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We describe collective oscillatory behavior in the kinetics of irreversible coagulation with a constant

input of monomers and removal of large clusters. For a broad class of collision rates, this system reaches a

nonequilibrium stationary state at large times and the cluster size distribution tends to a universal form

characterized by a constant flux of mass through the space of cluster sizes. Universality, in this context,

means that the stationary state becomes independent of the cutoff as the cutoff grows. This universality is

lost, however, if the aggregation rate between large and small clusters increases sufficiently steeply as a

function of cluster sizes. We identify a transition to a regime in which the stationary state vanishes as the

cutoff grows. This nonuniversal stationary state becomes unstable as the cutoff is increased. It undergoes a

Hopf bifurcation after which the stationary state is replaced by persistent and periodic collective

oscillations. These oscillations, which bear some similarities to relaxation oscillations in excitable media,

carry pulses of mass through the space of cluster sizes such that the average mass flux through any cluster

size remains constant. Universality is partially restored in the sense that the scaling of the period and

amplitude of oscillation is inherited from the dynamical scaling exponents of the universal regime.
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The statistical dynamics of irreversible coagulation have
been studied for almost a century since the pioneering work
of Smoluchowski on Brownian coagulation of spherical
droplets. See Ref. [1] for a modern review. It nevertheless
remains an important branch of statistical physics. This is in
part due to its status as a paradigm of nonequilibrium
kinetics, but it is primarily due to its connections to a variety
of important modern problems. We particularly highlight
applications in cloud physics [2], surface growth [3], and
planetary physics [4]. In these examples, coagulation of
clusters is supplemented with a source (or effective source
in the case of Ref. [4]) of small clusters ormonomers. Such
driven coagulation, in which monomers are supplied to the
system at a constant rate, is the main focus of this Letter.
One may expect the kinetics of such a system to become
stationary for large times [5,6] with the loss of clusters due
to coagulation compensated by the supply of new clusters
provided by the input of monomers. In this Letter we show
that this intuitive picture is not always correct and demon-
strate the possibility of a new and strikingly different long-
time behavior characterized by time-periodic kinetics.

Before we begin, let us introduce a large mass cutoff �.
Above this size, clusters are removed from the system.
Physically this could be literal removal as in the case of
large droplets preferentially precipitating out of a cloud, or
quenching of reactivity due, for example, to charge accu-
mulation. Our primary motivation for introducing it, how-
ever, is theoretical, and we shall focus on what happens as
� ! 1. The basic quantity of interest is the cluster size

distribution denoted by NmðtÞ. It is the average density of
clusters of mass m at time t. Assuming that the system is
statistically homogeneous, NmðtÞ has no spatial depen-
dence. We denote the coagulation rate between clusters
(or coagulation kernel) by Kðm1; m2Þ. Suppressing the t
dependence of NmðtÞ for brevity, the mean-field kinetics
satisfy Smoluchowski’s equation:
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which includes many of the commonly studied models [1].
Equation (2) can also capture the asymptotics of most
physically relevant kernels. We mostly consider cases for
which � < 1 and �þ � < 1, avoiding complications due
to gelation [1,7]. The stationary solution of Eq. (1) without
cutoff was found in Ref. [8]. It is a power law for large m:
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The exponent ð�þ �þ 3Þ=2 implies a constant flux J of
mass through each cluster size m. It is a standard example
of a nonequilibrium stationary state with a conserved
current. From Eq. (3), this stationary state exists only if
j���j< 1, a fact which is true for any scale invariant
kernel [9]. One might ask what happens if j���j> 1?
This can occur in practice. Examples include coagulation
of ice in planetary rings [4], gravitational clustering [10],
and droplet sedimentation in static fluids [11].

The fact that the constant flux stationary state only exists
for a certain class of kernels has long been appreciated in
the theory of wave kinetics [12]. If one solves the sta-
tionary version of Eq. (1) with finite cutoff � and studies
the behavior as � ! 1, one finds that when j���j< 1,
the leading order term becomes independent of �. The
stationary state thus tends to the universal form found in
Ref. [8]. If, on the other hand, j���j> 1, the stationary
state is nonuniversal and retains a dependence on � as
� ! 1. This phenomenon is referred to as nonlocality of
interaction (in the mass space) in the sense that all masses
interact strongly with the largest or smallest masses in
the system. By extension, the interactions in the regime
j���j< 1 are termed local although this is a rather weak
form of locality. A finite cutoff is essential to obtain a
stationary state in the nonlocal regime as discussed in
Ref. [13].

