for fractal-like aggregates in the
equations of motion (1), when compared to a solid sphere:

Stα = (ρα2r2α)/(9µτf ) (11)

Wα = 2r2α(ρα − ρF )τf g/(9µlf ). (12)

For fractal-like aggregates these parameters replace St andW in Eq.
(1), leading to a motion with different parameters for aggregates
with different numbers α of primary particles.

2.3. Aggregation model

The physical, chemical or biological process that leads to
aggregation of particles can vary from case to case and is not
examined in detail here, as this is beyond the scope of this study.
Instead, a general model is used. The only assumption is that
during a collision particles can somehow stick together and form
an aggregate. No detailed mechanism of sticking is considered.

Whenever the distance between two particle centers becomes
smaller than the sum of their radii, these two particles aggregate
immediately, creating a new particle that replaces the two old
particles. For two particles of radii aαi and aαj the new number of
primary particles after aggregation is obviously αnew = αi + αj,
leading to a new radius aαnew , which can be derived from Eq. (7).
The position of the new particle is the center of gravity of the old
particles. The velocity of the new particle follows frommomentum
conservation.

2.4. Fragmentation model

The physical process leading to fragmentation can vary as
well. While there are detailed models for the fragmentation of
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e.g.water droplets [37], themechanismof fragmentation ofmarine
aggregates is not well understood. Even experiments give no
clear indication how fragmentation of such aggregates occurs in
detail. Therefore only a few theoretical approaches exist for this
process [38,39]. In this work amodel for fragmentation is used that
is only based on some very general properties of the aggregates
involved.

In the following the fragmentation is described in two parts,
that need to be clearly distinguished. Firstly, a splitting condition,
that determines if a fragmentation event takes place and secondly,
a splitting rule, that determines how fragmentation takes place, are
defined.

2.4.1. Splitting condition
The splitting condition describes whether fragmentation of an

aggregate takes place. Generally, only particles that are composed
of more than one primary particle can fragment. The break-up of
an aggregate occurs when the hydrodynamical forces Fhyd acting
on the aggregate exceed the forces Fagg holding the particles in
the aggregate together. The criterion for break-up can therefore be
expressed as

Fhyd/Fagg > const. (13)

For aggregates with a fractal-like structure, consisting of a number
of solid spheres, the hydrodynamical forces in the dissipative range
where viscous forces dominate is proportional to the shear force
integrated over the surface of the aggregate [40]. For a fracture at
a distance ζ · rα, ζ ∈ [0, 1[ from the equator of the aggregate this
results in

Fhyd ∝ S(1 − ζ )r2α, (14)

where S is the shear rate in the flow.
For a porous aggregate Ruiz and Izquierdo [41] give the force

Fagg holding an aggregate together as proportional to the area of
constituent matter in a cross-section of the aggregate. Ruiz et al.
then related Vα,solid to the porosity of an aggregate. Here, we
instead rewrite this relationship in terms of the fractal dimension
df . For fractures across the equator of an aggregate the area is
proportional to V 2/3

α,solid ∝ r21 (
rα
r1

)2df /3. For a fracture at a distance
ζ · rα, ζ ∈ [0, 1] the area of constituent matter in the cross-section
is reduced. It equals the area of a cross-section across the equator
of an aggregate with decreased radius (1− ζ 2)1/2rα . In general we
get

Fagg ∝ (1 − ζ 2)df /3r2α(rα/r1)2df /3−2. (15)

The splitting condition (13) then becomes

S ·
(1 − ζ )

(1 − ζ 2)df /3
·


rα
r1

2−2df /3

> γ , (16)

where the proportionality constant γ is determined by the force
holding the primary particles in an aggregate together. It is
therefore ameasure of the aggregate strength. Solving for the shear
rate S and using Eq. (7) leads to

S > γ
(1 − ζ 2)df /3

(1 − ζ )
(rα/r1)−2+2df /3

= γ
(1 − ζ 2)df /3

(1 − ζ )
α2/3−2/df . (17)

It can be seen that for a fractal dimension df < 3 the critical
shear force required to break up an aggregate decreases with the
aggregate size, i.e. larger aggregates are less stable than smaller
ones. Additionally, the critical shear required for fragmentation
is the smallest for fractures across the equator of an aggregate
(ζ = 0) and increases with increasing distance from the equator.
The shear force S is given by

S =


2
−
i,j

SijSij

(1/2)

, (18)

where Sij =
1
2 (

∂ui
∂Xj

+
∂uj
∂Xi

) is the rate-of-strain tensor in the flow.

2.4.2. Splitting rules
The splitting rules describe how an aggregate will split, when

the splitting condition is met. During fragmentation only particles
whosemass is an integermultiple of themass of a primary particle
are created. This means that, even though they have become part
of some larger aggregates, primary particles can never be broken
up. Only the connection among each other can break. Different size
distributions of the fragments are possible.

When a splitting condition is met, an aggregate consisting of
αold primary particles is split into two fragments with the number
αk of primary particles of each fragment being a random fraction
of the original number αold.

Typically, one distinguishes between two differentmechanisms
of fragmentation [42]. For each mechanism fragmentation occurs
on average at a different distance from the equator of the
aggregate, leading to different distributions of the fragments αk.
This can be expressed as different values of ζ , the fraction of the
distance from the equator of the aggregate where fragmentation is
assumed to take place (see Section 2.4.1). Large-scale fragmentation
happens when an aggregate is ‘pulled apart’ somewhere close
to the equator, leading to fragments of similar size. This is
characterized by ζ = 0. Erosion happens when shear forces act
closer to the edge of an aggregate [43], implying that 0 < ζ < 1. In
this case only few primary particles are split off from the aggregate
(see Fig. 1).

Here we will compare three different fragmentation modes,
with different distributions for the number of primary particles
in the fragments. First a large-scale splitting rule, second an
erosion splitting rule, and third a uniform splitting rule. In most
realistic cases one expects different fragmentation modes to
appear together, even though with slightly different probabilities.
However, here we apply these fragmentation modes separately
to determine their individual influence on the aggregate size
distribution.

