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Suspension and Fall of Heavy Particles in Random Two-Dimensional Flow
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We investigate the settling of heavy particles in a steady, two-dimensional random velocity field, and
find instances in which particle suspension occurs. This leads to a bimodal velocity distribution that
may explain some apparently conflicting results reported in the literature. The bimodal distribution is
typically smeared out by a time dependence of the ambient flow but, if the time variation is slow, the
settling rates of some particles will be as well. The resulting broadbanded velocity distribution of the
settling particles will have significance for processes such as rain drop formation, in which the spread of
particle velocities affects the statistics of particle collisions.
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laboratory experiment on particles sedimenting in grid-
generated homogeneous turbulence [12].

dt

Equations (1) and (2) define a dissipative system in the
Transport of small heavy particles in turbulent flows is
significant in problems involving the motions of aerosols
and cloud droplets in the atmosphere, sedimentation in
rivers, and plankton migration in the ocean. An impor-
tant role for the collisions and coalescence of sediment-
ing dust particles arises in studies of the formation of
planetesimals [1]. Theoretical understanding of the dy-
namics of non-neutrally buoyant, finite-sized impurities
has accordingly been widely sought, beginning with
Stommel’s [2] description of how heavy particles can be
permanently suspended in a steady two-dimensional ar-
ray of eddies. However, when the ambient fluid flow is
made time periodic, the particles fall (in a sense chaoti-
cally) [3]. More significantly, when the particle inertia is
not neglected (as it was in Stommel’s work) particles
cannot be permanently suspended in a steady cellular
flow field [4].

Complicating the ambient flow further enriches the
problem. Maxey [5] has found that the average settling
velocity of a small rigid spherical particle in homoge-
neous turbulence increases with particle inertia. His re-
sults, which have been parametrized [6], are supported by
direct numerical simulation [7,8], and by laboratory ex-
periments [9]. However, some studies indicate that other
behavior is possible. Fung [10] observed a net decrease of
the average settling velocity in a simulation of particle
motion in a Gaussian random velocity field. The inves-
tigation by Dávila and Hunt [11] shows that, near steady
vortices with horizontal rotation axes, the average set-
tling velocities of particles can be either larger or smaller
than the terminal velocity in still fluid, depending on the
particle properties. Similar results were obtained in a
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Here, we investigate the settling of heavy particles in a
turbulent fluid.We confine ourselves to a two-dimensional
vertical slice of an idealized three-dimensional turbulent
field, neglecting feedback of the particles on the flow. We
find that particles can be suspended for long times despite
the effects of gravity and inertia when the flow changes
slowly. Indeed, the settling speed of individual particles
can be very different from the average speed. The latter
can be either larger or smaller than the settling velocity in
still fluid, depending upon the relative abundance of the
particles that stay aloft for long times compared to the
particles that are swept into the downdrafts between
turbulent eddies. In addition, the velocity distribution of
the settling particles can be significantly broadened and
even bimodal.

The forces acting on the motion of low concentrations
of finite-sized, non-neutrally buoyant particles in a pre-
scribed fluid flow have been surveyed by [13–15]. (Fur-
ther mathematical background is given in [15–22].) For
particles heavier than the displaced fluid, the dynamics
reduces to a balance among particle acceleration, Stokes
drag, and weight [23]:

dV�t�
dt

�
1

�a
�u�Y�t�; t�� V�t� �W�; (1)

where u � �u; v� is the fluid velocity, �a is the particle
inertial response time, W � �0; g�a� is the terminal ve-
locity in still fluid, V � �U;V� is the velocity of the
particle, and Y � �X; Y� is the particle position, with

dY�t�
� V�t�: (2)
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FIG. 1 (color online). Distribution function of �V �W� �
�L0=��W�, for different values of �a=�k and constantW=vk �
0:75. White indicates low or zero density, dark indicates large
density.
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FIG. 2. Probability density function of the vertical displace-
ment �Yi�t0; �� � Yi�t0 � �� � Yi�t0�, for different times: � �
10L0=U0 (solid line), � � 15L0=U0 (dashes), � � 20L0=U0

(dots). Arrows indicate the position that the particles would
have if they moved at the Stokes settling velocity W. Here,
�a=�k � 0:35 and W=vk � 0:75.
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four-dimensional phase-space �X; Y;U; V�. For heavy par-
ticles and a specified fluid velocity field, the divergence of
the phase-space velocity is �1=�a. We consider heavy
particles that are uniformly released in a fluid with a
homogeneous, isotropic, and statistically stationary ran-
dom velocity field u�x; y; t�. This field is prescribed in a
vertical, square domain of size L0, with periodic bound-
ary conditions in both the vertical and the horizontal
directions that extend it throughout a vertical plane.
The kinetic energy spectrum of the field is chosen as
E�k� � �2=3k�5=3 for 2�=L0 < k< kmax. This choice re-
tains the spectral properties of the inertial range of three-
dimensional turbulence, but it ignores the motion along
the direction orthogonal to the slice.

