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Fractal clustering of inertial particles in random flows
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and Laboratoire G.-D. Cassini, Observatoire de la Coˆte d’Azur, BP 4229, 06304 Nice Cedex 4, France

~Received 24 June 2003; accepted 28 July 2003; published 24 September 2003!

It is shown that preferential concentrations of inertial~finite-size! particle suspensions in turbulent
flows follow from the dissipative nature of their dynamics. In phase space, particle trajectories
converge toward a dynamical fractal attractor. Below a critical Stokes number~non-dimensional
viscous friction time!, the projection on position space is a dynamical fractal cluster; above this
number, particles are space filling. Numerical simulations and semi-heuristic theory illustrating such
effects are presented for a simple model of inertial particle dynamics. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1612500#
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Dust particles, droplets, bubbles and various impurit
advected by turbulent flow have usually a finite size an
mass density differing from that of the carrier fluid. Contra
to passive tracers, whose dynamics is conservative~when the
flow is incompressible!, the dynamics of suchinertial par-
ticles is rendered dissipative by the Stokes drag, which
lead to strongly inhomogeneous spatial distributions. The
statistical description of such preferential concentrations
still an open question with many natural and industrial ap
cations, such as the growth of rain drops in subtropi
clouds,1 the formation of planetesimals in the early So
system,2 optimization of combustion processes and the co
istence problems between several species of plankton.3

Maxey and Riley4 derived an equation for the motion o
a rigid spherical particle embedded in an incompress
flow. They assume that~i! the particle is smaller than th
smallest turbulent scale of the carrier flow and that~ii ! the
Reynolds number associated to its size and its relative ve
ity with respect to the fluid is sufficiently small to approx
mate the surrounding flow by a Stokes flow. Then, the for
exerted on the particle are buoyancy, the force due to
undisturbed flow, the Stokes viscous drag, the added m
effect and the Basset–Boussinesq history force. Becaus
the complexity of the resulting equation of motion, simp
models are generally used. For instance, when the St
drag is very strong, the dynamics is close to that of pass
tracer particles and the discrepancy can be captured b
spatial Taylor expansion, leading to a model in which t
particles are advected by a synthetic flow comprising a sm
compressible component.5,6 What singles out the model pro
posed here is its ability to take into account the full pha
space dynamics of the particles and to capture the esse
features of their dissipative motion. We are interested in
‘‘Batchelor regime’’ of the particles, meaning that we foc
on spatial scales smaller than the Kolmogorov dissipa
scaleh. After rescaling of space, time and velocity, respe
tively, by factorsh, h2/n and n/h, and assuming that th
particle velocity is sufficiently close to that of the fluid, th

a!Electronic address: bec@obs-nice.fr
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Newton equation satisfied by its trajectoryX(t) reduces to

Ẍ5b
d

dt
@u~X,t !#2

1

Sh
@Ẋ2u~X,t !#, ~1!

whereb[3r f /(r f12rp) is the added-mass factor (r f and
rp are the fluid and the particle mass densities! and Sh

[a2/(3bh2) is theStokes numberassociated to the dissipa
tive scale of the carrier flow (a being the particle radius!.
Introducing theco-velocityV[Ẋ2bu(X,t), the equation of
motion can be interpreted in terms of th
(23d)-dimensional dynamical system

Ẋ5bu~X,t !1V, ~2!

V̇5
1

Sh
@~12b!u~X,t !2V#. ~3!

The motion of the particles is clearly dissipative, even if t
carrier flow is itself incompressible: indeed, when¹•u50,
the contraction rate in phase space reduces to2d/Sh and is
strictly negative, inducing a uniform contraction. As a co
sequence, the long-time dynamics of the particles is cha
terized by the presence of an attractor, that is a dynam
fractal set of the phase space toward which the trajecto
(X(t),V(t)) converge. Important information on the dynam
cal system~2!–~3!, regarding stability, Lyapunov exponent
etc., is obtained from the linearized equation governing
separation R(t)[(dX(t),dV(t)) between two infinitesi-
mally close trajectories of the phase space. For scales w
the viscous scale of turbulence, the velocity fieldu can be
considered spatially smooth and the separationR(t) obeys
the linear differential equation

Ṙ5MtR, Mt[F bs~ t ! Id

12b

Sh
s~ t !

1

Sh
Id
G , ~4!

wheres is the strain matrix of the carrier flow along the pa
of a reference particle:s i j (t)[] jui(X(t),t), and Id is the
d-dimensional identity matrix. A full stability analysis of th
dynamics can easily be done;7 it relates the eigenvalues o
© 2003 American Institute of Physics
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the evolution matrixMt to that of the stress tensors repre-
sentative of the local structure of the carrier flow. In both tw
and three dimensions, this leads to distinguishing betw
heavy (b,1) and light particles (b.1): the former are usu
ally ejected from the elliptic regions, while the latter ma
cluster there in a pointwise manner. We therefore expect
vortex cores to be regions of high concentration of light p
ticles and of low concentration of heavy particles, a feat
which is generally observed in experiments and simulati
~for a review, see Eaton and Fessler8!.

