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Abstract
Recent developments in the study of droplet motion in turbulent flows are
reviewed with emphasis on particle acceleration and clustering, and the effects
of turbulence on raindrop formation. There is also some discussion of the
relationship between laboratory experiments and field observations, of the
history of laboratory experiments, and of the relationship between art and
science in early cloud studies.

1. Introduction

The main purpose of this paper is to review recent advances in laboratory experiments that
are aiding our understanding of the effects of turbulence on raindrop formation in clouds.
There are some secondary objectives. Because of the complex interplay between the various
mechanisms in clouds, their investigation requires both laboratory and field experiments. As
in other areas of geophysics this sometimes causes problems in interpretation. The abstract
nature of laboratory experiments, where a single aspect of the cloud is studied may be difficult
to reconcile with field experiments, where all of the cloud mechanisms may be simultaneously
at play. Thus I will discuss the dichotomy between laboratory and field experiments in terms
of the history of cloud studies. Finally, apart from their scientific interest, clouds are visually
exciting objects. They captivate the artist as well as the scientist, and at times there have been
interactions between the two groups. I will allude to some of the influences between the artists
and scientists.

Clouds are immensely complicated dynamical structures. They vary in shape, size and
altitude. They generally involve the three phases of water, in states far from equilibrium,
and they are in turbulent motion, driven by buoyancy and sometimes shear. There are
large temperature changes due to condensation. Their fluid dynamical scales vary by as
much as seven orders of magnitude, from millimeters to tens of kilometers and the droplets
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Figure 1. Study of cumulus clouds, 1822 (oil on paper laid down on panel) by John Constable
(1776–1837). Note the heterogeneity. Analysis of the cloud cover in European paintings show
70–75% cover in Constable’s time compared with 55–70% in the 20th century (Lamb, 1995). Such
surveys, when correlated with temperature data provide information on climate change. Source:
Yale Center for British Art, Paul Mellon Collection, USA/ The Bridgeman Art Library.

Figure 2. A developing cumulous cloud. Note the similarity of the cloud row to that of the
Constable in figure 1. Photo, author.

evolve from condensation nuclei in the submicron range to raindrops of tens of millimeters
diameter. Clouds are heterogeneous and entrainment effects are pronounced. There are often
radiative and electrical effects. Following the early 19th century classification by Luke
Howard of three basic cloud types (cirrus, cumulous and stratus), there are ten genera in
current use. These are combinations such as alto cumulous, cirrostratus, altostratus and so
on. Although the classification is somewhat arbitrary it attests to the large variation of cloud
types. Their altitudes vary from greater than 6 km (a typical base height for cirrus clouds)
to low lying stratus near ground level, although the storm bearing cumulonimbus stretch
through the full vertical range. Casual observations testify not only to the heterogeneity
of any one cloud, and of clusters of clouds of the same type, but also to the variation of
cloud types at a given moment spread across the sky. This is captured in the painting of
Constable (figure 1).

It will be useful, for the purpose of this review, to have in mind a ‘typical’ cloud. We will
assume it is a cumulous cloud (figure 2). Consider its timescale, the time it takes to evolve
from one characteristic shape to another. This is determined by the large-scale convective
turbulence inside the cloud. A typical cumulous cloud has dimensions of a few kilometers
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(in the vertical as well as the horizontal directions). The length scale of the largest eddies may
be of the order of some hundreds of meters. The characteristic vertical convective velocity is
of the order of meters per second. Following Shaw (2003), we will fix the characteristics of
the turbulence in our cloud to be of length scale 100 m and velocity scale, 1 m s−1. Thus the
timescale is of the order of 100 s. This is consistent with our incidental observations which tell
us the timescale is of the order of minutes; certainly not seconds, or hours. It is an inconvenient
scale. Few of us can stay staring up for long enough to track and remember the whole cloud
evolution, yet it is too short for the artist to easily capture. The motion of fire or of water
waves fix our attention because of their rapid changes, whereas the dynamics of geological
formations and galaxies are slow and provide the comfort of permanent structures. Clouds are
at an intermediate scale, not quite ephemeral, certainly not permanent. This, combined with
the interplay of the vast multiplicity of scales, causes great difficulties in our observations,
and in our laboratory experiments.

This paper is by no means exhaustive, even on the matter of the laboratory experiments;
it pertains mainly to work the author has had some involvement with. For a comprehensive
discussion of particle–turbulence interactions in clouds, the reader is referred to the excellent
review by Shaw (2003) and for a broad perspective on the physics of clouds, see Rogers and
Yau (1989) and Pruppacher and Klett (1997). Experiments, theory and numerical simulations
generally progress as a whole, one approach deriving inspiration from the other. Much of
the motivation for the work described here comes from theory and simulations. The reader
is referred to Shaw for a list of references up to 2003 and to the earlier review of Vaillancort
and Yau (2000). More recent work on theory and simulations of relevance to the experiments
are Cristini et al (2003), Collins and Keswani (2004), Falkovich and Pumir (2004), Kostinski
and Shaw (2005), Chun et al (2005, Chen et al 2006) Cencini et al (2006), Kerstein and
Krueger (2006), Yoshimoto and Goto (2007), Franklin et al (2005), Pinsky and Khain (2004)
and Reimer et al (2007).