1. For both large-scale fragmentation and erosion we assume that
there is a preferred distance ζ rα, ζ ∈ [0, 1[ from the center
of the original aggregate where fragmentation occurs. The two
mechanisms are then characterized by different values of ζ .
A fracture at a distance ζ rα leads to a fragment containing
a fraction Vfr/Vα,total of the original volume, where Vfr =

πr3α( 2
3 − ζ +

ζ 3

3 ). Since ζ is assumed to be only the average
distance of a fracture from the equator of the aggregate,
for each fragmentation event we choose the number of
primary particles in the fragment randomly from a Gaussian
distribution, centered around αold · Vfr/Vα,total. This allows for
a certain variation of the fragment size, meaning that

α1 =


4
3


2
3

− ζ +
ζ 3

3


+ ξ


αold, (19)

where ξ is a random number from a normal distribution with
mean 0 and standard deviation σF and the right-hand side of
Eq. (19) is rounded towards the nearest integer. We note that
our results do not depend strongly on the choice of σF , here
we choose σF = 0.2 which results in a typical variation of
one primary particle between fragments coming from identical
aggregates. As an additional restriction it is required that 1 ≤

α1 < αold, otherwise a new random number ξ is chosen.
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(a) Large-scale fragmentation. (b) Erosion.

Fig. 1. Sketch of different splitting mechanisms: (a) large-scale fragmentation where an aggregate is pulled apart along the equator, (b) erosion where small parts are split
off from the aggregate surface.
For large-scale fragmentation, aggregates are assumed to break
along the equator into two fragments of similar size, which
corresponds to ζ = 0. For erosion, fragmentation is assumed
to occur at a distance from the center, leading to one aggregate
being much smaller than the other. This corresponds to 0 <
ζ < 1. Here, we choose ζ = 0.6 for erosion, which leads to
smaller fragments containing on average 10 percent of themass
of the original aggregate. Similar results for erosion were found
for other values of ζ . However, if ζ becomes too large particles
will no longer fragment because the critical shear required to
break off a fragment increases greatly as ζ → 1.

2. In the uniform splitting rule the number of primary particles for
the first fragment is chosen from a uniform distribution in the
interval I = [1, αold[. The uniform splitting rule is a simplified
model for the full case where both large-scale fragmentation
and erosion of an aggregate can happen. However, all sizes of
fragments occur here with the same probability.

For all the three cases the remaining aggregate consists of α2 =

αold − α1 primary particles.
Whenever a particle is split according to one of the splitting

rules, all parts keep the velocity of the original particle. That
way momentum is conserved. The first fragment remains at the
position X = (X1, X2, X3) of the original particle. The center of
the other fragment is placed along a line segment in a random
direction, so that for the two fragments the distance equals the sum
of the radii.

For each fragment, the splitting condition is checked again and
if it is met, the whole process is repeated until no fragment fulfills
the fragmentation condition. This leads to a splitting cascade and
aggregates can break up into more than two fragments, if the
aggregate is large enough or shear forces are strong enough. This
is consistent with experimental observations of marine aggregates
that larger particles tend to break intomore fragments [44]. In that
way ternary, quaternary and other splitting types besides binary
splitting naturally appear in this model.

Here, large-scale fragmentation and erosion are treated as two
separate processes to study the influence of fragmentation at
certain distances ζ on the aggregate size distributions in the steady
state. In reality, aggregates will break with certain probabilities
at certain distances ζ from the center but there will be no
two separate processes. Therefore, depending on the probability
distribution for fragmentation at a certain distance one can expect
different combinations of the steady state size distributions found
in this work. The uniform fragmentation rule represents one such
possible combination, where fragmentation at all distances ζ
appears with the same probability.

2.5. Fluid flow

As a fluid velocity field we consider synthetic turbulence
in the form of a space-periodic, isotropic and homogeneous
Gaussian random flow [45], since it allows us to perform long-term
simulations at reasonable computational costs. We use a smooth,
incompressible flow sincewe focus on effects typically taking place
on scales smaller than the Kolmogorov scale of a turbulent flow.

The flow is written as a Fourier series

u⃗(X⃗, t) =

−
k⃗∈Zd\{0⃗}

⃗̂u(k⃗, t)ei
2π
L k⃗·x⃗, (20)

where ⃗̂u(k⃗, t) ∈ Cd are the Fourier components, with the property
⃗̂u(−k⃗, t) = ⃗̂u∗(k⃗, t) because u⃗(X⃗, t) is real valued. The star denotes
complex conjugation. By taking for ⃗̂u(k⃗, t) the projection of a
different vector ⃗̂v(k⃗, t) ∈ Cd onto the plane perpendicular to the
wave vector k⃗, incompressibility is ensured. The vector ⃗̂v(k⃗, t) is
assumed to be an Ornstein–Uhlenbeck process. It is a solution of
the complex-valued stochastic differential equation

d⃗̂v = −ξ(k⃗)⃗̂vdt + σ(k⃗) ⃗dW , (21)

with ξ(k⃗), σ (k⃗) ∈ R, where ⃗dW is a d-dimensional complex
Wiener increment. The parameters ξ(k⃗), σ (k⃗) need to be chosen in
such a way that the flow u⃗(x⃗, t) reproduces some features of a real
turbulent flow, in this case we choose the energy spectrum in the
dissipative range of a turbulent flow. Here we use the exponential
spectrum suggested by Kraichnan

E(k) = C · (2πklf /L)3 exp(−β[2πklf /L]), (22)

with β = 5.2 [46] and a suitably chosen normalization constant
C . The constant lf is the length scale of coherent structures in the
flow and L is the spatial period of the flow. We choose ξ(k) = 1/τf
and σ(k) =


E(k)/τf . The constant τf is then the correlation

time of the flow. The normalization constant is chosen such that
a desired value of the mean shear rate ⟨S⟩ is obtained. The flow
is then characterized by the correlation time τf , the correlation
length lf and the mean shear rate ⟨S⟩.

If a fluid velocity field with few Fourier modes is chosen, no
interpolation of the velocity at particle position is required, since
it can be calculated from direct summation of the Fourier series.
This allows for a resolution of the fine structures of the particle
distribution in space.

2.6. Implementation

Next, we will describe some specifics of the numerical
implementation and the system parameters used in this work.