We focus here on suspensions of particles with a volu
fraction sufficiently small to neglect their interactions a
collisions. Typically, the phase-space attractor on which
particles concentrate is a fractal object which may be ch
acterized by various dimensions, in particular a non-rand
Hausdorff dimensiondH . As the position of the particles i
obtained by projection from the 2d-dimensional phase spac
onto thed-dimensional physical space, the convergence
the attractor is responsible for strong inhomogeneities in
large-times distribution of particles. More precisely, a sta
dard result of the geometrical theory of fractal sets9 states
that if dH,d, the distribution of particles in the physica
space is itself a fractal set with Hausdorff dimensiondH ,
whereas ifdH.d, the particles fill the whole space. Henc
depending on the value of the dimensiondH of the attractor,
two different regimes are distinguished. Clearly, the dim
sion of the attractor is a function of the Stokes numberh

and of the added mass parameterb, and generally also de
pends on the statistical properties of the velocity of the c
rier fluid. Leaving aside this latter dependence, let us fi
note what can be easily inferred on the behavior ofdH as a
function of Sh andb. First, in the limit of vanishing Stokes
numbers, there is a reduction of dimensionality and the
namics of simple tracers is recovered. An initially unifor
distribution of particles remains uniform and we hence ha
dH→d. Next, for very large Stokes numbers, the partic
are less and less influenced by the carrier fluid and t
motion becomes ballistic. They thus fill the whole pha
space and we havedH→2d. In between these two
asymptotic regimes, although it is not obvious that the
mensiondH can fall belowd, we shall actually show tha
there is a whole range of Stokes numbers for whichdH,d
and, thus, preferential concentration on fractal clusters
curs in physical space.

Finding theoretically or numerically the Hausdorff d
mensiondH of the attractor is not, in general, a simple tas
its determination demands a full understanding of the glo
dynamics and its numerical measurement requires very l
numbers of particles. To obtain a simple estimate of the
tractor dimension, Kaplan and Yorke10 proposed to use the
Lyapunov dimension. It is given by the Lyapunov exponent
l1.•••.l2d , which measure the exponential growth of i
finitesimal distances, surfaces and volumes in the ph
space and are expressed in terms of the limiting sing
values of the Jacobi matrix, i.e.,

l j[ lim
t→`

1

t
lnuJtej u, Jt[T expE

0

t

Msds, ~5!
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where theej ’s are the eigenvectors of the symmetric mat
J t

TJt and T exp denotes the time-ordered exponential. T
Lyapunov dimension is defined as

dL[ j 2
l11•••1l j

l j 11
, ~6!

where j satisfiesl11•••1l j>0 and l11•••1l j 11,0.
Besides being a simple estimate of the dimension of the
tractor, it was actually shown11 that the Lyapunov dimension
gives a rigorous upper bound for the Hausdorff dimens
dH of the attractor.

We performed numerical experiments in two and thr
dimensions for a space-periodic carrier flow generated r
domly by the superposition of few independent Gauss
Fourier modes with a correlation time of the order of un
~this specific form for the carrier flow was considered
Sigurgeirsson and Stuart12 who proved the existence of
random dynamical attractor!. The Lyapunov exponents ar
calculated by the use of the standard technique of Bene
et al.,13 and the resulting Lyapunov dimension is represen
both for d52 andd53 in Fig. 1 for the case of very heav
particles (b50). Two important observations can be ma
from these simulations. First, fractal clustering of partic
already occurs at very small Stokes number where
Lyapunov dimension behaves asdL.d2CSh

2 with C.0.
This quadratic behavior near zero was predicted for the c
relation dimension by Balkovskyet al.6 using the method of
the synthetic compressible flow cited earlier, as an appro
mation at low Stokes numbers. The second observation is
presence of a critical value for the Stokes number be
which the attractor dimension is smaller thand and where
the particles form fractal clusters in the physical space. T
two regimes corresponding to different values of the Sto
number are illustrated ford52 in Fig. 2. When the Stokes
number is below the critical value~a!, the particles concen
trate onto a fractal set and both very dense and almost em

FIG. 1. Difference between the Lyapunov dimensiondL of heavy particles
(b50) and the physical space dimensiond, versus the Stokes number Sh

~circle: d52, square:d53). The critical Stokes number corresponds to t
value for whichdL5d. Upper-left inset: same in log–log coordinates sho
ing a quadratic behavior at small Stokes numbers.
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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L83Phys. Fluids, Vol. 15, No. 11, November 2003 Fractal clustering of inertial particles
regions appear. On the contrary, for a Stokes number ab
the threshold~b!, the particles fill the whole domain, albe
with a nonuniform density.