The outline of the paper is as follows. In section 2, some historical background is provided
and the relation of the laboratory experiment to the complex reality is discussed. In section 3,
some fundamentals of turbulence are reviewed in the context of experiments. Section 4 looks
at recent developments in our ‘visualization’ of particles in turbulence by particle tracking
techniques. In section 5, the relation of turbulence to raindrop formation is discussed and this
is related to experiments and computations of inertial particles.

2. Some historical background

Many would argue that the scientific study of clouds began with the Luke Howard
classification of 1803. For a detailed description of his work, as well as the earlier history
of cloud observing and classification, the reader is referred to Hamblyn (2001). Throughout
the 19th century, there was much interest in observing nature and the boundary between the
arts and sciences, particularly with regard to the natural sciences including meteorology, was
much less rigid than it is today. For example, the great German poet, Goethe was very much
involved with science. He is well known for his studies of color and vision, but he also took a
particular interest in the scientific classification of clouds. The most original sea-and-sky scape
painter of the 19th century, J W M Turner, annotated his copy of Goethe’s ‘Theory of Colors’,
and referred to it directly in the title of one of his paintings1. Keats, Byron and Shelley and
many other of the Romantic writers were greatly affected by nature and mixed regularly with

1 Light and color (Goethe’s theory)—The Morning After the Deluge—Moses writing the book of Genesis (The Tate
Gallery, London).
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Figure 3. Landscape with a rainbow by Joseph Mallord William Turner (1775–1851). Turner was
preoccupied with the interaction of light with clouds. Here, as in many other of his paintings
there is also a focus on abrupt frontal phenomena. Source: Phillips, The International Fine Art
Auctioneers, UK/Photo Bonhams, London, UK/The Bridgeman Art Library.

the prominent scientists of the day. The chemist Humphry Davy, who was the president of the
Royal Society and was actively engaged in the arts, was an acquaintance of Turner (Hamilton
1998). Perhaps the finest of all cloud painters, John Constable, who was aware of the work
of Luke Howard, did detailed cloud studies in the 1820s over Hampstead Heath (figure 1).
His work shows the patience and rigor of the scientific observer. He documented the weather
patterns and stated ‘Painting is a science and should be pursued as an inquiry into the laws
of nature’ (Shields 2004). J W M Turner strapped himself to the mast of a ship in a storm so
he could better observe the turbulence of the skies and water around him. Like Constable he
‘never tired of going to Hampstead and would spend hours on the Heath studying the effects
of atmosphere . . ..’ (Hamilton 1998). While Constable (and Ruisdael, the great cloud painter
of the 17th century) are famous for their cumulous clouds, Turner infused a dramatic quality
into his paintings of stratus clouds and their interaction with light (figure 3). Aside from his
artistic achievements, his paintings have been used to provide proxy information on aerosol
depth in the atmosphere (Zerefos et al 2007).

It was the holistic approach to nature that affected science in the latter part of the
19th century, particularly in England, and it has singular relevance to the laboratory studies
of clouds. The engineer, John Aitkin attempted to produce whole cyclones and glaciers
in his laboratory bench-top experiments (see Aitken 1923). His objective was to capture
all of nature in his experiments, not to isolate a particular phenomenon as we do when
we do laboratory experiments today. In his analysis of the history of particle detectors,
Galison (1997) argues that in the late 19th century experiments were evolving in two distinct
directions; those of abstract science which were reductionist, and the morphological or the
natural history approach. In the former, particular questions arising from observations of
nature were posed and these questions suggested experiment that could address a particular
phenomenon. A familiar contemporary example would be experiments of the dynamics of
density stratified fluids in wind tunnels, where issues of rotation and topography are not
included. In the morphological approach, the attempt is to include everything, to create nature
in the laboratory. There is the tacit understanding that everything is interconnected and that
by isolating one phenomenon there is a danger of dealing with something that is artificial and
has nothing to do with nature itself. We tend to be imbued with the abstract approach but the
dissonance between the two approaches still permeates science today.
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Figure 4. Ben Nevis, where C T R Wilson observed clouds and other meteorological phenomena.
Reproduced by permission of the Royal Meteorological Society.

The clash of the abstract and what Galison calls the mimetic approach is highlighted
in the work of C T R Wilson, the discoverer of the cloud chamber that bears his name. As
we will see, his work has continued to influence the present day investigation of clouds.
In contrast with Aitkin, C T R Wilson had a strong background in science having studied
biology, physics and chemistry at Manchester and Cambridge (Wilson 1965). He also had a
deep love of nature and would explore the Scottish countryside as a student. His work in the
laboratory on condensation nuclei, non equilibrium systems and thermodynamics was infused
with his intense interest in meteorological phenomena. In the early 1890s, Wilson paid visits
to the meteorological observatory at the top of Ben Nevis (figure 4), the highest mountain in
Britain (Wilson 1954). There he observed the complex manifestations of mist, cloud and the
associated optical phenomena, morning glories and lunar coronas, through the fog.

Like Aitkin, Wilson wished to mimic these in the laboratory (Galison 1997). He
conducted laboratory experiments on expanding dust free air in a chamber and exposing it
to electric fields. Wilson observed the formation of cloud nuclei and studied the condensation
by systematically changing the expansion ratios. (Aitkin, who was more the realist seeded
his air with dust particles. We know today, that it is small dust and salt particles that are
primarily responsible for the nucleation of droplets in clouds.) Later, Wilson passed the newly
discovered x-rays through his chamber and also observed nucleation. All of this work was
motivated by the desire to understand clouds. But in 1911 by using photography, he was able to
observe the tracks of charged particles (Wilson 1911). This was the turning point and the cloud
chamber as we know it today, was born. His experiments changed from mimetic to abstract
and the foundations of modern physics rest on these and subsequent experiments. Wilson’s
motivation is virtually forgotten by physicists but the dichotomy between abstract and mimetic
science remain close to the surface. We will return to particle detectors in section 4 after
providing some background on turbulence.