For the simulations in this work we choose particle properties
similar to those of marine aggregates in coastal waters. The
primary particles considered in this model have a radius r1 =

4 µm, density ρ1 = 2.5 × 103 kg/m3 and mass m1 = ρ1
4
3πr31 .

The relevant characteristic length scales for marine aggregates in
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coastal areas of the ocean are typically the Kolmogorov scales.
Shear rates in coastal areas can be of order 1 s−1, leading to
Kolmogorov length and time scales of lf = 1 mm and τf =

1 s, respectively [27]. Using these scales to make the equations of
motion of the particles dimensionless leads to a Stokes parameter
of St1 = 10−5 and a dimensionless settling velocity of W1 = 0.1
for the primary particles.

The aggregate strength parameter γ is fixed at γ = 8, unless
otherwise mentioned.

The number of aggregates N(t) changes over time due
to aggregation and fragmentation leading to a distribution of
aggregates of different radii in the flow. However, the total mass
M =

∑N(t)
i=1 αim1 remains constant during one simulation. As initial

condition we take 105 primary particles and no larger particles.
Furthermore particles are uniformly distributed over one periodic
cell of size L3 of the configuration space, with velocities matching
that of the fluid. This choice fixes the total mass of the system to be
M = 105m1. For the flow we choose a periodic cube with L = 4lf ,
so that we obtain a volume fraction of about 0.4 × 10−3.

The fractal dimension df of marine aggregates varies between
approximately 1.5 for very open, fragile aggregates like marine
snow in the open ocean and approximately 2.5 for stronger,
compact aggregates. The average is typically around 1.9−2.0 (see
e.g. [15]), therefore in the following we choose df = 2.0 unless
otherwise mentioned.

As a first approximation the aggregation and fragmentation
processes are assumed to have no effect other than to change
the size of the particles and the effective density, and therefore
do not directly influence the motion of the particles. Hence all
three aspects, motion, aggregation and fragmentation that define
the whole system can be modeled separately. Aggregation is
checked constantly during the integration, whereas fragmentation
is applied after every time step of the system.

1. All particles move in the flow for one time step dt using the
equations of motion described in Section 2.1. We emphasize at
this point that each aggregate size is characterized by different
values of Stα and Wα , so that the motion of aggregates of
different sizes is governed by the same equations but with
different parameters.
The length of the time step dt needs to be chosen small enough
so that the simulation result becomes independent of this
values, here we found dt = 0.01 s to be sufficiently small.
Because of the spatial periodicity of the flow, all particle
dynamics will be folded back onto one L3 cell in the flow, using
periodic boundary conditions. Usually particles do not stay in
one cell of the flow, i.e. they are not suspended in the flow.
Instead particles will generally fall downwards through the
flow, if they are heavier than the fluid [47]. This means that
folding the dynamics of the particles back onto a single cell
is only a convenient way to visualize an infinitely extended
system and does not completely mirror what one would see
in a comparable experiment. However, if particles are initially
distributedhomogeneously over thewhole configuration space,
the total particle mass in each periodic cell remains the same
over time. Therefore even if aggregation and fragmentation are
included, it is sufficient to restrict our studies to one unit cell
with periodic boundaries.

2. Particles aggregate upon collision, i.e. if their distance becomes
equal to the sum of their radii. To ensure that no collisions
are missed, we use an efficient event-driven algorithm for
particle laden flows (cf. Sigurgeirsson et al. [48] for details).
Computationally, the aggregation process is the most costly
component of the simulation. In particular, the naive approach
to check which particles are colliding involves looping over all
pairs of particles and therefore scales as O(N2), where N is the
number of particles. Therefore, here a linked-list algorithm [49],
sometimes also called link-cell algorithm is used to compute the
distance between particles. The configuration space is divided
into grid cells of size ϵ, where each grid cell stores information
on which particles it contains. The looping over particle pairs
to calculate their distance is then done only over particles in a
given grid cell and the neighboring cells. If the grid cell size ϵ
is small enough (but larger than the largest appearing particle
size) the link-cell algorithm scales as O(N) and is thus much
faster than the naive approach.

3. After each time step dt particles can fragment if the shear
at their position exceeds a critical value. If that is the case,
new fragments are created according to the rules described in
Section 2.4.2.

We note that at first glance it looks as if aggregation and frag-
mentation are treated very differently, in particular aggregation
seems to be independent of the aggregate strength γ in thismodel.
However, this is not the case. Initially all particles that come into
contact aggregate, i.e. here the aggregation probability upon col-
lision is equal to one. But when looking at aggregation and frag-
mentation together over one time step dt it is in fact smaller than
onebecause someaggregates that just formedduring this time step
will break-up again. These are the aggregates where the aggregate
strengthγ is not strong enough to hold the aggregate together. This
means that after one time step only some of the particles that came
into contact will actually have aggregated and this number will
depend on the aggregate strength γ . This means that both aggre-
gation and fragmentation probabilities depend on the same aggre-
gate property, which one would expect in reality.

3. Simulation results

In the following sectionwewill present simulation results using
the model described above, to determine the influence of the
different splitting rules on the resulting particle size distributions.
As the parameters used in the model system can vary greatly in
natural systems, we examine the sensitivity of the system with
regard to the following parameters: aggregate strength γ , fractal
dimension df and total number of primary particle N .

3.1. Measured quantities

Frompreviousworks it is known that the balance of aggregation
and fragmentation typically leads to a steady state of the particle
size distribution [50]. This follows from the fact that normally
aggregation dominates for small sizes, whereas fragmentation is
the dominant process for large sizes. In addition to studying this
size distribution of the particles in the steady state, we introduce
different measures to characterize first the approach to the steady
state and then the steady state itself.

To follow the convergence of the system towards a steady state,
we use two different quantities. The first quantity that wemeasure
during the simulations is the average number of primary particles
per aggregate, defined as

⟨α(t)⟩ =

−
α

αNα(t)/N(t). (23)

In the context of our model 2⟨α(t)⟩ corresponds to the ‘mean
equivalent circular diameter’ that is often used as a measure
in experiments with marine aggregates [32]. We will use this
quantity as a first estimate whether the particle size distribution
has converged to a steady state and to follow the evolution of the
particle size distribution towards the steady state.