When the particles have a finite mass (bÞ0), there also
exists a critical Stokes number for their concentration o
fractal clusters. Figure 3 shows ford52 the phase diagram
obtained numerically which divides the parameter sp
(b,Sh) between three different regimes. When the sum
the two largest Lyapunov exponents is negative~light gray
domain!, we havedL,d and the particles form fractal clus
ters in the physical space. When the sum is positive~white
domain!, we havedL.d and the particles fill the whole do
main. The third case occurs only for particles lighter than
fluid and corresponds to a negative largest Lyapunov ex
nent ~dark gray area!. The particles form pointwise cluster
and, when the domain is bounded, they all converge t
single trajectory.

We now present a heuristic argument, which we alrea
gave in the caseb50 of heavy particles,14 and which pre-
dicts the threshold in Stokes number. It relies on the use
the stability exponents, that are the exponential growth rate

FIG. 2. Snapshots of the position ofN5105 heavy particles (b50) asso-
ciated to two different Stokes numbers:~a! smaller than the critical value
for which the particles form fractal clusters, and~b! larger than the critical
value for which they fill the whole domain. The carrier incompressible fl
is generated randomly by four independent modes with a finite correla
time.

FIG. 3. Phase diagram in the parameter space (b,Sh) for the two-
dimensional case, representing the three different regimes classified b
behavior of the Lyapunov exponents.
Downloaded 17 Jul 2013 to 134.106.80.178. This article is copyrighted as indicated in the abstract.
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of the eigenvalues of the Jacobi matrixJt defined in ~5!.
Using Browne’s theorem which bounds the singular valu
of a square matrix by its eigenvalues, a necessary cond
for the fractal clustering of particles is that the sum of thed
largest stability exponents is positive. For heavy partic
(b,1), this sum can be estimated from the local analysis
the dynamics. First, since such particles tend to clus
within the hyperbolic regions of the flow, they are spendi
there a fraction of time much larger than in the elliptic r
gions. Let us assume that the relationship between the ei
values of the evolution matrixMt and those of the stres
tensors(t) can be extended to the stability exponents,
least as an approximation; we can then derive a neces
condition for the presence of fractal clusters in the physi
space. Ford52, this condition can be easily written as

Sh<
1

l fb
2 ~b2212A12b1b2!, ~7!

where l f is the ~non-dimensional! largest Lyapunov expo-
nent associated to the carrier velocity field and calcula
along the trajectory of a simple fluid particle. It was eas
verified that this bound is compatible with what is observ
numerically in Fig. 3.

It is often stated in the literature that the clustering
inertial particles is essentially due to the presence of cohe
structures in turbulence~see, e.g., Squires and Eaton15!. It is
indeed generally assumed that the structures with long
times appearing in the flow are responsible for a determi
tic motion of the particle leading to their concentration insi
or outside the vortices. Although this argument, based on
local structure of the carrier flow, allowed us to find an upp
bound for the critical value of the Stokes number, it is im
portant to stress that preferential concentrations of parti
arise solely as a consequence of the dissipative charact
the motion. Indeed, we have also performed simulations w
carrier flows which are delta-correlated in time and that
thus completely devoid of structure.7 These simulations
show that the dependence of the Lyapunov dimension on
Stokes number Sh is very similar to that obtained in Fig. 1
The main difference is the behavior ofdL as Sh→0: in the
delta-correlated case, the Lyapunov dimension tends line
and not quadratically, to the space dimensiond. In the delta-
correlated case, preferential concentrations are actu
stronger than for a finite correlation time, contradicting t
mechanism frequently invoked to explain concentrations.

Of course, it is not sufficient to know that the particle
are concentrated in fractal objects; a fuller statistical desc
tion of their distribution is desirable. In particular, for
quantitative description of their spatial intermittency, o
needs their multifractal properties~scaling exponents of the
various moments of the mass contained in a sphere of ra
r ; see, e.g., Chap. 8 of the book by Frisch16!. Preliminary
results, for heavy particles, indicate that strong spatial in
mittency can be present, even when the Lyapunov dimen
is just slightly below that of the physical space. Let us a
mention that more quantitative results are likely to be with
reach using multi-time methods in the asymptotics Sh!1.
Small Stokes numbers are of considerable interest sinc

n

the
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L84 Phys. Fluids, Vol. 15, No. 11, November 2003 Jérémie Bec
most natural and industrial situations, this is the case. A
remark concerns the extension of this approach to the cas
real turbulent flows. To confirm the existence of a thresh
for fractal clustering of inertial particles, one needs to reso
scales which are much smaller than the Kolmogorov diss
tion scaleh. This is quite a challenge, both for laborato
and numerical experiments.
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