3. Some characteristics of turbulence and its relation to clouds

Most of our understanding of turbulence comes from placing a sensor, such as a hot wire
anemometer, in a flow and measuring at a fixed point, or a number of points, as the fluid
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passes by. This is known as the Eulerian approach. The sensor produces a time series that is
a component of the velocity vector. If the flow is statistically stationary, temporal quantities
can be converted into spatial ones by means of Taylor’s frozen flow hypothesis (Tennekes and
Lumley 1972). Or, as is often necessary in taking data in a cloud, an aircraft flies through
the turbulence at constant speed. If the cloud is homogeneous it may be possible to convert
temporal to spatial data. Using these methods, we have amassed a large amount of statistical
data in various flows. The measurements of velocity structure functions and spectra have
allowed us to verify the Kolmogorov prediction of their form (Kolmogorov 1941, Frisch 1995)
and most current modeling and theory relies on data obtained using the Eulerian approach.
However, these measurements do not directly yield information on the acceleration field,
a(x, t), which is the sum of the temporal and spatial variation of velocity:

a j (x, t) =
∂u j

∂t
+ ui

∂u j

∂xi
, (1)

where u j is the j th component of the fluid velocity and the usual summation over repeated
indices is applied (i = 1, 2, 3). By following the motion of a fluid particle, the so-called
Lagrangian approach, a j (x, t) can be directly measured thereby providing deeper insight
into the turbulence structure and dynamics. Tracking a particle is much more visual than the
Eulerian measurement, enabling us to see the history of the particle motion. The Lagrangian
approach also yields direct information on how particle pairs separate (Bourgoin et al
2006), which is necessary in building models of turbulent diffusion and mixing. While the
importance of doing Lagrangian measurements has long been recognized (Richardson 1926),
until recently there have been formidable challenges in doing quantitative measurements at
realistic Reynolds numbers. As we will show, changes in particle velocity and acceleration
take place extremely rapidly in turbulent flows.

We characterize the turbulence by the Taylor scale Reynolds number

Rλ ≡ 〈u2
〉

1/2λ/ν, (2)

where 〈u2
〉

1/2 is the rms longitudinal velocity, λ is the Taylor microscale defined by 〈u2
〉 =

λ2
〈(∂u/∂x)2

〉, ν is the kinematic viscosity (1.5 × 10−5 m2 s−1 for air) and the angle brackets
denote averaging. The best model we have to explain the multiscale nature of turbulence is the
Richardson–Kolmogorov cascade (Tennekes and Lumley 1972) which assumes that energy is
passed from the largest to the smallest scales without dissipation. Thus, the energy input rate
at the largest scales is equal to the energy dissipation rate, ε, at the smallest scales and we can
write

ε ∼ 〈u2
〉/τ ∼ 〈u2

〉
3/2/`, (3)

where 〈u2
〉, the velocity variance of the longitudinal component is proportional to the kinetic

energy of the turbulence and τ is the characteristic timescale of the turbulence (∼ `/〈u2
〉

1/2,
where ` is the length scale of the energy containing eddies). The timescale τ is the ‘memory’
of the turbulence structure. In one timescale, the memory of the large scale is lost. For
turbulence that is isotropic at the small scales ε can also be determined from the longitudinal
velocity derivative (Tennekes and Lumley 1972)

ε = 15ν〈(∂u/∂x)2
〉. (4)

From (2), (3) and (4) it follows that

Rλ ∼ ε1/6`2/3/ν1/2. (5)
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For our idealized cumulous cloud, ` = 100 m, 〈u2
〉

1/2
= 1 m s−1 and τ ∼ 100 s (see section 1).

From (3) and (5), we find ε = 10−2 m2 s−3 and Rλ ∼ 3 × 103. The total energy dissipated by
the cloud is of the order of `3ρε = 10 kW (we have taken ρ ∼ 1 kg m−3). Finally, we can
determine the smallest length, time and velocity scales of the turbulence, η, τη and vη, when
viscous effects become significant at the end of the cascade (Tennekes and Lumley 1972),

η ≡ (ν3/ε)1/4
; τη ≡ (ν/ε)1/2

; vη ≡ (νε)1/4. (6)

For our cloud, η = 0.8 mm, τη = 0.04 s and vη = 2.0 × 10−2 m s−1. Notice that `/η = 1.3 ×

105 confirming the large separation of scales alluded to in the introduction.
We can also determine the acceleration variance of the turbulence. Since the most

rapid changes of velocity occur at the smallest scales, Kolmogorov scaling (Heisenberg
1948, Yaglom 1949) shows that the acceleration variance is given by

〈a2
〉 = a0ε

3/2ν−1/2, (7)

where a0 is assumed to be a universal constant (approximately 6 at high Reynolds numbers,
Voth et al (2002)). For our cloud 〈a2

〉 ∼ 70 m2 s−4, i.e. the characteristic acceleration of
an inertia-less fluid particle will be approximately 8 m s−2, the order of the gravitational
acceleration. But the Kolmogorov 1941 scaling does not take into account the intermittent
nature of the turbulence.