A second quantity of the aggregation and fragmentation process
that may be experimentally measured is the time it takes to
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Fig. 2. Average number of primary particles as a function of time for aggregate
strength γ = 9 and aggregate fractal dimension df = 2.0 for (a) large-scale
fragmentation (b) erosion and (c) uniform fragmentation.

reach the steady state. Especially in technical applications this
can be an important quantity, where processes need to be timed
appropriately to allow for a smooth work flow. Here we introduce
a measure for this relaxation time in our model and show how
different systemparameters influence this time to reach the steady
state.

We define the relaxation time τ∞ as

τ∞ =

∫
∞

0
dt(|1 − ⟨α(t)⟩/α∞|). (24)

⟨α(t)⟩ is a running (time) average of the average number
of primary particles in an aggregate. It is used to remove
fluctuations due to the periodic changes in the flow. This definition
of the relaxation time is analogous to the definition of the
correlation time for stochastic processes as the integral over
the autocorrelation function. For example, for an exponential
relaxation process ∝ e−t/tR Eq. (24) leads to the expected result
of τ∞ = tR. However, Eq. (24) stays an appropriate measure for
more irregular relaxation processes.

As a simple measure to characterize the steady state of the
particle size distribution we use the average number of primary
particles in an aggregate in the steady state that is defined as
α∞ = lim

t→∞
⟨α(t)⟩. (25)

3.2. Approach to a steady state

First, we use the average number of primary particles per
aggregate to follow the convergence of the systems towards a
steady state for all the three splitting rules (Fig. 2). Our initial
condition is always a uniform distribution of primary particles.

Initially, aggregation leads to a fast increase in the average num-
ber of primary particles per aggregate similar for all splitting rules.
Then fragmentation sets in and a balance between aggregation and
fragmentation is reached,with a different steady state average par-
ticle size for the different splitting rules. α∞ fluctuates over time,
due to the statistical fluctuations in the flow. Large-scale split-
ting leads to the highest average number of primary particles per
aggregate, erosion to the lowest and uniform fragmentation is in
between. This can be intuitively understood, since for ero-
sion typically more fragments are created than for large-scale
Fig. 3. The histogram shows the percentage of fragmentation events for the
number of fragments created in that event, for the same simulation run as shown
in Fig. 2. Large-scale fragmentation leads typically to the smallest number of
fragments, while erosion typically generates most fragments.

fragmentation (see Fig. 3). When a particle gets eroded, one of the
fragments is usually close to the same size as the original aggre-
gate. This leads to a high probability that this fragment will break
again and therefore inmany cases fragmentationwill not be binary,
butmany fragments will be created. For large-scale fragmentation,
aggregates will typically break only once, since both fragments are
much smaller than the original aggregate.

In general, it is less likely in the case of large-scale fragmen-
tation that a large number of fragments is created. This leads on
average to a larger average aggregate size than for erosion.

The different splitting rules lead to very different distributions
(cf. Fig. 5). Large-scale fragmentation creates a distribution with a
single peak at intermediate radii and no particles of the smallest
sizes. The right-hand side of the aggregate size distribution for
large-scale fragmentation follows approximately an exponential
decay. The size distribution found for large-scale fragmentation
corresponds well to those observed for marine aggregates [32]
where exponential size distributions have also been reported. This
may indicate that large-scale fragmentation is indeed the primary
mode of break-up for many marine aggregates, as proposed in
some works (see e.g. Ref. [18]) and that erosion plays a very small
role there.

By contrast, the size distribution for erosion has two different
regimes, with a sharpmaximum at the smallest aggregate size and
a slower decaying tail at larger aggregate sizes.

Uniform splitting, where both larger and smaller fragments
are created leads to a plateau in the size distribution at smaller
aggregate sizes and an exponential decay towards larger aggregate
sizes.

Many of the system parameters that appear in our model can
vary much in natural systems, in particular the aggregate strength,
the number of primary particles involved and the fractal dimension
of aggregates. In the followingwe therefore examine the sensitivity
of our results to these parameters.

3.3. Influence of aggregate strength

To determine the influence of the forces holding the aggregates
together on the resulting steady state size distribution, α∞ is
computed for different values of the aggregate strength γ . α∞

increases with γ for all fragmentation rules. The increase is the
fastest for large-scale fragmentation and the slowest for erosion
(see Fig. 4(a)).

The relaxation time τ∞ as a function of γ is shown in Fig. 4(b).
For all the three fragmentation rules, the relaxation time is
independent of the value of γ .
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Fig. 4. Influence of aggregate strength γ . (a) Average number of primary particles
per aggregate in steady state α∞ and (b) relaxation time τ∞ for the approach to the
steady state for different values of the aggregate strength γ . Error bars are obtained
from an ensemble of five different realizations of the carrier flow.

The relaxation time is defined relative to the average number of
primary particles in steady state α∞ and therefore the actual value
of α∞ does not influence the relaxation time.

When looking at the particle size distribution in steady state
(Fig. 5), the difference between the three fragmentation rules
is again clearly visible. However, this difference does not seem
to depend on the value of the aggregate strength γ , as the
distributions for each fragmentation rule remain qualitatively the
same for different γ , but getting wider with increasing aggregate
strength.

3.4. Influence of the volume fraction

To determine the influence of the volume fraction, i.e. the total
number of primary particles N0 in the system, on the resulting
size distribution, α∞ is computed for different values of N0. α∞

increases with increasing number of primary particles, due to
the increased number of collisions. Again, the average number
of primary particles per aggregate in the steady state α∞ is the
largest for large-scale fragmentation and the smallest for erosion.
The increase in α∞ with N0 is almost linear for all the three
fragmentation rules.

The relaxation time (see Fig. 6(b)) decreases for increasing M
for all the three fragmentation rules. This again shows that the
relaxation time does not depend strongly on the absolute value
of α∞. Instead, this indicates that the relaxation time is mainly
determined by the collision rate between the particles. While a
change in fragmentation rate, for example due to increased γ does
not affect the relaxation time, an increased collision rate, due to
a

b

c

Fig. 5. Histogram of the particle size distribution. Number of particles versus the
radius a for different values of γ for (a) large-scale splitting (b) erosion splitting and
(c) uniform splitting.

an increased number of primary particles in the system seems to
decrease the relaxation time significantly.