Almost nothing is presently known about the shape of
Nm in the nonlocal regime. We developed an algorithm to
compute the exact stationary solution of the discrete ver-
sion of Eq. (1) with cutoff by converting it into a two-
dimensional minimization problem which can be easily
solved numerically for modest values of �. For details
see the Supplemental Material [14]. Some typical results
are shown by the symbols in Fig. 1. It is clear that the
nonlocal stationary state is not a simple power law. To
obtain some analytic understanding, one possible way for-
ward was outlined in Ref. [15]. If clusters of size m grow
primarily by interaction with clusters of mass m1 � m,
which is the essential feature of nonlocal interactions, one
can Taylor expand the right-hand side of Eq. (1) and obtain
an almost linear equation for NmðtÞ [15]. The dominant
terms in this equation are

@Nm

@t
¼ �D�þ1

@

@m
½m�Nm� �D�Nm; (4)

where the t dependence of Nm has been suppressed and

D�þ1 ¼
Z m=2

1
m�þ1

1 Nm1
dm1 ! M�þ1

¼
Z �

1
m�þ1

1 Nm1
dm1;

D� ¼
Z �

m
m�

1Nm1
dm1 ! M� ¼

Z �

1
m�

1Nm1
dm1:

Here we have introduced the notationM� ¼ R
�
1 m�Nmdm,

which will denote the � moment of the size distribution in

what follows with M0 and M1 being the total number of
clusters and total mass, respectively. Extension of the
limits of integration of the above integrals to � and 1,
respectively, is a further assumption which needs to be
justified a posteriori. The self-consistent calculation de-
tailed in Ref. [16] for the case � ¼ 0 is easily extended to
obtain the following stationary asymptotic solution of
Eq. (4) in the limit of large M:

N�
m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�J logð�Þ

q
��1�m��

m��; (5)

where � ¼ ���� 1, adopting the convention that � >
� in Eq. (2). Detailed derivations of Eqs. (4) and (5) are
provided in the Supplemental Material [14]. Equation (5)
approximates well the true stationary state as indicated by
the solid lines in Fig. 1. Note that there are no adjustable
parameters. A striking feature of Eq. (5) is that the pre-
factor of the stationary state vanishes as� ! 1, reflecting
the nonuniversality of the nonlocal regime. Similar behav-
ior was observed in the instantaneous gelation regime [17]
in Ref. [16] although there is no gelation here.
The vanishing of the stationary state in the limit � ! 1

poses a conceptual problem since it suggests the removal of
the conduit linking the source to the sink. In order to
investigate how the conserved mass current is carried in
the nonlocal regime, we computed dynamical solutions of
Eq. (1) in the nonlocal regime using the numerical algo-
rithm developed in Ref. [18]. The results were surprising.
For small values of �, the numerical solution converged to
the exact stationary state as expected. Once � exceeded a
certain value, however, the numerical solution never reached
the stationary state. The typical behavior of the totalmass as a
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FIG. 1 (color online). Comparison of asymptotic approxima-
tion, Eq. (5) (solid lines), to the true stationary state of Eq. (1)
obtained using our minimization algorithm (symbols). The ker-
nels are given by Eq. (2) with values of � and � chosen in the
nonlocal regime. The cutoff is � ¼ 104.
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function of time for different values of� is shown in themain
panel of Fig. 2 for the case � ¼ �� ¼ 3

4 . Stationarity is

reachedonly for smaller values of�. For larger�weobserve
collective oscillations which seem to persist indefinitely (we
stopped the computation after several hundred periods). The
period and amplitude grow with�.

The intriguing possibility thus arises that the stationary
state becomes unstable as � increases. Our algorithm for
computing the stationary state is not dynamical and makes
no distinction between stable and unstable fixed points. We
therefore input the exact stationary state as an initial con-
dition for the dynamical code and added a small perturba-
tion. The results for the density are shown in the inset of
Fig. 3. The perturbation grows to a finite amplitude in a
clear indication of instability. A lin-log plot of the ampli-
tude of the successive maxima of the perturbation, as
shown in the main panel of Fig. 3, indicates exponential
growth, a clear sign of linear instability. We used
MATHEMATICA to compute the eigenvalue �max of the lin-

earization of the discrete version of Eq. (1) about the sta-
tionary state which has maximum real part. This analysis
confirmed the instability. The growth rate agrees well with
numerics (see the main panel of Fig. 3). For fixed � and �,
the stationary state undergoes a Hopf bifurcation as � is
increased. The eigenvalue �max crosses the imaginary axis
at a critical value of� (see the inset of Fig. 4), giving birth
to a limit cycle and oscillatory behavior. The oscillations
can be considered as a high-dimensional analogue of the
relaxation oscillations observed in excitable systems such
as the FitzHugh-Nagumo model of spike propagation in
neurons [19]. Intuitively, these oscillations can be under-
stood by noting that in the nonlocal regime, large clusters
become very efficient at merging with small ones. As

monomers are added to the system, the typical size remains
fairly small until a small number of large clusters are
generated. At this point, large clusters grow very rapidly
by absorbing the smaller clusters producing a pulse of mass
through the space of cluster sizes. These large clusters are
then removed by the cutoff resetting the system to a state
with almost no particles and the cycle repeats. The struc-
ture of the instability as a function of � and � for fixed �
is nontrivial, as shown in the main panel of Fig. 4. For
fixed �, the stationary state becomes stable again for