Since the late 1940s it has been recognized that the velocity field (and also any passive
admixture) exhibits small-scale intermittency (Frisch 1995) characterized by strong variability
in the dissipation (and mixing) rates (see figure 2, Warhaft 2000). Although the velocity
spectrum requires only slight modification as a result of intermittency, the higher movements
are significantly affected (Frisch 1995). Thus, fluctuations at the small scale are much greater
than would be predicted from a Gaussian distribution. The dissipation rate itself now becomes
a fluctuating variable. We replace ε with εr, a local value averaged over a sphere of radius
r . There is at present no fully deductive theory, using the Navier–Stokes equations as the
basis to provide the statistical distribution of εr (Frisch 1995, Kida 1991), but data suggest
that it can be reasonably modeled as log-normally distributed; i.e. ln (εr/ε) is a Gaussian
distribution (Kolmogorov 1962). An extra length scale needs to be employed in order to do
the scaling. Kolmogorov (1962), using the integral scale, `, as the additional scale, assumed
that the mean square dissipation fluctuations scale as

〈ε2
r 〉/ε

2
∼ (`/η)µ, (8)

where µ is known as the intermittency exponent. From (7) and the log-normal
assumptions (Pope 2000) it follows that

〈a2
〉 = a0ε

3/2ν−1/2(`/η)3µ/8. (9)

From estimates of the turbulence kurtosis, it can be deduced (Pope 2000) that µ ∼ 0.25.
Further, from equations (3), (5) and (6), it follows that `/η ∼ R3/2

λ and 〈a2
〉/ε3/2ν−1/2

∼ R0.14
λ .

Because of intermittency, the acceleration variance is a function of Reynolds number and it
follows that a0 (equation (9)) cannot be a universal constant. We note that the dependency of
〈a2

〉 on Reynolds number has yet to be verified experimentally (for attempts, see Gylfason
et al 2004, Voth et al 2002), although there has been confirmation using DNS (Ishihara et al
2007, Vedula and Yeung 1999), up to Rλ ∼ 1000. The intermittency correction for the variance
(compare equations (7) and (9)) increases the variance by a factor of 3 for our typical cloud.
But we will show that there are rare events with extremely high instantaneous accelerations,
and this has significant consequences for raindrop growth.
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4. Laboratory experiments on the tracking of particles in turbulence

Clouds consist of droplets in turbulent motion. In order to predict the droplet growth it is
first necessary to understand how particles move and coalesce in turbulent flows. Thus, we
need to use the Lagrangian approach to track the particles. Consider a table top experiment
using water (which has a lower kinematic viscosity than that of air (ν = 10−6 m2 s−1), and
therefore higher Reynolds number can be achieved) in a stirred tank to be discussed in
more detail below. Here, ` is typically 0.1 m and 〈u2

〉
1/2 is approximately 1 m s−1. Thus, ε

is approximately 10 m2 s−3. From (6) it follows that τη is 0.3 ms. To track particles, timescales
must ideally be resolved to an order of magnitude smaller than this: τη is the peak small
characteristic timescale but there is activity at smaller timescales. Moreover, the characteristic
small length scale, η, is 18 µm. These considerations imply that to capture the tracks of
particles in turbulence, and thereby determine the Lagrangian statistics, very fast tracking
devices are needed.

In the mid-1990s Eberhard Bodenschatz, a professor of physics at Cornell, and his
student, Greg Voth realized that detectors used in high energy particle physics may be
useful in tracking fluid particles (La Porta et al 2001, Voth et al 2002). Previous work on
Lagrangian tracking had been hampered by inadequate temporal resolution and had been
limited to low Reynolds numbers (Ott and Mann 2000, Sato and Yamamoto 1987, Snyder
and Lumley 1971). Bodenschatz and his group adapted strip detectors, which were being
used to measure the tracks of sub-atomic particles at the Cornell Electron–Positron Collider.
This half mile-circumference collider is used to examine the ‘Standard Model’ describing
elementary particles and their reactions. The objective of the experiment, known as CLEO
(http://www.lepp.cornell.edu/research/EPP/CLEO/), in which the strip detectors are used, is
to elucidate the physics of charm and bottom quark decays. This experiment indicates the
extreme abstraction that has occurred since the early beginnings of detector physics. Yet, in
common with its humble origins, tracks of particles are measured. But here the detector has
little resemblance to the photographic method employed by C T R Wilson a century ago.

The silicon strip detectors adapted by the Bodenschatz group consist of a large planar
photodiode, segmented into 512 sensing strips. A laser beam illuminates small spheres in
the turbulence chamber and the resulting scattered radiation creates electron–hole pairs at the
detector. The charge collected by the array of strips gives a one-dimensional (1D) projection
of the incident light and one coordinate of a particle can be determined. By measuring primary
and conjugate peaks each detector can measure two components of velocity and two separate
detectors are used to determine the 3D motion. The temporal resolution of the detector is
70 000 frames per second allowing for resolution of the smallest scales. A combination of
lenses images the fluid volume of interest onto the detectors. The test chamber is cylinder
filled with water. At the top and bottom there are counter rotating discs of diameter 20 cm
with 33 cm spacing between them. This is a table top experiment (figure 5) in the spirit of
Aitkin and C T R Wilson (section 2). The discs create highly turbulent fluid up to an Rλ of
approximately 1000. Figure 6 shows typical tracks. These tracks are reminiscent of the tracks
of Wilson, but the reason for them could not be more different. Here, the focus is on neutral
particles. Their trajectory is determined by the fluid motion itself.