Again, the size distributions (Fig. 7) remain clearly different for
the different fragmentation rules, independent of the total number
of primary particles N0 in the system.

3.5. Influence of the fractal dimension

The last important system parameter that typically varies a lot
in natural systems is the fractal dimension df of the aggregates [15].
To determine the influence of the fractal dimension of the
aggregates, α∞ is computed for different values of df . For all the
three fragmentation rules we find a drastic increase in the average
number of primary particles per aggregate in the steady state (see
Fig. 8(a)) with increasing df . In the case of varying the fractal
dimension this increase in α∞ is much more drastic than that
for the other parameters studied in the previous sections. α∞
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Fig. 6. Influence of the total number of primary particles N0 . (a) Average number
of primary particles per aggregate in steady state α∞ . (b) Relaxation time τ∞ for
the approach to the steady state for different values of the total number of primary
particles N0 . Error bars are obtained from an ensemble of five different realizations
of the carrier flow.

increases by approximately a factor of 100 between df = 1.5
and df = 2.3. Initially, one might assume that the increase of the
average number of primary particles per aggregate in the steady
state is only due to the aggregates becoming more compact as the
fractal dimension is increased and does not really reflect a change
in the aggregate size. However, plotting the average radius of the
aggregates in the steady state as a function of df (inset in Fig. 8(a))
shows that there is also a significant increase in the aggregate size
with increasing df .

This increase when varying the fractal dimension can be
understood by looking at the stability condition for the aggregates
(cf. Eq. (17)). The stability curve defined by Eq. (17) becomes
almost horizontal for larger aggregate sizes. The larger the df the
greater the range of aggregate sizes becomes where increasing
the size has almost no effect on the stability (with the limit of
df = 3 where stability is independent of the size). Increasing the
aggregate strength γ also leads to larger aggregates being stable at
a given value of shear force. However, the increase in the range of
stable aggregate sizes is much lower.

We note that the relaxation time increases weakly with df for
all splitting rules (see Fig. 8(b)). Increasing the fractal dimension
leads tomore compact aggregates, i.e. less overall volume occupied
by aggregates and therefore smaller collision probabilities. This in
turn increases the relaxation time. This effect appears strongest for
erosion, where the relaxation time becomes very short for small
values of df whereas for large-scale fragmentation and uniform
fragmentation there seems to be a saturation of the relaxation time
for values of df < 2.

Once again, the shapes of the particle size distributions retain
their characteristic differences for the different fragmentation
rules. Aside from the increasing fluctuations in the distributions
a

b

c

Fig. 7. Histogram of the particle size distribution. Number of particles versus the
radius a for different values of the total number of primary particlesN0 for (a) large-
scale splitting (b) erosion splitting and (c) uniform splitting.

for increasing df , due to the decreasing number of aggregates
in the system, the qualitative shape of the distribution remains
characteristic for the fragmentation rule, independent of the value
of df (Fig. 9).

The range of df that is observed in natural systems reaches
even further than df = 2.3, up to approximately 2.6. However,
this is not shown here, because due to the drastic increase in the
average number of primary particles per aggregate only very few
aggregates would remain for such high values of df (if the other
parameters remain fixed). Hence, no meaningful statistics or size
distributions could be obtained.

This is a computational limitation of the current model, due to
the finite number of primary particles that can be studied. While it
occurs for every parameter, e.g. increasing the aggregate strength
γ too far has the same effect, it is the most pronounced for the
fractal dimension. Small increases of the fractal dimension lead to
proportionally much larger increases in the mean aggregate size,
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Fig. 8. Influence of the fractal dimension df of the aggregates. (a) Average number
of primary particles per aggregate in steady state α∞ , the inset shows the relative
average size of aggregates in the steady state r∞/r1 = α

1/df
∞ of the aggregates as

a function of df and (b) relaxation time τ∞ for the approach to the steady state for
different values of the fractal dimension df of the aggregates. Error bars are obtained
from an ensemble of five different realizations of the carrier flow.

thereby reducing the total number of aggregates in the systemvery
quickly.

4. Discussion and conclusions

To conclude this work, in the final section we provide a brief
discussion of the limitations of the particle-based aggregation and
fragmentation model proposed here and conclude with a brief
summary of our results.

4.1. Limitations of the model

In this work we showed the application of our particle-
based model to the problem of aggregation and fragmentation of
marine aggregates. We emphasize that the particle-based model
introduced here is a very general model that can be applied to a
wide range of other problems, for example in chemical engineering
and has the potential to be a useful addition to the usual modeling
approaches for aggregation and fragmentation. However, there are
a number of limitations that should be pointed out. Some of these
are due to physical aspects of the problem that are not yet fully
understood and can therefore not be captured, others are mainly
due to computational limitations.

The main physical aspect of the problem that is still not fully
understood is the details of the fragmentation mechanism. In
particular for marine aggregates, also for many other systems
where aggregates with a fractal-like structure appear, there still
exists no satisfying microscopic theory for the fragmentation
process. The fragmentation model used in this work can therefore
a

b

c

Fig. 9. Histogram of the particle size distribution. Number of particles versus
the radius a for different values of the fractal dimension df of the aggregates for
(a) large-scale splitting (b) erosion splitting and (c) uniform splitting.

only be considered as a very simplified view on the problem and
most likely does not capture many aspects of the real situation.
However, it serves as a useful basis to consider the qualitative
impact of different fragmentation mechanisms on the overall size
distribution of the aggregates.

Additionally, the equations ofmotion for fractal-like aggregates
can be expected to be very different from the simple equations
used here. The inclusion of the increased radius and effective
density which was done in this work represents a very simple
modification of the relevant forces, such as the drag forces acting
on the particle and is unlikely to capture the full complexity of
the problem. However, it is a useful approximation to consider the
impact of a complex structure on the steady state size distribution.

