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a b s t r a c t

Over the past 100 years particle collision models for a range of particle inertias and carrier fluid flow con-
ditions have been developed. Models for perikinetic and orthokinetic collisions for simple, laminar shear
flows as well as collisions associated with differential sedimentation are well documented. Collision
models developed for turbulent flow conditions are demarcated on the one side with the model of Saff-
man and Turner (1956) associated with particles exhibiting zero inertia and on the other side with the
model of Abrahamson (1975) for particle velocities that are completely decorrelated from the carrier fluid
velocities. Various attempts have been made to develop universal collision models that span the entire
range of inertias in a turbulent flow field. It is a well-accepted fact that models based on a cylindrical
as opposed to a spherical formulation are erroneous. Furthermore, the collision frequency of particles
exhibiting identical inertias are not negligible. Particles exhibiting relaxation times close to the Kolmogo-
rov time scale of the turbulent flow are subject to preferential concentration that could increase the col-
lision frequency by up to two orders of magnitude. In recent years the direct numerical simulation (DNS)
of colliding particles in a turbulent flow field have been preferred as a means to secure the collision data
on which the collision models are based. The primary advantage of the numerical treatment is better con-
trol over flow and particle variables as well as more accurate collision statistics. However, a numerical
treatment places a severe restriction on the magnitude of the turbulent flow Reynolds number. The future
development of more comprehensive and accurate collision models will most likely keep pace with the
growth in computational resources.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Particle collision constitutes an important sub-process in a wide
range of natural occurring as well as industrial processes where the
agglomeration and/or breakup of particles is of importance. These
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processes involve a continuous phase (liquid or gas) and one or
more dispersed phases (solid and/or liquid and/or gas). Where
the continuous phase is a liquid, as is common in mineral process-
ing, the dispersed phase/s may be a solid (particle) and/or a liquid
(droplet) and/or a gas (bubble).

Natural processes characterized by particle collision range from
planetary formation from protoplanetary nebula Champney et al.
(1995) to the formation of rain drops in clouds Pinsky et al. (2000).

Particle collision is relevant to many industrial processes.
Examples include, amongst others, the aggregation of solid parti-
cles in flocculation/sedimentation Balthasar et al. (2002), the rate
of coalescence of droplets/bubbles in liquid and gas dispersions
Kamp et al. (2001), Narsimhan (2004), the interaction between
particles and bubbles in froth flotation Schubert (1999), Bloom
and Heindel (2002), Deglon (2005), the secondary nucleation of
crystals in crystallization ten Cate et al. (2001) and soot formation
in furnaces Balthasar et al. (2002).

Particle collision is particularly relevant to mineral processing
as turbulent multiphase systems are common and many sub-
processes are controlled/influenced by turbulent collision. Most
of the examples quoted previously are relevant to common unit
operations in mineral processing (e.g. thickening, solvent extrac-
tion, froth flotation, crystallization).

This paper is an effort to present the various approaches used to
model dispersed phase collision as it pertains to industrial pro-
cesses. The discussion commences with the presentation of the
general collision modeling approach with special attention being
given to the definition and interpretation of concepts central to
the modeling approach. This is followed by a listing and discussion
of appropriate collision models with emphasis being placed on for-
mulations for collision frequency. The expressions for collision fre-
quency are augmented, in the case of turbulent flow, with
formulations of velocity fluctuations.
2. Collision modeling

Smoluchowski (1917), using a population balance approach,
formulated the following expression to quantify the agglomeration
of particles due to fluid agitation

@Nðri; tÞ
@t

¼ 1
2

Xi�1

j¼1

bðri � rj; rjÞNðri � rj; tÞNðrj; tÞ

�
X1
j¼1

bðri; rjÞNðri; tÞNðrj; tÞ ð1Þ

where N is the number density and b the collision kernel or fre-
quency (number of collisions per unit volume and time). The latter
describes the rate at which particles of size (ri � rj) collide with par-
ticles of size rj to form particles of size ri (first term) and also how
Table 1
Modes of collision.

Mechanism Description

Brownian motion
(perikinetic)

Particle collision due to random Brownian motion of particles

Shear (orthokinetic) Particles follow streamlines and collide due to different positi
shear flow field

Differential
sedimentation

Particles of different sizes exhibit different settling velocities l
collisions

Accelerative –
correlated

Particles deviate from streamlines and collide. Particle and car
velocities are correlated or partly correlated

Accelerative –
independent

Particles are thrown randomly from eddy to eddy and collide.
carrier fluid velocities are uncorrelated
particles of size ri collide with particles of size rj to reduce the num-
ber of particles with size ri (second term).

Analytical solutions to Eq. (1) exist where the collision kernel
takes on a simple form, such as a constant value for instance. How-
ever, in most practical applications the kernel takes on a signifi-
cantly more complex form that depends, to a large extent, on the
flow and particle kinematics.

The primary collision mechanisms are listed in Table 1 where
the Stokes number, St, contrasts the particle relaxation time, si,
with that of the smallest scales of fluid motion, sg. In the case of
fully developed turbulent flow the latter will constitute the Kol-
mogorov micro time scale,

ffiffiffiffiffiffiffiffi
m=�

p
where m is the fluid kinematic vis-

cosity and � the dissipation rate of turbulent kinetic energy per
unit mass.

In their 1955 publication, Telford et al. (1955) make mention of
a controversy raised by the work of Defant (1905) who observed
that rain droplets seemed to be grouped about masses m, 2 m,
4 m, 8 m, etc. In other words, droplets of a particular size preferen-
tially combine with droplets of a similar size. Based on their work,
Telford et al. (1955) attributed this phenomena to droplet wake
effects.

Saffman and Turner (1956) noted that the motion of smaller
droplets are strongly influenced by the presence of larger droplets
which in turn significantly affects the rate of coagulation of smaller
droplets with larger droplets. The effect of this interference is ac-
counted for through the introduction of a collision efficiency, a.

Eq. (1) can thus be cast into the general form

@Nk

@t
¼ a � b � Ni � Nj ð2Þ

where Nk, Ni and Nj are the number densities of the aggregate and
two dispersed particle sizes respectively.

However, in their review of flocculation modeling, Thomas et al.
(1999) refer to an alternative interpretation of a where it is said to
account for inaccuracies associated with the collision kernel itself.
In fact, Thomas et al. (1999) state that hydrodynamic interference
can be more accurately interpreted as modifications to the collision
kernel rather than a collision efficiency and that the latter is most
notably affected by short-range forces i.e electrostatic repulsion
and van der Waals attraction.