Figure 7 shows that the probability density function (pdf) of fluid particle acceleration has
very broad, exponential tails due to the highly intermittent nature of the turbulence. ‘Gusts’
where the rms may be as much as 20 times greater than the gravitational acceleration, g, occur
although the rms is only of the order of g. It is important to note that the acceleration pdf
reflects the small-scale activity. At the large scale, the turbulence is approximately Gaussian.
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Figure 5. The Bodenschatz table-top turbulence experiment used to study particle trajectories in
a swirling turbulent flow. The distance between the rotating discs in the plexiglass-water filled-
container is 33 cm. An Rλ of approximately 1000 was achieved in this small apparatus. Image
taken from Voth et al (2002). Copyright 2002, Cambridge University Press.

Figure 6. 3D time-resolved particle tracks in high Reynolds number turbulence, produced by the
apparatus in figure 5. The acceleration magnitude is represented by the color of the trajectory.
Accelerations as high as 12 000 ms−2 are observed. Image taken from La Porta et al (2001).
Reprinted by permission from Macmillan Publishers Ltd: Nature, Copyright 2001.

The results of the Bodenschatz group are consistent with another novel experiment, that
of Jean-Francois Pinton and his co-workers in Lyon (Mordant et al 2001). Counter rotating
discs were used to create turbulence in a bench-top apparatus, similar to that of Bodenschatz,
but in the Pinton experiment ultrasonic techniques were used to track the fluid particles. In
this experiment, the particle size was greater than the Kolmogorov scale (d/η ∼ 17). Hence,
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Figure 7. The pdf of the transverse acceleration of fluid particles, normalized by its standard
deviation. The dashed line is a Gaussian distribution with the same variance. The wide tails are the
result of the intense, intermittent acceleration events (figure 6). The inset shows the normalized
fourth moment of the acceleration. Estimates using intermittency models predict that this should
grow with increasing Rλ. Image taken from La Porta et al (2001). Reprinted by permission from
Macmillan Publishers Ltd: Nature, Copyright 2001.

the dissipation scales could not be resolved. Here, the focus was on the inertial subrange.
Stretched tails, indicating pronounced intermittency, were observed in their velocity increment
pdfs, similar to those observed by the Bodenschatz group.

5. The formation of raindrops

The Bodenschatz experiment tracked ‘fluid particles,’ small, sub-Kolmogorov particles that
have the same density as that of the fluid, and therefore follow the fluid motion. Raindrops
have a density 1000 times that of the surrounding air and thus we would expect that inertial
effects would play a role in their motion. The heavy water particles, known as inertial particles,
will be ejected by the centrifugal forces from regions of high vorticity (where there is strong
dissipation) and accumulate in regions of high strain (Eaton and Fessler 1994, Maxey and
Riley 1983, Shaw 2003, Shaw and Oncley 2001, Squires and Eaton 1991, Sundaram and
Collins 1997). This has the effect of causing the droplets to cluster: a uniform distribution
of particles placed in a turbulent flow will tend to congregate in regions of high strain,
i.e. at scales of the order of the Kolmogorov scale. This has been born out by numerical
simulations (Sundaram and Collins 1997). The multiscale nature of turbulence can also
promote clustering at the larger scales (Chen et al 2006, Yoshimoto and Goto 2007). We
will provide experimental evidence of clustering below. Because the droplet collision rate is
proportional to the square of the number of particles (Pruppacher and Klett 1997, Shaw 2003),
the clustering may enhance droplet growth rate and hence rain formation.

Inertial effects are described by the Stokes number St = τp/τη where τp is the particle
inertial response time and τη (equations (6)) is the timescale of the smallest eddies. It is
these eddies that have the most intense accelerations and thus they will have the strongest
effect on the motion of the inertial particles. The particle inertial response time is defined
as τp = (1/18)[ρp/ρf]d2/ν, where ρp, ρf, d and ν are, respectively, the particle density, fluid
density, particle diameter and fluid viscosity (Pruppacher and Klett 1997), and thus, using the
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second of relations (6)

St ≡
τp

τη

=
1

18ν3/2

[ρp − ρf]

ρf
d2ε1/2. (10)

For water drops in air, St ∝ d2ε1/2.
Inertial effects become significant at St as low as 0.01 (Chun et al 2005), and as the Stokes

number increases the effects grow and then diminish for St greater than unity (see Wood et al
2005). Nevertheless clustering is observed for St as large as 10 and at scales significantly
larger than the Kolmogorov scale. The Wood et al (2005) experiments show clustering in the
inertial subrange and this is also observed in the experiments of Saw et al (2008); see figure 11
below.

Traditional models of raindrop formation (Pruppacher and Klett 1997, Rogers and Yau
1989) under predict the droplet growth rate, which can be as short as 15 min after the
cloud begins to form. Classical theory has the condensation occurring on aerosol nuclei,
typically growing from the submicron size of the nuclei to around 10 µm by the process
of condensation. Because the droplet growth rate by condensation is inversely proportional to
the droplet radius, the droplet size distribution narrows during condensation. Further growth
of droplets by means of collision and coalescence occurs as they fall through the cloud at their
terminal speed. Larger drops, falling at a greater velocity overtake the small ones and thereby
grow by collision and coalescence. The classical theory, based on gravitational coalescence,
is unable to produce the rapid rate of size increase in droplets in part because the droplet size
distribution is not broad enough to begin with. The collision kernel, the expected time for a
droplet to experience a collision with another droplet of a different size, is strongly related
to the particle size distribution (Shaw 2003) and to the accelerations of the particles. In the
classical theories, the acceleration due to the turbulence is neglected.

