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Fractal clustering of inertial particles in random flows

Jéerémie Bec?
Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
and Laboratoire G.-D. Cassini, Observatoire de lat€al’Azur, BP 4229, 06304 Nice Cedex 4, France

(Received 24 June 2003; accepted 28 July 2003; published 24 Septembgr 2003

It is shown that preferential concentrations of inertfalite-size particle suspensions in turbulent
flows follow from the dissipative nature of their dynamics. In phase space, particle trajectories
converge toward a dynamical fractal attractor. Below a critical Stokes nufnberdimensional
viscous friction time, the projection on position space is a dynamical fractal cluster; above this
number, particles are space filling. Numerical simulations and semi-heuristic theory illustrating such
effects are presented for a simple model of inertial particle dynamic20@3 American Institute

of Physics. [DOI: 10.1063/1.1612500

Dust particles, droplets, bubbles and various impuritiesNewton equation satisfied by its trajecto¥yt) reduces to
advected by turbulent flow have usually a finite size and a

mass density differing from that of the carrier fluid. Contrary >"(=ﬁi[u(x - i[)'(— ux,b] 1)
to passive tracers, whose dynamics is conservaiwen the dt ' S, e

I!OIW IS mcoglprzszlm thf dytr;ar:::css(t)fksuci(l;ernal E?; where =3p:/(p¢+2pp) is the added-mass factopy and
Icles IS rendered dissipative by the SIokes drag, whic canp are the fluid and the particle mass densjtiesd S,

lead to strongly inhomogeneous spatial distributions. The fu'sa2/(3ﬂn2) is the Stokes numbeassociated to the dissipa-
statistical description of such preferential concentrations i?ive scale of the carrier flowa being the particle radius

still an open question with many natural and industrial appli- . Lo .
cations, such as the growth of rain drops in subtropica,ntrc.)ducmg theco—veloc_|tyV=X—ﬂu(>.<,t), the equation of
motion can be interpreted in terms of the

clouds! the formation of planetesimals in the early Solar . . !

systent optimization of combustion processes and the Coex_(ZXd)—dlmensmnal dynamical system

istence problems_betwegn several spe_:cies of pIar?ktgn. X=Bu(X,t)+V, )
Maxey and Rile§ derived an equation for the motion of

a rigid spherical particle embedded in an incompressible . 1

flow. They assume that) the particle is smaller than the V= S—[(l—,B)u(X,t)—V]. 3

smallest turbulent scale of the carrier flow and tfigt the 7

Reynolds number associated to its size and its relative velocthe motion of the particles is clearly dissipative, even if the

ity with respect to the fluid is sufficiently small to approxi- carrier flow is itself incompressible: indeed, whEnu=0,

mate the surrounding flow by a Stokes flow. Then, the forcedhe contraction rate in phase space reduces @S, and is

exerted on the particle are buoyancy, the force due to thatrictly negative, inducing a uniform contraction. As a con-

undisturbed flow, the Stokes viscous drag, the added mas§gguence, the long-time dynamics of the particles is charac-

effect and the Basset—Boussinesq history force. Because ifized by the presence of an attractor, that is a dynamical

the complexity of the resulting equation of motion, Simp|erfractal set of the phase space tpward vv_h|ch the tra]ector_les

models are generally used. For instance, when the Stokd&().V(t)) converge. Important information on the dynami-

drag is very strong, the dynamics is close to that of passiv&@! System2)—(3), regarding stability, Lyapunov exponents,

tracer particles and the discrepancy can be captured by &C-» iS obtained from the linearized equation governing the

spatial Taylor expansion, leading to a model in which theSeParationR(t)=(5X(t),éV(t)) between two infinitesi-

particles are advected by a synthetic flow comprising a Sma"nally. close trajectories of the phase space. Fo.r scales within

compressible componeff What singles out the model pro- the viscous scal.e of turbulence, the velocity fieldcan be

posed here is its ability to take into account the full phaseConsidered spatially smooth and the separafgf) obeys

space dynamics of the particles and to capture the essenti)é linear differential equation

features of their dissipative motion. We are interested in the Bo(t) Ty

“Batchelor regime” of the particles, meaning that we focus .