Furthermore, the description of marine aggregates as having a
fractal-like structure is only a first approximation. Measurements
have shown that when averaged over many different individual
aggregates there exists a power-law relationship between the
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aggregate size and mass. This is certainly not true for each
individual aggregate, but has been found to be a reasonable model
in many cases [27]. In addition, the concept of a fractal dimension
is usually only valid over a certain size range of aggregates.
Aggregates that consist of only one or two primary particles
generally do not have the same structure as a larger aggregate.
In the context of this work it is possible to consider as primary
particles the smallest fraction of an aggregate that still has the
same power-law relationship as the large aggregates, i.e. as the
fractal generator of the aggregate (see also the comment [36]).

In addition, there are a number of aspects that are theoretically
understood quite well, but cannot be included in such a model
due to computational limitations. First among these is the two-
and three-way coupling between the particles and the surrounding
fluid. Two-way coupling, i.e the feedback of the particles on the
fluid can in principle be included but requires solving the equations
of motion for the fluid together with the equations for the particles
and therefore leads to a drastic increase in computational effort.
In addition, as the particle radius r is assumed to be small, the
feedback from the particle motion on the flow is usually not
significant [51] and can therefore be neglected. The inclusion of
three-way particle–flow coupling, i.e. the interaction of particles
through the fluid is usually a bigger challenge. In particular at low
Reynolds numbers this interaction affects the particle motion even
at low particle concentrations [52]. While there exist a number
of interaction models that are able to compute this three-way
coupling (see e.g. [53]) they are typically limited to systems with
only a few particles because of the computational costs involved.
While the modification of individual particle trajectories can be
significant, the main effect for the collective aggregation and
fragmentation dynamics of an ensemble of particle is typically a
reduction of the collision rates. This can be approximated in a
simple way by introducing a collision efficiency, i.e. a probability
for aggregation upon collision. However, the introduction of such
a collision efficiency does not qualitatively affect the results shown
here. Additionally, the fluid dynamic interaction of permeable
particles such as particles with a fractal-like structure discussed
here are not understood very well. It is likely that flows through an
aggregate can lead to very different interactions between fractal-
like particles compared to solid spherical particles (see e.g [54,55]),
in particular such permeability effects may actually decrease the
influence of hydrodynamic interactions between the aggregates
compared to the case of completely solid particles [56].

A further limitation for the applicability of the model is
the number of primary particles that can be computationally
considered. The present computational capacities do not allow us
to apply this approach to large systems, e.g. models that are used
to study aggregation, fragmentation and aggregate transport on
spatial scales up to several hundred kilometers. For large systems
a mean field approach is therefore much better suited. However,
for many small systems and also for the principle study of the
processes involved, this is not a severe limitation.

Furthermore, as the model was tested with a simple 3D
synthetic turbulent flow, it is an open question how representative
the results are to draw general conclusions about the evolving
steady state size distribution. In particular intermittency effects
and clustering of particles on the inertial scale of a real turbulent
flow may significantly affect aggregation and fragmentation
probabilities. In order to achieve more general statements it will
therefore be necessary to study the model and the resulting
size distribution for various, more realistic flows, for example
using DNS simulations of real turbulent flows. Nevertheless,
the influence of different system parameters and fragmentation
mechanisms has been tested and gives a detailed insight for this
specific flow.
4.2. Summary

In the present study we described in detail a coupled model
for advection, aggregation and fragmentation of individual inertial
particles with a fractal-like structure. We showed how typical
properties of aggregation and fragmentation processes can be
incorporated. In particular, we introduced an approximate way,
using modified aggregate sizes and effective densities, to account
for the fractal-like structure that is common for aggregates inmany
natural systems. The model represents an alternative approach to
the mean field theory that is usually used to describe aggregation
and fragmentation processes and was used to gain insights
into principle behavior of fractal-like aggregates under different
fragmentation mechanisms. The model was parameterized for
the case of a suspension of marine aggregates in the ocean, but
can in principle be used in a wide range of applications such
as cohesive sediment dynamics, the flocculation of biological
cells or solid–liquid separation systems in chemical engineering
[27,19,17].

We observed the development of a balance between aggrega-
tion and fragmentation, leading to a steady state. It was found
that with increasing aggregate strength the mean aggregate size
in steady state increases, whereas the relaxation time stays con-
stant. With increasing fractal dimension the relaxation time to-
wards steady state and the mean aggregate size in steady state
increase. By contrast, an increase in particle volume fraction de-
creases the relaxation time due to higher collision probabilities and
increases the steady state mean size. In general, increased aggre-
gation rates or decreased fragmentation rates lead to an increased
mean aggregate size in steady state. The relaxation time decreases
for increasing aggregation rates, but does not changewith decreas-
ing fragmentation rates.

In the context of our model different types of fragment size dis-
tributions can easily be tested and compared with each other. We
comparednumerical results for three commonly useddistributions
of fragment sizes, large-scale fragmentation where fragments typ-
ically have similar sizes, erosion, where one fragment is typically
very small and uniform fragmentation, where all fragment sizes
appear with the same probability. Large-scale fragmentation and
erosion were treated as two separate processes to study the in-
fluence of fragmentation at a distance ζ from the center of the
aggregate on the size distributions in the steady state. In reality,
aggregateswill breakwith certain probabilities at a distance ζ from
the center but there will not be two separate processes. There-
fore, depending on the probability distribution for fragmentation
at a certain distance, one can expect different combinations of the
steady state size distributions found in this work.

One such combination, where fragmentation at all distances
ζ appears with the same probability was given by the uniform
fragmentation rule. Uniform fragmentation leads to a distribution
with a broad plateau for small aggregate sizes and an exponential
tail towards larger aggregate sizes. A distribution with two
different regimes evolves for erosion-like fragmentation. Large-
scale fragmentation leads to an exponential tail of the particle
size distribution. Similar shapes of the size distribution of the
aggregates for large-scale fragmentation have also been found in a
number of theoretical and experimental studies [16,57], indicating
that our model is able to reproduce the major features of such
aggregation–fragmentation processes. Such an exponential tail has
also been measured in field studies of marine aggregates [32]. This
may indicate that large-scale fragmentation could be the primary
mode of break-up for such aggregates, as has previously been
discussed by e.g. Thomas et al. [18].