2.1. Perikinetic

Smoluchowski (1917) was able to demonstrate that for Brown-
ian motion, the collision frequency can be expressed by Eq. (26)
(see Table 2), where jB is the Boltzmann constant, T the absolute
temperature and l the fluid viscosity. This expression has the fol-
lowing assumptions as basis

1. The collision efficiency is unity.
2. The fluid motion is laminar.
Continuous phase
flow regime

Scale and flow regime of dispersed
phase

Laminar Particles are small, less than 1 lm

ons within Laminar and
turbulent

Various length scales; St 6 1

eading to Laminar Various length scales; Various particle
relaxation times

rier fluid Turbulent Intermediate particle sizes; Various
particle relaxation times

Particle and Highly turbulent Particles are larger than viscous
dissipation eddies; St P 10



Table 2
Collision frequency.

Reference Mode Frequency

Smoluchowski (1917) Perikinetic b ¼ 2kB T
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Camp and Stein (1943) Orthokinetic b ¼ 4
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p
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q
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Differential sedimentation b ¼ ð2gp
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Saffman and Turner (1956) Orthokinetic b ¼
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Argaman and Kaufman (1968) Orthokinetic b ¼ 4pKsr3
i hu2
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Delichatsios and Probstein (1975) Orthokinetic b ¼ p
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Hu and Mei (1997) Accelerative – correlated b ¼ 2pðri þ rjÞ2 2
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Kramer and Clark (1997) Orthokinetic b ¼ 4p
3 ja0maxjðri þ rjÞ3 (38)

Kruis and Kusters (1997) Accelerative – correlated b ¼
ffiffiffiffiffi
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3
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(continued on next page)

C.J. Meyer, D.A. Deglon / Minerals Engineering 24 (2011) 719–730 721



Table 2 (continued)

Reference Mode Frequency

Wang et al. (1998) Accelerative – correlated
b ¼ 2

ffiffiffiffiffiffiffi
2p
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qi;j
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� �2i riþrjð Þ2
k2

D
þ p

8 ðsi þ sjÞ2 1� q
qi;j

� �2
g2
	1=2 (40)

Zhou et al. (1998) Accelerative – correlated b ¼ 2
ffiffiffiffiffiffiffi
2p
p

d2
pvp 1� exp � 1

h

� �
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
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Mei and Hu (1999) Orthokinetic
b ¼ 1:29442:2 þ 1:3333C

ð�=mÞ1=2

h i2:2
� 1=2:2

ðri þ rjÞ3ð�=mÞ1=2
(42)

Reade and Collins (2000) Preferential concentration b ¼ 4pd2gðdÞ
R 0
�1 �wrPðwr jdÞdwr

(43)

gðr̂; d̂; StÞ ¼ 1þ c0 r̂�c1 eð�c2 r̂Þ þ 1
3þ

c0 c
c1�3
2

d̂3

R c2 d̂
0 z2�c1 e�zdz

� 	
� � � �

� ðb0 � b1
ffiffiffiffiffiffiffiffiffiffiffi
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8b7=2
2

c0 ¼ 7:92St1:80

0:58þSt3:29 c1 ¼ 0:61St0:88
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y0(St) = 18St2, St < 0.5
[10pt] y1ðStÞ ¼ 0:36St2:5e�St2:5

; 0:5 < St < 1:25
y2(St) = 0.24e�0.5St, 1.25 < St < 5
y3(St) = 0.013e�0.07St, St > 10
z0ðStÞ ¼ 1

2 1þ tanh St�0:5
0:25


 �
z1ðStÞ ¼ 1

2 1þ tanh St�1:25
0:1


 �
z2ðStÞ ¼ 1

2 1þ tanh St�6:5
2:5


 �
Zhou et al. (2001) Preferential concentration b = 2p (ri + rj)2g(ri + rj)hjwrji (45)
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� �1=2

hw2
r;acceli ¼ CwðaÞhw2
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CwðaÞ ¼ 1:0þ 0:6e�ða�1Þ1:5 a ¼max½hi=hj; hj=hi�
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ð�mÞ1=2 ¼ 1

15
riþrj

g
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gijðri þ rjÞ ¼ 1þ qn
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qn
ij ¼ y1ðStÞ þ y2ðStÞzðStÞ

y1(St) = 2.6e�St 1 < St < 2.5
y2(St) = 0.205e�0.0206St St > 2.5
zðStÞ ¼ 1

2 ½1þ tanhðSt � 3Þ�

Zaichik et al. (2006) Preferential concentration b = 2pd2 g(d)hjwrji (46)

hjwr ji ¼ 2
p Spll
� �1=2

Zaichik et al. (2006) Preferential concentration b = 2p(ri + rj )2gi,j(ri + rj)hjwrji (47)

hjwr ji ¼ 2
p Spll
� �1=2
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3. The particles are of the same size or monodisperse.
4. Particle breakage is excluded.
5. Particles are spherical and remain so after collision.
6. Collisions only involve two particles (dilute suspension of

particles).

Brownian motion is said to dominate the collision process for low
particle Péclet numbers (<1, Benes et al., 2007), which contrasts the
relative strengths of convection and diffusion. The particle Péclet
number is expressed as

Pe ¼ rkVk
Do
¼

4p qi;j � q
� �

gr4

3kBT
ð3Þ

where kVk is the particle velocity magnitude, in this instance the
Stokes velocity, where Do = kBT/(6plr) is the Stokes–Einstein
coefficient of diffusion, qi,j the particle and q the carrier fluid den-
sity, respectively and g the gravitational acceleration. It is assumed
that the particle velocity vector, V is aligned in the gravitational
direction.
2.2. Orthokinetic

Using the same assumptions as listed above, Smoluchowski
(1917) developed Eq. (27) for laminar shear flows. The velocity gra-
dient used in Eq. (27), dUx/dy, is that for a flow exhibiting a simpli-
fied two-dimensional form of pure-shear strain where only one
component of the relative velocity is considered.

Hu and Mei (1998) showed the result of Smoluchowski (1917)
and an extensive list of other researchers to be inaccurate for
monodisperse particles due to the inclusion of the self-collision.
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However, for large particle numbers the distinction becomes neg-
ligible. One of the cited group of erring researchers, Collins and
Sundaram (1998) demonstrates that their formulation (Sundaram
and Collins, 1997) does indeed account for the self-counting effect.

In an attempt to generalize the work of Smoluchowski to three
dimensions, Camp and Stein (1943) replaced the velocity gradient
of Eq. (27) with a parameter G. For laminar flow, G is a local param-
eter referred to as the absolute velocity gradient and is defined as

U ¼ lG2

¼ l @Ux

@y
þ @Uy

@x

� 	2

þ @Ux

@z
þ @Uz

@x

� 	2

þ @Uy

@z
þ @Uz

@y

� 	2
" #

ð4Þ

where U is the viscous energy dissipation rate per unit volume.
For turbulent flow a global parameter, referred to as the root-

mean-square velocity gradient, was defined and expressed as

G ¼

ffiffiffiffi
U
l

s
ð5Þ

where U is the mean value of the work input to the tank per unit
time and unit volume. The overline indicates spatial averaging
and thus U is also referred to as the total spatial-averaged, steady,
unit volume energy dissipation rate.