When the particle response time �a is much smaller
than the time scale of the flow evolution, the ambient
velocity field can be taken as steady. Otherwise, we use a
stochastic differential equation for the Fourier phases to
describe the temporal evolution of the velocity field; de-
tails of the model are given in the Appendix. In the
construction of the velocity field, values of the energy
dissipation rate � between 300 and 3� 105 cm2=s3 were
adopted. If we take a value � � 0:14 cm2=s for the kine-
matic viscosity of the ambient fluid (as for air), we obtain
the Kolmogorov length scale, �k � �3=4��1=4, in the
range 0.1–0.6 mm. The Kolmogorov time scale and ve-
locity are then �k � �1=2��1=2 and vk � �1=4�1=4 [25];
L0 � 0:1 m.

In a statistically steady flow, the time-averaged vertical
velocity of a particle becomes stationary after a transient
whose duration depends on the initial conditions and the
particle’s inertial response time. We discard the initial
transients and compute the properties of particle motion
at times larger than t0 � 100�a beyond particle release.
Of interest are the Lagrangian settling rates, defined as
the average vertical velocity over the particle trajectories,
VL � L0h��1i, where � is the time a particle takes to
cover the vertical distance L0, and the bulk settling
rate, defined as the inverse of the average time that
particles take to cover a unit vertical distance, VB �
L0=h�i. These two quantities are in general different
[11]. We characterize the effect of the ambient flow on
the particle settling rate by L0=��W; a positive value
indicates that the particle falls faster than in still fluid.
Figure 1 shows the distribution p�L0=��W� in a random
steady flow withW=vk � 0:75, for different values of the
ratio �a=�k. The mean value of this distribution can be
either positive or negative, indicating that, on average, the
settling rate of heavy particles in a turbulent flow can be
either larger or smaller than in still fluid.

We now choose a specific set of N � 16 384 identical
particles with �a=�k � 0:35, and consider the distribution
of the vertical displacements, �Yi�t0; �� � �Yi�t0 � �� �
Yi�t0��, at three different times, namely, � � 10L0=U0,
15L0=U0, and 20L0=U0, where U0 is the rms turbulent
velocity. We obtain a particle distribution that indicates
054502-2
the presence of two distinct populations of particles, as
shown in Fig. 2. The value of �VL �W� calculated on the
population of particles with large vertical displacements
is �0:70� 0:02�U0, indicating that the average vertical
velocity is larger than the terminal velocity in still fluid.
Conversely, the value of �VL �W� for the second popu-
lation is ��0:17� 0:06�U0. Figure 3 shows that these
latter particles move on closed trajectories and have
zero time-averaged vertical velocity: These particles are
permanently suspended in the flow.

Because of inertia, particles generally do not move
along streamlines. When a particle comes to a bend in a
streamline, its path curves somewhat less than that of a
fluid element would. In a simple circular eddy, the curva-
ture of a closed streamline is the same all the way around
054502-2



FIG. 3. A closed particle trajectory, superposed on the
streamlines of the ambient flow. Here �a=�k � 0:35.
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[4] and the inertial force flings particles outward. Heavy
particles therefore tend to spiral out of circular vortices as
shown in Fig. 4(a), so that they may eventually be swept
into a downdraft between turbulent eddies and fall. When
a vortical structure has a complex shape so that the
curvature of its streamlines varies from place to place,
an inertial particle may be swept inward or outward in the
vortex, depending on the local sign of the streamline’s
curvature. If the inward and outward particle excursions
balance, a closed trajectory can result and the particle
may be trapped in the eddy, as in Fig. 4(b).

The balance between inward and outward displace-
ments is not achieved when the time, �r, needed for the
particle to complete a circuit around the eddy, is less than
the inertial response time. In a given turbulent field,
smaller eddies give rise to smaller �r, and a particle
with inertial time �a can be trapped only by large enough
eddies as measured by the ratio �a=�r [11]. For �a=�r �
1, a particle cannot remain suspended. Surprisingly, in
given parameter ranges, such closed paths are relatively
(a) (b)

FIG. 4 (color online). Sketch of the inertial bias. Grey thin
lines show the streamlines, and solid lines represent inertial
particle trajectories. No closed particle trajectory is possible in
case (a). In case (b), where the curvature of the streamlines
changes sign along the loop, particle suspension is possible.
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easy to achieve, perhaps because periodic orbits are dense
in chaotic flows.