In all cases the steady state particle size distribution follows
a specific shape for each fragmentation rule. This indicates that
the fragmentation process is most relevant for the shape of
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the distribution. The ratio of aggregation and fragmentation
probabilities, mainly influenced by the aggregate strength, total
particle volume fraction and fractal dimension, determines the
mean aggregate size in steady state and the relaxation time. Out
of these three parameters the fractal dimension has the strongest
effect since it influences both aggregation and fragmentation
probabilities.

The influence of large-scale fragmentation versus erosion for
marine aggregates has recently been studied numerically and com-
pared to experimental results in a work by Verney et al. [58].
They used a mean-field-based Smoluchowski equation approach
and obtained results comparable to those of our model. Thus, as
both model approaches lead to similar results the insight into
fragmentation and fragment distributions provided by the per-
spective of our model can provide a useful addition to the under-
standing of aggregation and fragmentation processes. Additionally,
in the particle-based model presented here particle inertia can be
fully considered, while the correct incorporation of particle inertia
into a mean field theory is still an unsolved problem. Hence, future
model studies using this approach can lead to a better understand-
ing of particle inertia effects in aggregation and fragmentation pro-
cesses. Therefore, themodel suggested here has the capability to be
a powerful tool to investigate the validity of different approxima-
tive strategies in the formulation of a mean field theory.

Acknowledgements

The authors thank A. Aldredge, T. Tél, E. Villermaux, L.-P. Wang
and M. Wilkinson for useful discussion and suggestions.

References

[1] A. Babiano, J.H.E. Cartwright, O. Piro, A. Provenzale, Dynamics of a small
neutrally buoyant sphere in a fluid and targeting in hamiltonian systems, Phys.
Rev. Lett. 84 (25) (2000) 5764.

[2] T. Nishikawa, Z. Toroczkai, C. Grebogi, Advective coalescence in chaotic flows,
Phys. Rev. Lett. 87 (3) (2001) 038301.

[3] J. Bec, Fractal clustering of inertial particles in random flows, Phys. Fluids 15
(11) (2003) L81–L84.

[4] J. Bec, A. Celani, M. Cencini, S. Musacchio, Clustering and collisions of heavy
particles in random smooth flows, Phys. Fluids 17 (2005) 073301.

[5] R.D. Vilela, A.E. Motter, Can aerosols be trapped in open flows?, Phys. Rev. Lett.
99 (26) (2007) 264101.

[6] J.C. Zahnow, U. Feudel, Moving finite-size particles in a flow: a physical
example of pitchfork bifurcations of tori, Phys. Rev. E 77 (2) (2008) 026215.

[7] H.R. Pruppacher, J.D. Klett, Microphysics of clouds and precipitation, 2nd
ed., in: Atmospheric and Oceanographic Sciences Library, vol. 18, Kluwer
Academic Publishers, Dordrecht, 1997.

[8] C. Crowe, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Particles and
Droplets, CRC Press, New York, 1998.

[9] G.A. Jackson, A model of the formation of marine algal flocs by physical
coagulation processes, Deep-Sea Res. 37 (8) (1990) 1197–1211.

[10] W. McAnally, A. Metha, Significance of aggregation of fine sediment particles
in their deposition, Estuar. Coast. Shelf Sci. 54 (2002) 643–653.

[11] J. Zhang, X.-Y. Li, Modeling particle-size distribution dynamics in a flocculation
system, AIChE J. 49 (2003) 1870.

[12] M.R.Maxey, Themotion of small sperical particles in a cellular flow field, Phys.
Fluids 30 (1987) 1915.

[13] I.J. Benczik, Z. Toroczkai, T. Tél, Advection of finite-size particles in open flows,
Phys. Rev. E 67 (3) (2003) 036303.

[14] Y. Do, Y.-C. Lai, Stability of attractors formed by inertial particles in open
chaotic flows, Phys. Rev. E 70 (036203) (2004) 036203.

[15] J.C. Winterwerp, A simple model for turbulence induced flocculation of
cohesive sediment, J. Hydraul. Res. 36 (1998) 309.

[16] P. Spicer, S. Pratsinis, Coagulation and fragmentation: universal steady-state
particle size distribution, AIChE J. 42 (1996) 1612–1620.

[17] M. Bäbler, M. Morbidelli, J. Baldyga, Modelling the breakup of solid aggregates
in turbulent flows, J. Fluid Mech. 612 (2008) 261–289.

[18] D. Thomas, S. Judd, N. Fawcett, Flocculation modelling, A Review, Water Res.
33 (7) (1999) 1579–1592.

[19] B. Han, S. Akeprathumchai, S. Wickramasinghe, X. Qian, Flocculation of
biological cells: experiment vs. theory, AIChE J. 49 (7) (2003) 1687.

[20] M. Smoluchowski, Versuch einer mathematischen theorie der koagulationsk-
inetik kolloider lösungen, Z. Phys. Chem. 92 (1917) 129–168.

[21] M. Wilkinson, B. Mehlig, Caustics in turbulent aerosols, Europhys. Lett. 71 (2)
(2005) 186–192.
[22] S.A. Derevyanko, G. Falkovich, K. Turitsyn, S. Turitsyn, Lagrangian and eulerian
descriptions of inertial particles in random flows, J. Turbul. 8 (2007) N16.

[23] O. Ayala, B. Rosa, L.-P. Wang, W.W. Grabowski, Effects of turbulence on the
geomteric collision rate of sedimenting droplets. Part 1. results from direct
numerical simulation, New J. Phys. 10 (2008) 075015.

[24] O. Ayala, B. Rosa, L.-P. Wang, Effects of turbulence on the geomteric collision
rate of sedimenting droplets. Part 2. theory and parameterization, New J. Phys.
10 (2008) 075016.

[25] J.C. Zahnow, R.D. Vilela, U. Feudel, T. Tél, Aggregation and fragmentation
dynamics of inertial particles in chaotic flows, Phys. Rev. E 77 (2008)
055301(R).

[26] J. Zahnow, R. Vilela, U. Feudel, T. Tél, Coagulation and fragmentation dynamics
of inertial particles, Phys. Rev. E 80 (2009) 026311.