According to Pedocchi and Piedra-Cueva (2005) the validity of
the Camp and Stein approach has been questioned. It has been
shown to be locally inaccurate for general laminar flow as noted
by Clark (1985), Saatçi and Halilsoy (1986), Kramer and Clark
(1997) and Graber (1998). Pedocchi and Piedra-Cueva (2005) con-
clude that for laminar flows, Eq. (28), is valid, provided that the fol-
lowing expression for the viscous dissipation function is utilized

U ¼ l 2
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ð6Þ

Cleasby (1984) has shown Eq. (28) to be only valid for turbulent
flows where the particle size is smaller than the Kolmogorov micro-
scale, g = (m3/�)1/4. This stems primarily from the fact that G includes
the fluid viscosity, which only affects the viscous dissipation sub-
range associated with scales smaller than the microscale.

While Clark (1985) readily admits that, for a given steady turbu-
lent flow field, a specific value of velocity gradient exists with
which the correct average collision rate can be obtained using a
Smoluchowski-type equation, it has never been shown that this
gradient is simply related to the average energy dissipation rate.
This is essentially what is claimed by Camp and Stein (1943).

Clark (1985) lists the following conditions that should apply to
the use of Eq. (28)

1. Particles smaller than the Kolmogorov microscale.
2. Neutrally buoyant, spherical particles.
3. High Reynold’s number, isotropic turbulence.
4. No large spatial variation in energy dissipation rate.
5. The coagulation process should be slow.
6. Normality in the distribution of @ux/@x. Note that the local,

instantaneous x-direction velocity component of a turbulent
flow field, Ux, is expressed as Ux = hUxi + ux where the angled
brackets, in this instance, indicate the time averaged velocity
component whilst ux is the fluctuating, turbulent velocity
component.

7. No hydrodynamic or colloidal interactions between particles
(a = 1).
A similar expression, Eq. (30), based on homogeneous isotropic
turbulence with particles smaller than the Kolmogorov microscale,
was derived by Saffman and Turner (1956) and also presented by
Spielman (1978). This differs from Eq. (28) not only in the value
of the constant used, 1.333 versus 1.294, but also in the definition
of the rate of energy dissipation, where � rather than U=q is used.

According to Clark (1985) substitution of the instantaneous
velocity components of a turbulent flow field, Ux, Uy and Uz, into
Eq. (6) and averaging over time yields the following expression
for the total local energy dissipation, Et
Et ¼ Em þ � ð7Þ
where Em is the dissipation associated with the mean flow (hUxi,
hUyi and hUzi) and � that associated with the turbulent fluctuating
components (ux, uy and uz).

Clark (1985) points out that for inhomogeneous turbulence,
which is commonly associated with the flow field of flocculation
devices, Em can be significant and Eq. (30) is thus expected to under
estimate the collision rate.

Based on the results of their numerical investigation, where a
spectral method was used to model the homogeneous turbulent
flow field, Wang et al. (1998) note that Eq. (30) is only valid as long
as the collided particles remain in the system and are allowed to
overlap in space. It is also demonstrated that a non-overlapping
particle formulation leads to a slightly higher collision rate (which
increases with increased particle size) whilst the removal of col-
lided particle pairs result in a lower value for smaller particle sizes
than that predicted by Eq. (30).

Argaman and Kaufman (1968) developed a model for turbulent
flocculation based on the hypothesis that the random motion of
suspended particles can be characterized by a coefficient of diffu-
sion. The latter was, in turn, expressed in terms of the energy spec-
trum of the turbulent velocity field. The form of the collision kernel
is shown in Eq. (32) where hu2

x i represents the mean-square veloc-
ity fluctuations and the angled brackets indicate the ensemble
average. The energy spectrum coefficient, Ks represents the effect
of the shape of the turbulent energy spectrum on the coefficient
of diffusion. The value of Ks is determined primarily by the turbu-
lent wave lengths or frequencies most pertinent to the flocculation
process and should these frequencies be independent of the power
input, Ks will assume a constant value for a particular mixing
device.

The mean-square velocity fluctuations are proportional to G.
Experimental evidence seems to indicate that the constant of pro-
portionality, Kp, or the paddle performance coefficient, is a constant
for a particular mixing device. Note that ri represents the floc or
aggregate size which is assumed to be significantly larger than
the coagulating particles.

However, Cleasby (1984) notes that the use of G in Eq. (32) was
based on simplicity and familiarity rather than physical reasoning
or even experimental verification as the latter was conducted at a
constant temperature, i.e. viscosity remained constant. It is further
demonstrated that, based on the experimental data, a good corre-
lation between hu2

x i and ðU=qÞ1=2 could as easily have been
obtained.

Delichatsios and Probstein (1975) developed kinetic models for
turbulent flocculation in a monodisperse system by applying sim-
ple binary collision mean free path concepts. Only isotropic turbu-
lence is considered. The collision kernel is expressed by Eq. (34)
where w0x or

ffiffiffiffiffiffiffiffiffiffi
hw2

x i
p

is the relative particle root-mean-square veloc-
ity that can be approximated by the root-mean-square relative tur-
bulent velocity between two points at a distance of a particle
diameter, d, apart. The x-direction is presumably aligned to the line
that connects the colliding particles. The relative velocity depends
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on the turbulent scale where g is the Kolmogorov microscale and L
the Eulerian macroscale of turbulence.

They tested their models experimentally but could unfortu-
nately only verify their model for the case where d < g due to
simultaneous particle aggregation and breakup in the flow. It is
worth noting that particle sizes comparable to the Eulerian macro-
scale of turbulence would necessarily imply neutrally buoyant par-
ticles in order to avoid inertial effects.

The following conclusions made by Cleasby (1984) warrant
consideration

1. G is only a valid parameter for flocculation of particles smaller
than the microscale.

2. ðU=qÞ2=3 is a more appropriate flocculation parameter if particle
sizes larger than the microscale are present.

3. In this range the agitator or mixing device might have an impact
on flocculation as well as ðU=qÞ2=3, particularly at lower Rey-
nold’s numbers. Mixing devices should thus be evaluated indi-
vidually to determine the best flocculation at any desired
power input.

4. In this region of turbulent eddy flocculation, temperature
should not play a role (fluid viscosity plays no significant role).