FIG. 2 (color online). Main panel: Total mass M1ðtÞ versus
time for different values of � with � ¼ �� ¼ 3

4 . Inset: Collapse

obtained by rescaling the data according to Eq. (8).

FIG. 3 (color online). Numerical evolution of a perturbation of
the stationary state for � ¼ 1, � ¼ � 7

8 , and � ¼ 300. Main

panel: Amplitude of successive maxima of the perturbation
(circles). The solid line is the prediction of linear stability
analysis. Inset: The total output mass flux oscillates about its
mean value of J ¼ 1.

FIG. 4 (color online). Main panel: Re½��max for kernels � ¼
�� plotted as a function of � for different values of the cutoff �.
Inset: Re½��max as a function of � for different values of �.
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sufficiently large values of �, a fact for which we have no
intuitive explanation at present although we note that for
� > 1 we are entering the instantaneous gelation regime
where we would expect qualitative differences in behavior
to appear [16]. Limit cycles appearing in mean-field
equations can be destroyed by noise [20]. To check
the robustness of this phenenomenon, we performed
Monte Carlo simulations of the Markus-Lushnikov model
(see Ref. [21]) with a source and sink of particles. Typical
results are shown in Fig. 5. Oscillations are clearly visible,
which remain coherent in the presence of noise.

To understand nonlinear aspects of the instability, such
as the period and amplitude of nonlinear oscillation, we
return to Eq. (1). Each period corresponds to a pulse of
mass through the space of sizes (a movie is provided in the
Supplemental Material [14]). Each pulse almost resets the
mass of the system to zero as evident from the main panel
of Fig. 2. Let us suppose each pulse grows with self-similar
size distribution,

NmðtÞ ¼ sðtÞaFð�Þ with � ¼ m

sðtÞ ; (6)

where sðtÞ is a typical size and a is an exponent to be
determined. Substituting Eq. (6) into Eq. (1) and balancing
dependences on t requires that _s ¼ s�þ�þaþ2. Since the
mass contained in each pulse grows linearly in time,R
�
0 mNmðtÞdm ¼ Jt. Substituting Eq. (6) and differentiat-

ing gives _s� s�a�1. Consistency requires

a ¼ ��þ�þ 3

2
; sðtÞ � t2=ð1����Þ: (7)

The period is estimated as the time 	� required for the
typical mass sðtÞ to reach�. The amplitude A� is estimated

as the mass supplied in one period. We thus obtain the
following scalings for 	� and A� with �:

	� ��ð1����Þ=2; A� � J�ð1����Þ=2: (8)

These scalings are verified by the data collapse presented
in the inset of Fig. 2. Universality is in a sense restored
since the earlier universal behavior of Eq. (3) can now be
understood as the special case in which Fð�Þ has the
special form which cancels sðtÞ from NmðtÞ in Eq. (6).
The phenomena presented here should be relevant be-

yond the idealized coagulation models analyzed above.
The key requirement for oscillatory dynamics is nonlocal-
ity of the mass-space interactions, a concept which con-
tinues to make sense if, for example, the coagulation
process is not scale invariant or is weakly reversible.
Furthermore, many driven dissipative systems with con-
served currents must satisfy a locality criterion analogous
to the one discussed here Ref. [22] and may be candidates
for oscillatory behavior when this criterion is violated. In
particular, the kinetic equation for isotropic 3-wave turbu-
lence, which is closely analogous to Eq. (1), becomes
nonlocal when j���j> 3 [23]. Furthermore, the oscil-
latory behavior discussed in this Letter may even have been
already observed experimentally in measurements of non-
equilibrium phase separation of binary mixtures with
slowly ramped temperature [24,25]. In this system, drop-
lets of one phase coagulate inside another during demixing
with nucleation providing the source of monomers
although the coagulation process is not obviously nonlocal
in our sense. This nevertheless seems like a potentially
fruitful direction for further investigation since the theory
presented here makes several testable predictions about the
oscillatory kinetics.
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