In Fig. 5, the fraction of suspended particles is shown as
a function of the rms turbulent velocity and of the par-
ticle inertial time �a. For decreasing values of U0, the
ratio between the Stokes terminal velocityW and the flow
mean velocity increases, thus inhibiting the suspension of
particles. Larger values of �a and U0 correspond to larger
values of the ratio �a=�r, with the same effect. For very
intense flows, upward motion of particles for long times
has also occurred in our simulations.

Strictly speaking, the foregoing description is invalid
in time-dependent flows where, with very few exceptions,
permanent suspension cannot occur. However, if the tem-
poral evolution of the flow is slow, some particles have
very small settling rates because of the effects of indi-
vidual eddies [11]. In Fig. 6, we report the distributions of
the vertical displacements for the same particles as in
Fig. 2, but in a flow evolving with a characteristic time of
180�a. The bimodal distribution of Fig. 2 is replaced by a
unimodal distribution with a large number of particles
settling slowly; the fastest particles fall at about the same
rate as the nonsuspended particles in the steady flow. For
comparison, we note that the width of the distribution of
vertical displacements for particles falling in an ambient
flow with the same rms velocity as used here but with
no spatial correlation (i.e., with a white-noise spectrum)
is 0:23L0, 0:29L0, and 0:33L0, respectively, for � �
10L0=U0, 15L0=U0, and 20L0=U0. The distribution of
the vertical displacements is thus significantly broadened
by the spatial and temporal correlations of the flow.

Our study of the motion of small, heavy, spherical
particles in a random two-dimensional flow shows that
permanent particle suspension is possible when small-
scale turbulence suitably alters the curvature of the
streamlines around an eddy. This happens when the in-
ertial bias induces inward and outward particle displace-
ments around the vortical structure that can balance on a
closed trajectory, which corresponds to a limit cycle in
the four-dimensional particle phase space �X; Y;U; V�.

Because of inertial effects, identical particles can have
significantly different behavior when moving in a given
steady flow. Some particles are swept into the downdrafts
between the eddies and settle at rates that are larger than
in still fluid. Other particles remain suspended, moving
on closed trajectories, so that their vertical motions are
oscillatory. These two different types of behavior result
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FIG. 5. Fraction � of suspended particles as a function of
(a) particle inertial time (U0 � 0:4 m=s), and (b) rms velocity
of the fluid field (�a � 0:011L0=U0).
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FIG. 6. Same as Fig. 2, but for a time-evolving flow.
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in a bimodal distribution of vertical displacements. As a
result, the mean settling velocity can be either larger or
smaller than the terminal velocity in still fluid depending
on the fraction of suspended particles. The bulk settling
velocity is affected by the existence of suspended par-
ticles and it is not a useful indicator of the sedimentation
rate of the falling particles.

When the flow is unsteady, permanent suspension of
particles becomes very unlikely. However, if the time
scale for the evolution of the vortical structures is larger
than the characteristic time for the settling process, the
distribution of the vertical displacements at a given time
becomes much broader than in the case of particles mov-
ing in a spatially uncorrelated flow. The wide range of
settling speeds can induce an increase in the particle
collision rate and so render coalescence processes more
efficient (see also [26]). This can play a role in rain drop
formation and the growth of planetesimals. The reduced
falling velocity of some particles in a turbulent flow can
also be important in processes such as the sinking of
phytoplankton in the upper layer of the ocean; a small
settling velocity allows for a long time interval spent by
heavy living organisms in the surface euphotic region,
where they can reproduce.

Appendix.—To obtain a time-evolving, statistically
stationary turbulent flow, we keep the energy spectrum
constant and vary only the Fourier phases,  n. The
evolution equation for the phase  n is the stochastic
differential equation,

d n � a� n�dt� b� n�d#�t�;

where d#�t� is a Wiener process, such that hd#�t�i � 0,
hd#�t�d#�t0�i � $�t� t0�dt, and a and b are generic func-
tions of the phase  n. The choice

a� n� � �
 n
�n

; b� n� �

��������������������
�2

4�n
�
 2
n

�n

s
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ensures that the distribution function p� n; t� is a con-
stant in the domain of definition of the phase  n,
���=2:�=2�, and is independent of time. The correlation
time scale of the phase  n is defined as �n � ��1=3k�2=3

n ,
as in Kolmogorov theory.
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