Based on their experimental work, Casson and Lawler (1990)
state the likelihood that eddies responsible for flocculation will
be about the same size as the particles being flocculated. The same
sentiments were also put forward by Argaman and Kaufman
(1968). Casson and Lawler (1990) stressed the fact that larger ed-
dies contributed little to the flocculation process other than keep-
ing particles in suspension. A method for estimating the velocity
gradients in eddies of different sizes in the flow was developed
and incorporated into Eq. (28), although the approach is thought
to be valid only for oscillating flows.

Kramer and Clark (1997) demonstrated that for a discrete re-
gion of fluid exposed to linear velocity-gradients, the collision fre-
quency of particles contained in the fluid region is a function of the
strain rates acting on the volume element. A new scalar value, the
absolute maximum principle strain rate, ja0maxj, is presented that
accurately estimates the total collision rate. The collision kernel
is shown in Eq. (38).

The model is used to numerically evaluate coagulation within a
Couette flow apparatus. Results are contrasted to those obtained
with the methodology of Camp and Stein, highlighting the defi-
ciencies associated with their approach. A major obstacle in the
use of Eq. (38) is that a detailed knowledge of the flow field is re-
quired before ja0maxj can be calculated.

Using a numerical approach, Mei and Hu (1999) confirmed the
results of Smoluchowski (1917) and Saffman and Turner (1956) for
a uniform, laminar shear flow and Gaussian, isotropic turbulence,
respectively. A formulation for the collision kernel is subsequently
developed for rapidly sheared homogeneous turbulence resulting
in Eq. (42), where C is the constant shear rate imposed on the tur-
bulent flow field. This formulation does away with the require-
ment of turbulence isotropy but does introduce an error of
approximately 10% primarily due to the averaging of the transi-
tional effect from isotropic to anisotropic turbulence.

2.3. Differential sedimentation

Under the influence of a gravitational field, particles of different
sizes exhibit different terminal velocities which leads to collision
and possible agglomeration.Eq. (29) was developed by Camp and
Stein (1943) and reviewed by Lawler (1986). Although hydrody-
namic and inter-particle forces have a significant effect on the col-
lision characteristics during sedimentation, it is usually included
through the collision efficiency.
Eq. (29) was also developed independently by Saffman and
Turner (1956) and shown to be valid as long as the particles remain
in the Stokes flow regime. According to the authors the particles
should not be too dissimilar in size as hydrodynamic effects were
not included in their analysis. Furthermore, the analysis focused
on the coagulation of rain drops in clouds and as such assumes that
the droplet or particle density far exceeds that of the carrier fluid
as noted by Zhou et al. (1998).

As gravity is essentially an accelerative effect, it is most often
associated with the analysis of the turbulent collision process
where the inertia of the particles or drops plays a significant role,
the work of Saffman and Turner (1956) being but one example.
2.4. Accelerative – correlated velocities

Saffman and Turner (1956) extended their analysis to include
flows where particle inertia as well as gravity play a role, resulting
in Eq. (31) where ux is the fluctuating part of the fluid velocity field
surrounding the particles. Note that the x-direction is parallel to
the line that connects the centers of the two colliding particles.

However, it should be noted that the inertial effects considered
can at best be classified as moderate as the assumption of a colli-
sion efficiency of unity severly restricts the difference in particle
sizes (1/2 < ri/rj < 2). Furthermore, although the particle relaxation
times differ (supposedly giving rise to their inertial collision re-
sponse), they should be less than the Kolmogorov time scale, i.e.
Stokes numbers less than unity.

According to Batchelor (1951) the velocity gradient term in Eq.
(31) can be expressed as follows at high Reynolds numbers

Dux

Dt

� 	2
* +

¼ 1:3
�3

m

� 	1=2

ð8Þ

whilst the particle relaxation time for a particle of size ri is ex-
pressed as

si ¼
2Cc;i qi � qð Þr2

i

9l ð9Þ

where Cc,i, the Cunningham slip correction factor, assumes a value
of unity in systems utilizing water as carrier fluid.

Saffman and Turner (1956) note that Eq. (31) does not reduce to
Eqs. (29) and (30) in the case of zero turbulence and when only
zero inertia particles are present, respectively. This discrepancy is
attributed to a simplification introduced to ease the integration
of the relative velocity probability function.

However, Wang et al. (1998) contend that the discrepancies
should rather be attributed to the use of a cylindrical as opposed
to a spherical formulation for the collision kernel. The underlying
assumption being that the relative velocity at any instant is locally
uniform over a spatial scale on the order of the collision radius,
(ri + rj), which is invalid for turbulent flows. It is also demonstrated
that Eq. (31) overestimates the number of collisions by 25% in iso-
tropic turbulence and by 20% for a simple uniform shear flow.

An improved version of the formulation of Saffman and Turner
(1956) is proposed by Wang et al. (1998) and listed here as Eq. (40)
where kD is the longitudinal Taylor-type microscale of fluid accel-
eration as defined by Hu and Mei (1997).

Williams and Crane (1983) analysed the fluctuating relative
motion of two solid particles or liquid drops in a turbulent gas flow
where the particles are of intermediate size and exhibit velocities
that are neither well-correlated nor completely independent.
According to Kruis and Kusters (1997), the expressions for the var-
iance of the relative fluctuating particle velocity, hw2

x i, presented by
Williams and Crane (1983) are essentially one-dimensional and,
assuming isotropy, is a factor 3 smaller than the variance of the
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three-dimensional, fluctuating relative velocity vector between
two particles, hw2i.

The collision kernel and relevant velocity formulations are pre-
sented in Eq. (35). Note that only accelerative or inertial effects are
included in this formulation with no provision being made for tur-
bulent shear effects.

In Eq. (35) the dimensionless particle relaxation time, hi, is de-
fined as

hi ¼
si

TL
ð10Þ

where TL is the Lagrangian integral time scale. Whilst c is expressed
as

c ¼ 2
L
kg

� 	2

ð11Þ

in which the longitudinal integral length scale, L, and the transverse
Taylor microscale (lateral Lagrangian length scale), kg, are defined,
respectively, as

L ¼ u0xTL ð12Þ

kg ¼ u0x
15m
�

� 	1
2

ð13Þ

with u0x the carrier fluid x-component rms velocity or standard devi-
ation (

ffiffiffiffiffiffiffiffiffi
hu2

x i
p

).
The expressions developed by Williams and Crane (1983) are

mainly for gaseous systems and do not include the added mass ef-
fect experienced by particles moving through a liquid environment
such as water. Particle drag is based on Stokes flow and thus places
a limit on the maximum particle size (d < 100 lm).

Focusing on the viscous subrange of turbulence, Yuu (1984) de-
rived an expression, Eq. (36), for the fluctuating relative velocity of
two inertial particles. The analysis included the added mass effect
experienced by particles in liquid systems as well as that of turbu-
lent shear.