The role of turbulence may be critical in enhancing the condensation and the collision
coalescence process. The small scales of turbulence experience large accelerations at high
Reynolds number and as we have shown (figure 7), these will be greater than the gravitational
acceleration. Further, the structure of the turbulence allows for cloud particles to preferentially
concentrate as a result of their inertia. This may increase the size distribution of the
condensation phase by inducing vapor supersaturation fluctuations (Shaw et al 1998a,b) and
at the coalescing stage by increasing the collision efficiency (Reade and Collins 2000).2 All
these issues are linked because of the multiscale nature of turbulence.

In order to study the effect of turbulence on inertial particles, we have employed a large
(1 m × 0.9 m × 20 m) open circuit wind tunnel with an active grid (triangular agitator wings
attached to the rotating grid bars, randomly flipping (Makita 1991, Mydlarski and Warhaft
1996)) to produce turbulence in the range 1006 Rλ 6 1000. The water spray consists of an
array of four nozzles symmetrically placed downstream of the grid (figure 8). The particle
drop size was measured using a phase Doppler particle sizer (Ayyalasomayajula et al 2006).
The particle mass loading was approximately 10−4 kg water kg−1 dry air. A high speed camera
(Phantom v7.1) attached to a precision linear motion pneumatic-driven sled was accelerated
to the mean flow speed and 2D particle tracks were measured at region 30 mesh lengths
(M = 11.4 cm) downstream from the grid and 20.3 cm from the tunnel wall. The camera frame
rate was 8000 fps with a resolution of 512 pixels × 512 pixels. The laser light sheet (Nd-YAG,
20W, pulse width 120 ns at a repetition rate of 40 kHz) was projected from the top of the
tunnel such that the camera received light forward scattered at an angle of 30◦. The width of

2 Kostinski and Shaw (2005) have emphasized the importance of fluctuations in droplet growth by focusing on very
rare ‘lucky’ fast or giant droplets that may initiate the rain in warm clouds.
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Figure 8. The wind tunnel in the DeFrees laboratory at Cornell used to study inertial particles
in high Reynolds number turbulence; (a) the plexiglass-open circuit-tunnel (1 m × 0.9 m × 20 m)
showing the camera (far left, at the beginning of its trajectory), the sled and the laser sheet. (b) The
active grid (used to generate high Reynolds number turbulence) and (c) the spray system. They are
located at the far left of (a).

the sheet was 2 mm. The sampling area was 1.9 × 1.9 cm2, the inter-sample time was (1/100)
τη and the spatial resolution was (1/12)η. The camera tracked the particles over a distance
of 40 cm (0.2 s) as they moved across the light sheet. Approximately 15 000 data points were
taken per sled run, and 400 runs were completed to provide 6 × 106 data points per set.

Figure 9 shows the normalized pdf of the longitudinal component of the acceleration of
inertial particles compared with those of fluid particles. There are two related effects due to
the inertia: the acceleration variance decreases as a result of the linear damping of the fluid
acceleration, and the pdf tails become narrower. The first effect is not shown because the pdf
is normalized. The narrowing of the tails is a result of biased sampling of the underlying fluid
flow due to inertia. The inertial particles will experience events of varying magnitude due to
the intermittent structure of the flow field. Evidently the effects of very large acceleration
events that we can associate with the intense vorticity of the turbulence are attenuated,
reducing the width of the tails. Thus, there is a relationship between the acceleration pdf
and the clustering mechanisms.

In order to elucidate the relationship between the acceleration pdf and the clustering,
we developed a new model that uses an array of potential vortices to simulate a 2D flow
in which fluid particles and inertial particles are tracked to obtain Lagrangian velocities and
accelerations (Ayyalasomayajula 2007, Ayyalasomayajula et al 2008). In contrast with earlier
stochastic models (Reynolds 2003, Sawford 1991), this model allows the inertial particles to
choose the fluid field it wishes to sample. An array of ten-by-ten vortices was used, separated
by a distance L (figure 10) which we call the integral scale. The flow field around a vortex was
obtained using the 2D potential theory but to prevent infinite velocity near the center of each
vortex, a viscous-like core with radius s was added. Here, s acts like a small-scale turbulence
length scale. The circulation of each of the vortices 0i was set using an independent Gaussian
random variable whose mean is zero and standard deviation is σ0 . To mimic the persistence
of large-scale eddies as in the real turbulent flow, the circulation was randomly updated at a
timescale, T . The timescale T is associated with the slowest eddies of size L and the timescale
is constructed as L2/σ0 . Similarly a small-scale time ts is constructed as s2/σ0 and it can be
related to the most rapid changes in the flow, which are occurring close to the core of the vortex
where maximum induced velocity is expected. The inertial particle has one-way coupling to

12



Fluid Dyn. Res. 41 (2009) 011201 Z Warhaft

Figure 9. The normalized pdfs of the longitudinal components of the acceleration of inertial water
particles (St = 0.09, ×; St = 0.15, +) compared with passive particles (filled circles) measured in
the Cornell wind tunnel Rλ = 250. Also shown are the DNS results at comparable Rλ and St , from
Bec et al (2006). Black line, DNS of fluid particles; gray line, DNS of inertial particles; St = 0.16.
For both cases Rλ = 185.

the flow through Stokes drag. The acceleration of the particle was obtained from the material
derivative (Dv(t)/Dt) of the inertial particle velocity. The Stokes number St for this model
is defined as the ratio of particle response time, τp and the flow timescale, ts.