[27] C. Kranenburg, The fractal structure of cohesive sediment aggregates, Estuar.
Coast. Shelf Sci. 39 (1994) 451–460.

[28] F. Maggi, F. Mietta, J.C. Winterwerp, Effect of variable fractal dimension on
the floc size distribution of suspended cohesive sediment, J. Hydrol. 343 (1–2)
(2007) 43–55.

[29] M. Wilkinson, B. Mehlig, V. Uski, Stokes trapping and planet formation,
Astrophys. J. Suppl. Ser. 176 (2) (2008) 484–496.

[30] M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in a
nonuniform flow, Phys. Fluids 26 (1983) 883–889.

[31] B.E. Logan, Environmental Transport Processes, John Wiley and Sons, New
York, 1999.

[32] M. Lunau, A. Lemke, O. Dellwig, M. Simon, Physical and biogeochemical
controls of microaggregate dynamics in a tidally affected coastal ecosystem,
Limno. Oceanogr. 51 (2) (2006) 847–859.

[33] J. Happel, H. Brenner, LowReynolds NumberHydrodynamics,Martinus Nijhoff
Publishers, The Hague, 1983.

[34] E. Balkovsky, G. Falkovich, A. Fouxon, Intermittent distribution of inertial
particles in turbulent flows, Phys. Rev. Lett. 86 (2001) 2790–2793.

[35] B.B.Mandelbrot, The Fractal Geometry of Nature,W.H. Freeman and Company,
New York, 1983.

[36] Actually, one would have to relate the radius of a fractal-like aggregate to the
fractal generator, i.e. the smallest structure with the same fractal properties
instead of to the (spherical) primary particles. This would introduce additional
shape factors and constants that are not present in the current form, but not
change the qualitative results. For details on this, see e.g. Ref. [31].

[37] E. Villermaux, Fragmentation, Annu. Rev. Fluid Mech. 39 (2007) 419–446.
[38] J. Pandya, L. Spielman, Floc breakage in agitated suspensions-theory and data-

processing strategy, J. Colloid Interface Sci. 90 (1982) 517–531.
[39] P. Hill, K. Ng, Statistics of multiple particle breakage, AIChE J. 42 (1996)

1600–1611.
[40] M. Kobayashi, Y. Adachi, S. Ooi, Breakup of fractal flocs in a turbulent flow,

Langmuir 15 (1999) 4351–4356.
[41] J. Ruiz, A. Izquierdo, A simple model for the break-up of marine aggregates by

turbulent shear, Oceanol. Acta 20 (4) (1997) 597.
[42] P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons, A review of floc strength and

breakage, Water Res. 39 (14) (2005) 3121–3137.
[43] N. Vassileva, D. vandenEnde, F. Mugele, J. Mellema, Fragmentation and

erosion of two-dimensional aggregates in shear flow, Langmuir 23 (5) (2007)
2352–2361.

[44] A. Alldredge, T. Granata, C. Gotschalk, T. Dickey, The physical strength of
marine snow and its implications for particle disaggregation in the ocean,
Limnol. Oceanogr. 35 (1990) 1415.

[45] J. Bec,Multifractal concentrations of inertial particles in smooth random flows,
J. Fluid Mech. 528 (2005) 255–277.

[46] D.O. Martinez, S. Chen, G.D. Doolen, R.H. Kraichnan, L.P. Wang, Y. Zhou, Energy
spectrum in the dissipation range of fluid turbulence, J. Plasma Phys. 57 (1997)
195–201.

[47] M. Maxey, S. Corrsin, Gravitational settling of aerosol-particles in randomly
oriented cellular-flow fields, J. Atmospheric Sci. 43 (11) (1986) 1112–1134.

[48] H. Sigurgeirsson, A. Stuart, W.-L. Wan, Algorithms for particle-field simula-
tions with collisions, J. Comput. Phys. 172 (2001) 766–807.

[49] R. Hockney, J. Eastwood, Computer Simulation Using Particles, McGraw-Hill
International, 1981.

[50] J. Zahnow, U. Feudel, What determines size distributions of heavy drops in a
synthetic tubulent flow? Nonlinear Process. Geophys. 16 (2009) 677–690.

[51] E. Michaelides, Review-the transient equation of motion for particles, bubbles
and droplets, J. Fluids Eng. 119 (1997) 233.

[52] J. Brady, G. Bossis, Stokesian dynamics, Annu. Rev. Fluid Mech. 20 (1988)
111–157.

[53] H. Knudsen, J.Werth, D.Wolf, Failure and success of hydrodynamic interaction
models, Eur. Phys. J. E 27 (2008) 161–170.

[54] K. Stolzenback, M. Elimelech, The effect of particle density on collisions
between sinking particles-implications for particle aggregation in the ocean,
Deep-Sea Res. I 41 (1994) 469–483.

[55] X. Li, B. Logan, Permeability of fractal aggregates, Water Res. 35 (2001)
3373–3380.

[56] M. Bäbler, J. Sefcik, M. Morbidelli, J. Baldyga, Hydrodynamic interactions and
orthokinetic collisions of porous aggregates in the Stokes regime, Phys. Fluids
18 (2006) 013302.

[57] F. Mietta, F. Maggi, J. Winterwerp, Sensitivity to breakup functions of a
population balance equation for cohesive sediments, Chapter 19 Sediment and
Ecohydraulics-INTERCOH 2005 9, 2008, pp. 275–286.

[58] R. Verney, R. Lafite, J. Brun-Cottan, P. Hir, Behaviour of a floc population during
a tidal cycle: laboratory experiments and numericalmodelling, Cont. Shelf Res.
2010 (in press, corrected proof).


	Particle-based modeling of aggregation and fragmentation processes: Fractal-like aggregates
	Introduction
	Advection, aggregation and fragmentation model
	Equations of motion for spherical particles
	Fractal-like aggregates
	Aggregation model
	Fragmentation model
	Splitting condition
	Splitting rules

	Fluid flow
	Implementation

	Simulation results
	Measured quantities
	Approach to a steady state
	Influence of aggregate strength
	Influence of the volume fraction
	Influence of the fractal dimension

	Discussion and conclusions
	Limitations of the model
	Summary

	Acknowledgements
	References