The added mass effect or so-called buoyancy effect is accounted
for with the introduction of the coefficient, b, defined as

b ¼ 3q
2qi;j þ q

ð14Þ

whilst ai and aj is the reciprocal of the particle relaxation times, si

and sj, respectively.
According to Kruis and Kusters (1997) neither the formulation

of Williams and Crane (1983) nor that of Yuu (1984) is applicable
to liquid systems with particle sizes in the inertial subrange of tur-
bulence. It is further noted that the universal solution of Williams
and Crane (1983), listed as Eq. (35), does not reduce in the limit, to
that developed for small particles (hi and hj� 1). It also fails to re-
duce to the limit as calculated by Saffman and Turner (1956). The
latter is a direct consequence of the definition of c used by
Williams and Crane (1983).

Kruis and Kusters (1997) state that the formulation of Yuu
(1984) would not be valid for very small particles as the exponen-
tial as opposed to the parabolic form of the Langrangian correlation
was used which is not valid for the viscous subrange of turbulence.
The accelerative term therefore does not reduce to the limit of
small particles as derived by Saffman and Turner (1956).

Using the approach of Yuu (1984) for small particles and that of
Williams and Crane (1983) for larger particles, Kruis and Kusters
(1996, 1997) developed a universal expression for the collision
kernel as shown in Eq. (39). The added mass effect is included in
the formulation whilst the parabolic form of the Langrangian
correlation is utilized, rendering the expression valid for both the
inertial as well as the viscous subrange of turbulence. The formu-
lation reduces to the limit of small particles as derived by Saffman
and Turner (1956). The most notable assumptions are

1. The turbulence characteristics of the carrier fluid are not
affected by the presence of particles. The formulation is thus
valid where the particulate/fluid mass ratio is smaller than 0.1.

2. The Basset history term, which is only of significance where
very small particles collide within a liquid medium, is
neglected.

3. The turbulence is isotropic.
4. The particle drag is described by Stokes law which is normally

not applicable in the large particle limit. In case of the latter,
the formulation would provide an upper limit of the collision
frequency.

5. For small particles the velocity gradient between particles is
considered constant.

6. Differential sedimentation and Brownian motion is not
included in the formulation.

7. Particles are larger than the mean free path of the fluid.

The turbulence constant, c, is defined as

c ¼ 2
TL

sL

� 	2

ð15Þ

with TL the Lagrangian integral time scale defined as

TL ¼ 0:4
L
u0

ð16Þ

and sL the Langrangian time scale.
Eq. (15) can be expressed as a ratio of length scales following

the example of Williams and Crane (1983) in Eq. (11) yielding

c ffi L
kf

ð17Þ

or

c ¼ 0:183
u02ffiffiffiffiffi
�m
p ð18Þ

where kf is the longitudinal Taylor microscale of fluid acceleration
which, for isotropic turbulence, can be related to the transverse
Taylor microscale in the following manner

kf ¼
ffiffiffi
2
p

kg ð19Þ

It should be noted that the formulation of the relative particle
velocity correlation, hvivji , presented by Kruis and Kusters (1997)
is not universal, in other words, there is no single expression that
holds for both small and large particles. For example: in their
1996 publication, Kruis and Kusters (1996) make use of the small
particle relative velocity correlation when demonstrating the use
of their universal formulation for the particle collision frequency.
Particle sizes range from 0.1 to 10 lm whilst the Kolmogorov length
scale of the two turbulent flows under consideration is 150 lm and
1.67 mm, respectively.

Wang et al. (2000) contrast the normalized total relative veloc-
ity, hjwji/u0, as a function of s/Te, obtained through DNS with the
expressions developed by Williams and Crane (1983) and Kruis
and Kusters (1997) and report that the former under predicts the
DNS values throughout the s/Te-range whilst the latter is only
accurate for Rek = 24 and s/Te < 1. At higher Rek-values the normal-
ized relative particle velocity correlation is under predicted.

Hu and Mei (1997) developed an expression, shown in Eq. (37),
for the collision between moderately inertial particles along the
lines of the Saffman and Turner (1956) analysis, although the effect
of gravity was not included. A spherical as opposed to cylindrical
formulation was utilized as well as a more appropriate relative
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particle velocity probability function (isotropic turbulence). Added
mass effects were not included and as such the formulation is only
valid for gaseous systems. The result of Saffman and Turner (1956)
is recovered in the limit of small particles (orthokinetic collisions).
An additional term is added to account for inertial collision be-
tween particles of the same size (monodisperse particles), the
omission of which, according to Hu and Mei (1997), is a weakness
of previous formulations.

Wang et al. (1998) extended the formulation of Hu and Mei
(1997) to include gravity as well as a finite density-ratio correction,
(1 � q/ qi,j). The latter arises from the inclusion of the pressure-
gradient force term in the equation of particle motion (e.g., Maxey
and Riley (1983)). The result is listed in Eq. (40).

Wang et al. (1998) note that, apart from the corrections intro-
duced by Hu and Mei (1997) Eq. (40) is superior to Eq. (31) in that
the gravity term is formulated using the correct relative particle
velocity probability function. One significant assumption is that
no coupling of the gravitational effect with the other effects are
considered.

Both Hu and Mei (1997) and Wang et al. (1998) acknowledge
that their formulations do not include the influence of non-uni-
form particle concentration due to flow-particle microstructure
interaction. From their numerical results, Hu and Mei (1997) con-
clude that inertia enhances the collision process through primarily
two mechanisms, the first due to the increase in particle collision
velocity and the second due to preferential particle concentration.

2.5. Preferential concentration

Preferential particle concentration first came to light during a
numerical investigation of particle settling in cellular flow fields
where Maxey and Corrsin (1986) noted that weakly inertial parti-
cles tend to collect along isolated paths. During further numerical
investigation Maxey (1987) observed that inertial particles prefer-
entially concentrate in regions of high strain rate and low vorticity,
with the opposite being true for bubbles suspended in a more
dense carrier fluid, Maxey (1987). The effect was also demon-
strated through DNS, albeit at low Taylor Reynolds numbers, Rek,
by Squires and Eaton (1990, 1991) and Wang and Maxey (1993)
who showed that preferential concentration follows a Kolmogorov
scaling, being most effective in producing a non-uniform concen-
tration when sp/sk � 1.

Preferential concentration has been observed experimentally,
most notably in a jet flow dominated by vortex ring structures,
Longmire and Eaton (1992), in plane wake flows, Tang et al.
(1992), in channel flows, Fessler et al. (1994) and in homogeneous
and isotropic turbulence, Wood et al. (2005). Apart from Longmire
and Eaton (1992) all of these investigations confirmed the Kol-
mogorov scaling introduced by Wang and Maxey (1993) as well
as the concentration effect reaching a maximum at a Kolmogorov
Stokes number in the vicinity of unity.