The simple vortex model exhibits the stretched exponential tails for the acceleration pdf
that is observed in the data (figure 10(b)). It also produces clustering away from the vortex
centers (figure 10(c)) due to the selective sampling of the fluid by the inertial particles, and
this is correlated with the narrowing of the shape of the pdf. Ayyalasomayajula (2007) and
Ayyalasomayajula et al (2008) also computed the Lagrangian acceleration auto-correlation
function, conditioned on the magnitude of the acceleration, for the fluid along an inertial
particle trajectory, and showed that as the magnitude of the acceleration increases, the
correlation time decreases. Thus inertial particles with high acceleration are ‘filtered’ because
their response time to the turbulence is too short. This has the effect of excluding extreme
acceleration events, thereby narrowing the inertial particle pdf tails. By computing the fluid
acceleration conditioned on the inertial particle acceleration Ayyalasomayajula (2008) also
showed that for small St(< 0.5) the inertial particle acceleration coincides with that of
the fluid acceleration, but because the inertial particles are not homogeneously distributed,
concentrating in regions of low vorticity (clustering), the inertial particle variance is reduced
due to the preferential concentration. This is consistent with the numerical study of Bec
et al (2006). Thus, there is a clear link between the acceleration pdf and the clustering
and filtering of the inertial particles. The relative effects of the two mechanisms: clustering
and filtering, need further study. In the Bec et al (2006) DNS, clustering dominates but
in the vortex model filtering is also significant, although clustering dominates at very low
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Figure 10. A vortex model used to mimic inertial particles in a random flow. (a) The model
consists of a 10 × 10-2D array of evenly spaced vortices which randomly vary in direction. L
is the distance between vortices. (b) The pdf of the normalized acceleration for the fluid particles.
As for the experiments, the model reproduces the stretched exponential tails (circles, squares and
triangles) and they become narrower as the St increases. The gray line is a Gaussian pdf. (c) pdfs
of the location of particles from vortex center. As the Stokes number increases there is less and
less probability of finding a particle at the vortex center. From Ayyasomayajula et al (2008).

Stokes number. Further experimental study of this problem is needed. Apart from the issue of
understanding inertial particle behavior in its own right, the investigation of inertial particles
is telling us about the fluid structure itself and is therefore a valuable diagnostic tool. There is
much to do in this fertile area.

Recently, there have been a number of laboratory studies of the clustering of inertial
particles (Salazar et al 2008, Saw et al 2008, Wood et al 2005). Clustering may be described
in terms of the radial distribution function (rdf) (Shaw et al 2002, Sundaram and Collins 1997)
defined as

g(r) =

〈
ρp(r)

ρp

〉
, (11)

where 〈ρp(r)〉 is the particle density at a distance r relative to each particle, averaged over all
particles, and ρp is the global particle density. If there is no clustering, g(r) = 1. We would
expect that when clustering occurs, g(r) will peak in the dissipation range, since it is here that
the regions of maximum strain (velocity gradient) occur.
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Figure 11. Measurements of the pair correlation of inertial particles in the Cornell tunnel. (a) The
experimental setup showing the phase Doppler interferometer for measuring the 1D rdf from their
time of arrival (top panel). (b) The pair correlation functions for various Stokes numbers. The high
values at dissipation scales (r ∼ rk, where rk is the Kolmogorov scale) indicate clustering, which
increases as St increases from the bottom graph (St = 0.01–0.3) to the top (St = 1.1–1.5). The
intermediate values are 0.3–0.7 and 0.7–1.1. The Taylor–Reynolds number range was 440–590.
Images taken from Saw et al (2008). Copyright 2008, American Physical Society.

In the Cornell tunnel discussed above, Saw et al (2008) used a phase Doppler
interferometer downstream of the active grid and spray system and obtained an estimate
of the 1D rdf from time of arrival measurements. They found significant clustering at the
dissipation scales where the fluid acceleration is at its maximum. A plot of the pair correlation
function η(r) ≡ g(r) − 1 is shown in figure 11. Note that although the clustering peaks at the
small scales, it persists to larger (inertial) scales. As the Stokes number increases, so does the
magnitude of the clustering. The figure also shows Stokes number similarity for droplets of
different diameters. The trend of these results is seen in the work of Wood et al (2005) and
Salazar et al (2008) in completely different experimental apparatus. In these experiments, a
turbulence box was used: fans at the corners of a box produce the turbulence which, at the
center where the measurement are made, is approximately isotropic. Salazar et al compare
their measurements with DNS and find satisfactory agreement (figure 12). Other laboratory
experiments using Eulerian methods to investigate preferential concentration include the work
of Aliseda et al (2002) and the earlier work of Wells and Stock (1983). Vohl et al (1999) study
the growth of single droplets by collision coalescence in a wind tunnel. They compare laminar
and turbulent flows and their preliminary results suggest that the droplet growth rate is faster
under turbulent conditions. An important issue that needs systematic study is the dependency
of clustering on Reynolds number. Numerical results (Collins and Keswani 2004) indicate
saturation of the rdf as the Reynolds number is increased. However, the DNS is for a limited
range of Reynolds numbers.
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Figure 12. Measurements of the 3D rdf in a turbulence box. (a) Schematic of the turbulence box
and holographic imaging setup. The particles used were hollow glass spheres (top panel). (b)
The rdf. The mean Stokes number increases from St = 0.21 (lower most curve) to St = 0.40 and
St = 0.60 (upper curve). The Taylor–Reynolds number range was 108–147. The dashed and full
lines are DNS of the experiments. The results are in qualitative agreement with those of Saw et al
(figure 11) but quantitative comparison is difficult since these are 3D (volume) measurements.
Those of Saw et al are time of arrival 1D measurements. Image taken from Salazar et al (2008).
Copyright 2008, Cambridge University Press.