A number of studies have pointed to the multi-scale nature of
the preferential concentration phenomenon at elevated Rek-values;
Goto and Vassilicos (2006, 2008), Chen et al. (2006) and Yoshimoto
and Goto (2007). DNS of preferential concentration is difficult at
high Rek-values due to the prohibitive nature of the computational
cost involved. Determining the scaling of the preferential concen-
tration effect with Rek is thus difficult.

Based on results obtained from DNS van Aartrijk and Clercx
(2008), Collins and Keswani (2004) and Hogan and Cuzzi (1999,
2001) conclude that preferential concentration is only a weak
function of Rek. The Rek-values considered in these investigations
ranged from 40 to 200. Bec et al. (2007) argued that the weak
Rek dependence is only valid at dissipative scales but not within
the inertial range where a much broader range of length and time
scales are involved. These sentiments are echoed by Balkovsky
et al. (2001) and Boffetta et al. (2004) with the latter concluding
that to fully understand the geometry of preferential concentra-
tion, the presence of structures characterized by a large set of time
scales cannot be ignored. Scott et al. (2009) introduced a clustering
length scale, similar to the integral scale for fluid flow, which gives
an indication of the spacing between particle clusters.

The effect of preferential particle concentration on the collision
frequency can be dramatic with an increase of one to two orders of
magnitude reported by Sundaram and Collins (1997). This result
was obtained from an investigation making use of DNS. In fact,
most investigations dealing with the formulation of collision ker-
nels associated with the preferential particle concentration phe-
nomenon are exclusively numerical. According to Wang et al.
(2000) a numerical approach is preferable as it allows for the iso-
lation and characterization of the different phenomena or factors
influencing the collision process.

In their numerical investigation Sundaram and Collins (1997)
considered the collision of heavy, monodisperse particles (all par-
ticles are identical) in a turbulent flow (isotropic) in the absence
of global shear and gravity. The general collision kernel is formu-
lated as

b ¼ 1
2
pd2gðdÞ

Z
wPðwjdÞdw ð20Þ

where g(d) is the radial distribution function (RDF) and P(wjd) is the
conditional relative velocity probability density function at contact.
The former is a correction to the local number density function that
accounts for the preferential concentration effect whilst the latter
accounts for the decorrelation of adjacent particle motions.

Sundaram and Collins (1997) were able to demonstrate that the
collision rate of finite inertia particles increased rapidly with
increasing Stokes numbers, reaching a maximum at St = 4 and
declining gradually thereafter. The collision rate is bounded in
the lower limit by the expression of Saffman and Turner (1956)
for orthokinetic collisions, Eq. (31) and that of Abrahamson
(1975), Eq. (33) in the upper limit, a result confirmed by Chen
et al. (1998), Chen et al. (1998). The formulation of Abrahamson
(1975) is for particles with completely uncorrelated velocities
and is discussed in the next section.

The initial rapid increase in the collision rate is shown to be the
result of the combined effect of preferential concentration (reach-
ing a maximum at St = 0.4) and the decorrelation of the velocities
of adjacent particles. At elevated Stokes numbers the decorrelated
particles struggle to obtain energy from the turbulent carrier fluid
thus leading to a decline in the particle collision rate.

The results of Sundaram and Collins (1997) were confirmed in
the numerical investigation conducted by Zhou et al. (1998) who
also observed that the formulation of Abrahamson (1975) was only
valid at very high sp/TL-values. Note that TL differs by a constant
factor from the formulation used by Kruis and Kusters (1997)

TL ¼
v2

�
ð21Þ

An improvement of the formulation of Abrahamson (1975) for
monodisperse heavy particles was developed, the so-called eddy-
particle interaction (EPI) model, and is shown in Eq. (41) where h
is defined as

h ¼ 0:5
sp

TL
ð22Þ

and vp is the rms particle fluctuating velocity.
Eq. (41) fits the numerical data accurately for h-values in excess

of 1.5 and merges with the formulation of Abrahamson (1975) at
elevated h-values. Note that the formulation is only valid for mono-
disperse particles in an isotropic turbulent flow in the absence of
global shear and gravity. Furthermore, the formulation assumes
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that the particle density far exceeds that of the carrier fluid and that
the particle diameter is less than the Kolmogorov microscale, g.

It is worth noting that the collision rate, _Nc , in a volume contain-
ing monodisperse particles is expressed as

_Nc ¼ b
N2

p

2
ð23Þ

where Np is the particle number density.
In their DNS investigation, Wang et al. (2000) investigate the ef-

fect of Stokes number and Rek on the collision statistics of mono-
disperse particles. The effect of particle loading and particle
diameter was not considered and particles nominally smaller than
g were analyzed. Although the particle concentration is well within
the dilute limit, allowing a numerical treatment that leaves the
fluid turbulence properties unaffected by the presence of the par-
ticles, preferential concentration could lead to local particle con-
centrations that would be high enough to influence the
turbulence structure of the flow field. As such the collision kernel
represents an upper limit of particle collision.

The collision kernel developed by Sundaram and Collins (1997),
which is based on a cylindrical formulation, was corrected using
the spherical approach which yielded the following expression
for the collision kernel

b ¼ 2pd2gðdÞ wrh i ð24Þ

where wr is the radial relative velocity between two colliding
particles.

The numerical treatment allowed Wang et al. (2000) to isolate
the effect of turbulent transport as quantified by hjwrji, from the
accumulation or preferential concentration effect as quantified by
the radial distribution function at contact, g(d).

Based on their numerical results an empirical model for the
collision kernel was developed and is shown in Eq. (44) where
h = 2.5sp/TL and c = 0.183u02/(�m)1/2. They obtained Cw = 1.68 by fit-
ting the expression for hjwrji to the numerical data for Rek = 58. The
radial distribution function was found to be a linear function of Rek,
although the range considered was very limited, Rek = 45, 58 and
75.

Reade and Collins (2000) used DNS to determine the functional
form and dependence of the RDF, g(d). They were able to demon-
strate that g(d) could be decomposed as the product of two func-
tions where the first depends on Rek alone. As the effect of Rek

was not the primary concern of the investigation, the value of this
function was set to unity and all simulations used for modeling
purposes were performed at Rek = 54.5. It was further assumed that
the particle density far exceeded that of the carrier fluid and that
the system was dilute. The DNS formulation excluded any hydro-
dynamic effects (collision efficiency) and treated collisions as those
between hard spheres (elastically rebounding). The functional
dependence of the RDF was thus restricted to the particle diameter
and Stokes number.