Experiments have been conducted in the atmosphere too. Here, the resolution is much
poorer but there is evidence that clustering is occurring at the smallest scales. Lehman
et al (2007), using a tethered balloon, measured the pair distribution function in a stratus cloud
in which the Stokes number was gradually varying. The Stokes number was determined by
measuring droplet size and local energy dissipation rate (see relation following equation (10).
They found that clustering was positively correlated with the droplet St and they infer that
the droplet collision rate depends not only on the droplet size distribution, but also on the
turbulence level. Earlier work by Uhlig et al (1998) and by Pinsky and Khain (2003) are
not inconsistent with these results. In an ambitious experiment, Bodenschatz proposes using
a sled mechanism with high speed cameras (similar to the setup in figure 8(a)) to measure
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Figure 13. The Schneeferner Haus on the Zugspitz, Germany’s highest mountain, a possible site
proposed by E Bodenschatz to do Lagrangian experiments of cloud particles, in situ.

cloud particles on the side of the Zugspitz, Germany’s highest mountain (figure 13). Such an
experiment is very much in the spirit of the early work of J Aitkins and C T R Wilson referred
to in section 2 (figure 4). By moving back and forth between the laboratory and the field using
the same apparatus, the gap between the abstract and mimetic experiments will inevitably
narrow.

6. Concluding comments

In this review, I have described recent developments in experimental methods used for the
study of particles in turbulent flows. I have focused on Lagrangian techniques, where
the frame of reference moves with the fluid particle. By these means the temporal evolution
of the turbulent flow field can be determined, and thereby fundamental insights into particle
motion can be gained.

The new experiments described here provide the beginnings that will lead to a better
understanding of droplet formation in clouds. Further work will include systematic studies of
clustering as a function of Reynolds number to determine whether saturation of the clustering
occurs at high Reynolds number. The effects of long range interaction between the large and
small scales (Warhaft 2002 and references there in) on clustering needs examination, as do the
effects of Reynolds and Stokes numbers on clustering at the larger scales. The way particle
pair dispersion is affected by the inertia of the particles also needs investigation. Particle size
effects need to be studied3. The experiments mentioned above are for particles smaller than
the Kolmogorov scale. And the particle concentrations need to be systematically varied so that
collisions can be introduced into the experiments. Experiments in inhomogeneous flows are
also needed. We have no evidence of how the inertial particle acceleration pdf and the radial
distribution vary in inhomogeneous flows. Experiments also need to move to a parameter
range that is closer to that observed in clouds. In warm cumulous clouds, St is in the range
10−3–10−1, and the dissipation rate is low, typically of the order of 10−2 m2 s−3 (much lower
than usually observed in experiments), but it can vary by orders of magnitude. The highest
Taylor Reynolds number presently obtained in experiments is of the order of 103, whereas
in clouds it can range from 104 to 105. Gravitational effects also need to be systematically

3 See Qureshi et al (2007) and Xu and Bodenschatz (2008) for recent advances in this area.
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studied in the laboratory. In this review, we have stressed the statistical nature of the subject
and the importance of rare events in determining clustering. Classical theory (Ruppacher and
Klett 1997) is unable to explain the rapid rain initiation time observed in clouds: the statistical
nature of the turbulence may provide a key element in understanding the enhanced collision
rates needed for the rapid droplet growth. The subject is burgeoning and significant advances
can be expected in the next few years.

I have also drawn attention to the interesting history of the subject. Clouds and droplets
have been studied in the laboratory for more than a century. It was the early droplet studies of
C T R Wilson that led to the development of the particle detectors that are used today in high
energy physics. In an interesting turnabout, these modern particle detectors have recently been
used to study the Lagrangian properties of fluid particles (figure 6). I think that C T R Wilson
would have been pleased to see the return to the study of droplet formation in the laboratory
in this way.

Finally, I have discussed the dichotomy between abstract and mimetic experiments: the
reductionist and the holistic approach. Whether, by means of clever experiments, theory and
computation we will be able to build up a cloud, with all its complexity, from an understanding
of its component parts, or whether a more synthetic approach is needed, remains an open
question. We note that the fractal approach has been successful in describing clouds and there
is considerable literature on the subject (e.g. Cahalan and Joseph 1989, Sachs et al 2002).
Whether this approach will lead to an understanding, in the way that experiments or DNS
does, is not clear. So far the main contribution of the fractal approach has been to provide
a description. It does not provide the understanding that comes from the Navier–Stokes
equations, which are thought to incorporate the full dynamics of the turbulent field. What
is required is a holistic approach that provides insight into the dynamics, and provides
predictions of the rate of drop formation, and other important characteristics.
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