The functional form of the RDF is shown in Eq. (43) where
r = jx1 � x2j, r̂ 
 r=g, d̂ 
 d=g and �r 
 r=d. In the first expression
for gðr̂; d̂; StÞ, the term containing d was added to satisfy a specific
integral constraint which is satisfied for all values of d. This term is
negligible for small values of d. Note that the collision kernel is
based on the spherical formulation of Wang et al. (1998) shown
in Eq. (24) which relaxes the assumption of isotropy.

Zhou et al. (2001) extended their previous numerical investiga-
tion of the collision characteristics of monodisperse inertial parti-
cles, Wang et al. (2000), to that of bidisperse inertial particles. Of
particular interest was the so-called accumulation effect (preferen-
tial concentration) as the particles from the two different size dis-
tributions could selectively respond to eddies of different sizes. The
numerical experiments covered a sp/TL-value range of approxi-
mately 0–3 for both particle sizes with Rek = 45. In an effort to
avoid small-scale features in the particle concentration fields at
scales smaller than g, a (ri + rj)/g-value of unity was maintained.
Collisions between particles from the two different size distribu-
tions alone were considered, yielding a bDNS-value for each exper-
iment. Zhou et al. (2001) plotted bDNS-values, normalized by the
collision kernel of Saffman and Turner (1956), for constant values
of si/TL over the sj/TL-range and observed the following:

1. For small si/TL-values the normalized collision kernel increases
monotonically with sj/TL. At this scale, preferential concentra-
tion is negligible and the increase is due to an increase in the
relative motion of particle size j.

2. For large si/TL-values the normalized collision kernel decreases
monotonically with sj/TL. Preferential concentration is again
negligible and the decrease is due to the increased sluggish
response to turbulent fluctuations of particle size j.

3. At intermediate si/TL-values the normalized collision kernel
increases with sj/TL, reaches a maximum and then decreases.
This behavior is qualitatively consistent with a monodisperse
system.

4. Where particle concentration is negligible, the bidisperse nor-
malized collision kernel is larger than that of a monodisperse
system.

5. Where particle concentration is important, the bidisperse nor-
malized collision kernel is smaller than that of a monodisperse
system, largely due to the lack of correlation between the par-
ticle concentration fields of the two particle sizes.

6. The RDF at contact of a bidisperse system, gij, attains a maxi-
mum when si = sj and is bounded from above by the smaller
of the two monodisperse RDFs at contact, gii and gjj.

7. hjwrji in a bidisperse system is always larger than in a monodis-
perse system with the difference increasing as the difference in
particle inertia increases.

Zhou et al. (2001) also compared normalized values of bDNS with
values predicted by the collision models of Abrahamson (1975),
Williams and Crane (1983), Kruis and Kusters (1997) and their
eddy-particle interaction (EPI) model, Zhou et al. (1998). Note that
none of these models make provision for particle concentration ef-
fects. The following is noted

1. The EPI model performs well if si is of the order of TL.
2. The model of Kruis and Kusters (1997) outperforms that of

Williams and Crane (1983) although both under predict the
normalized collision kernel.

3. The formulation of Abrahamson (1975) over predicts the
collision kernel.

4. None of the models are accurate at scales where particle
concentration is significant.

In developing their collision model, Eq. (45), the RDF at contact
for the bidisperse system, gij, is related to that of two monodisperse
systems, gii and gjj, through a correlation coefficient, qn

ij. gii and gjj can
be calculated from the expressions in Eq. (44). A modified version of
the relative velocity formulation of Kruis and Kusters (1997) where
qp/q� 1 is used to model hw2

r;acceli where a = max[hi/hj; hj/hi]. Note
that h = 2.5sp/TL and c = a � 0.183u02/(�m)1/2.

Zhou et al. (2001) further notes that it can be assumed that gij

submits to the same linear Reynolds-number scaling as gii and gjj

and demonstrate that the model yields collision values within
20% of the numerical values for a rather narrow Rek range of
45–58.

A method to model binary dispersion and accumulation of iner-
tial particles in an isotropic turbulent flow field based on a kinetic
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equation for the probability density function (PDF) of the relative
velocity of a pair of particles was developed by Alipchenkov and
Zaichik (2003), Zaichik and Alipchenkov (2003) and Zaichik et al.
(2006). This method is an extension of the one-point statistical ap-
proach to the two-point description and allows for the statistical
modeling of distributions of the relative velocity of two particles
in a random turbulent field as opposed to a stochastic description
of particle motion along random trajectories. As a result the rela-
tive mean-square velocity, the radial distribution function and
other two-particle statistical characteristics can be found.

The above approach yields an infinite set of balance equations
which is closed at the second-order closure level invoking a gradi-
ent algebraic approximation for the triple fluctuating velocity cor-
relations. A system of three non-linear ordinary differential
equations with appropriate boundary conditions result. Solution
of this set of equations yields the radial distribution function,
g(d) as well as the longitudinal and transverse components of the
second-order particle velocity structure function, Spll and Spnn,
respectively.

The collision kernel formulated by Zaichik et al. (2006), shown
here as Eq. (46), assumes that the particle density is much higher
than that of the carrier fluid and also that the PDF of the relative
velocity is Gaussian. Note that hjwrji is formulated in terms of Spll

which results from the solution of the equation system.
Zaichik et al. (2006) solved the equation system and compared

the results to those obtained from DNS investigations. A compari-
son of hjwrji over a range of St-values with the DNS results of Wang
et al. (2000) showed good agreement. A comparison of the radial
distribution function with the data of Sundaram and Collins
(1997) and Wang et al. (2000) yielded the following:

1. The radial distribution function reduces to unity at very small
and very large St-numbers as expected.

2. The radial distribution function goes through a peak as St
increases from very low values.

3. The peak corresponds to the Kolmogorov timescale.
4. The peak is slightly shifted towards particles with higher

inertia.

The collision kernel of Eq. (46) demonstrates qualitative agree-
ment with the DNS results of Wang et al. (2000) although the pre-
dicted maxima, much like the radial distribution function, are
slightly shifted towards particles with higher inertia.

The model of Zaichik et al. (2006) was subsequently extended to
include bidisperse inertial particles, Zaichik et al. (2006). As in the
case of monodisperse particles, a system of three non-linear ordin-
ary differential equations with appropriate boundary conditions
are solved yielding the radial distribution function, gi,j(ri + rj) as
well as the longitudinal and transverse components of the sec-
ond-order particle velocity structure function, Spll and Spnn, respec-
tively. The collision kernel is shown in Eq. (47).

Zaichik et al. (2006) compared Eq. (47) with the DNS data of
Zhou et al. (2001) and conclude that hjwrji compares well with
the DNS results, especially at lower particle inertias. The slight dis-
crepancy noted at higher inertias are thought to be the effect of
particle inertia on the eddy-particle interaction time scales which
is not accounted for in the collision kernel. It is also noted that
the model responds well to changes in the Reynolds number, albeit
over the limited range covered in the work of Zhou et al. (2001).

The radial distribution function at contact also compares favor-
ably with the DNS data although the peak associated with prefer-
ential accumulation is slightly shifted to higher inertias. It is also
noted that preferential accumulation is most pronounced in mono-
disperse systems, diminishing as particle inertias move further
apart. As a result the collision rate in a monodisperse system
may exceed that in a bidisperse system.
2.6. Accelerative – independent velocities

Under highly turbulent conditions particles from different tur-
bulent eddies are projected into neighboring eddies leading to col-
lision. According to Abrahamson (1975) classic kinetic theory can
be used to develop a collision kernel under these circumstances.

A normal distribution of particle velocities is assumed. The par-
ticle velocity is expressed through the resolution of the Tchen
equation where the Basset history term is omitted and an expo-
nential form for the Lagrangian velocity correlation is assumed.

An expression for the collision frequency in the absence of any
body forces was first developed after which Abrahamson (1975)
postulated that, in the presence of body forces, an appropriate for-
mulation can be developed by simply superimposing a constant
terminal velocity on to the turbulent solution of the Tchen equa-
tion. The formulation for the collision frequency is shown in Eq.
(33) where the z-direction corresponds to the direction of the
resultant terminal velocities of the particle size ranges, wti and
wtj and hu2i, hv2

i i and hv2
j i are the one-dimensional, mean squared

velocity deviation of the carrier fluid and the two particle sizes,
respectively.

Note that the expression used to determine hv2
i i and hv2

j i in Eq.
(33) follows from the analysis of Levins and Glastonbury (1972),
with the additional assumption that the particle density is much
larger than that of the carrier fluid which renders the formulation
inappropriate for particulate-liquid systems.

Liepe and Möckel (1976) derived an expression for the particle
and bubble velocity distribution variance in water from experi-
mental work at intermediate Stokes numbers. This expression is
commonly used, together with the formulation of Abrahamson
(1975), to model flotation systems Schubert (1999), Bloom and
Heindel (2002).

v 0i ¼
ffiffiffiffiffiffiffiffiffiffi
v2

i

� �q
¼ 0:686

�4=9r7=9
i

m1=3

qi � qj j
q

� 	2=3

ð25Þ

The Tchen equation makes use of the Stokes drag law and as
such severely restricts the upper limit of the particle size range.
For higher particle Reynolds numbers Eq. (33) will thus overesti-
mate the number of collisions.

Abrahamson (1975) also developed an expression for the lower
limit of the particle size that would ensure independent particle
velocities. The expression for the ith particle size is

r2
i ¼

15m v2
i

� �
4q�

ð48Þ
3. Summary

The development of particle collision models spans a period of
close to a 100 years and includes models that range from simplis-
tic, chosen for their mathematical convenience rather than accu-
racy, to highly involved models that attempt to include complex
particle-fluid interactions such as preferential concentration.

The experimental analysis of collision processes is difficult and
becomes even more so as the complexity of the carrier fluid flow field
increases. As a result, collision models for relatively simple flow con-
ditions associated with perikinetic collisions (Smoluchowski, 1917),
differential sedimentation and orthokinetic collisions for simple
laminar shear flow ( Camp and Stein, 1943) were formulated rela-
tively early on in the development process and remain largely
unchallenged to this day.

However, a vast number of industrial processes where particle
collision is of importance is characterized by turbulent flow. The
boundaries of this collision regime is fairly well demarcated on
the one side with the formulation of Saffman and Turner (1956)
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and on the other by that of Abrahamson (1975). The former ap-
plies to particles that are significantly smaller than the smallest
scale of turbulence and exhibit velocities which are perfectly cor-
related with that of the surrounding carrier fluid whilst the latter
considers particles with very high inertias, exhibiting velocities
that are completely decorrelated from that of the surrounding
carrier fluid.

Considerable effort has been expended in the development of a
so-called universal collision model that would be valid over the en-
tire range of particle inertias. Arguably the most well-known
would include the formulations of Williams and Crane (1983)
and Kruis and Kusters (1997). However, the consensus is that the
model of Williams and Crane (1983) and that of a number of other
authors are erroneously based on a cylindrical as opposed to a
spherical formulation and do not recover the results of Saffman
and Turner (1956) in the limit of small particles. Furthermore,
Hu and Mei (1997) note that formulations of all previous authors
ignore collisions between identical particles. The formulation of
Wang et al. (1998) not only remedies the above-mentioned
short-comings but extends the formulation to include non-gaseous
carrier fluids.

The preferential concentration of particles that exhibit relaxa-
tion times close to the Kolmogorov time scale, in regions of high
strain rate and low vorticity has a marked effect on particle colli-
sion. Reported increases of the collision frequency range from
one to two orders of magnitude.

Attempts at formulating a collision kernel that includes the ef-
fect of preferential concentration are primarily based on the for-
mulation proposed by Sundaram and Collins (1997) where the
radial distribution function at contact is used to account for the
concentration effect and the relative velocity probability density
function for the decorrelation of adjacent particle motion.

The cylindrical formulation of Sundaram and Collins (1997),
now considered erroneous, was corrected by Wang et al. (2000),
introducing the spherical formulation of the collision kernel. Zhou
et al. (2001) extended the work of previous authors on preferential
concentration and most notably that of Wang et al. (2000) to in-
clude bidisperse as opposed to monodisperse particles.

It is worth noting that the above-mentioned collision models
that include the effect of preferential concentration are all based
on collision data obtained through DNS rather than experimental
data. Numerical limitations place a severe restriction on the mag-
nitude of the turbulent flow Reynolds number that can be modeled
and as such the effect thereof on the collision process remains
elusive.

Moving away from DNS, Alipchenkov and Zaichik (2003), Zaichik
and Alipchenkov (2003) and Zaichik et al. (2006) used the resolution
of the kinetic equation for the probability density function of the rel-
ative velocity of a pair of particles to formulate the collision kernel
for both monodisperse as well as bidisperse particles. Good agree-
ment is obtained with the DNS data of other authors.

In conclusion it is well worth noting that the development of
collision models have come to rely near exclusively on DNS rather
than experimental data sets. The numerical modeling of the colli-
sion process holds several advantages of which the ability to con-
trol the primary variables as well as the accuracy with which
collisions can be monitored are foremost. However, the move to-
wards DNS also imposes severe restrictions as noted above which
would suggest that the pace of further development of collision
models will be governed by the increase in computational
resources.
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