on spatial scales smaller than the Kolmogorov dissipation R=MR, M= 1_'80(»{) iId ’ @)

scale 5. After rescaling of space, time and velocity, respec- S, S,

tively, by factors#, »?/v and v/, and assuming that the

particle velocity is sufficiently close to that of the fluid, the

whereo is the strain matrix of the carrier flow along the path
of a reference particleo;; (t)=d;u;(X(t),t), andZy is the

d-dimensional identity matrix. A full stability analysis of the
dElectronic address: bec@obs-nice.fr dynamics can easily be doAet relates the eigenvalues of
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the evolution matrixM; to that of the stress tenser repre- 0.5
sentative of the local structure of the carrier flow. In both two
and three dimensions, this leads to distinguishing betweer
heavy (3<1) and light particlesg§>1): the former are usu- 0.25}
ally ejected from the elliptic regions, while the latter may
cluster there in a pointwise manner. We therefore expect the
vortex cores to be regions of high concentration of light par-“l3
ticles and of low concentration of heavy particles, a feature.
which is generally observed in experiments and simulations
(for a review, see Eaton and Fes§jer
We focus here on suspensions of particles with a volume ~0-25|
fraction sufficiently small to neglect their interactions and
collisions. Typically, the phase-space attractor on which the
particles concentrate is a fractal object which may be char- -0.5 = : : :
- . . . . - 0.3 04 0.5
acterized by various dimensions, in particular a non-random
Hausdorff dimensiord,, . As the position of the particles is
obtained by projection from thed2dimensional phase space FIG. 1. Difference between the Lyapunov dimensthnof heavy particles
onto thed-dimensional physical space, the convergence td8=0) and the physical space dimensidnversus the Stokes numbey, S
the atractor is esponsible for trong inhomogeneities in hiF[CF" % SWAre ) The el Sces ruercoresponds o e
large-times distribution of particles. More precisely, a stan+ng a quadratic behavior at small Stokes numbers.
dard result of the geometrical theory of fractal Settates
that if dy<<d, the distribution of particles in the physical
space is itself a fractal set with Hausdorff dimensihg, ) ) )
whereas ifd,>d, the particles fill the whole space. Hence, Where theg’s are the eigenvectors of the symmetric matrix
depending on the value of the dimensity of the attractor, J¢Ji and Texp denotes the time-ordered exponential. The
two different regimes are distinguished. Clearly, the dimenlyapunov dimension is defined as
sion of the attractor is a function of the Stokes numbgr S Nt A
and of the added mass paramegrand generally also de- d=j-———7"
pends on the statistical properties of the velocity of the car-
rier fluid. Leaving aside this latter dependence, let us firswhere j satisfiesA;+---+X;=0 and Ay +---+\j,;<0.
note what can be easily inferred on the behaviodgfas a  Besides being a simple estimate of the dimension of the at-
function of S, and 8. First, in the limit of vanishing Stokes tractor, it was actually showhthat the Lyapunov dimension
numbers, there is a reduction of dimensionality and the dygives a rigorous upper bound for the Hausdorff dimension
namics of simple tracers is recovered. An initially uniform dy of the attractor.
distribution of particles remains uniform and we hence have We performed numerical experiments in two and three
dy—d. Next, for very large Stokes numbers, the particlesdimensions for a space-periodic carrier flow generated ran-
are less and less influenced by the carrier fluid and theidomly by the superposition of few independent Gaussian
motion becomes ballistic. They thus fill the whole phaseFourier modes with a correlation time of the order of unity
space and we havedy—2d. In between these two (this specific form for the carrier flow was considered by
asymptotic regimes, although it is not obvious that the di-Sigurgeirsson and Stu&ftwho proved the existence of a
mensiond,, can fall belowd, we shall actually show that random dynamical attractorThe Lyapunov exponents are
there is a whole range of Stokes numbers for whigh<d calculated by the use of the standard technique of Benettin
and, thus, preferential concentration on fractal clusters ocet al.,'? and the resulting Lyapunov dimension is represented
curs in physical space. both ford=2 andd=3 in Fig. 1 for the case of very heavy
Finding theoretically or numerically the Hausdorff di- particles 3=0). Two important observations can be made
mensiond,, of the attractor is not, in general, a simple task:from these simulations. First, fractal clustering of particles
its determination demands a full understanding of the globahlready occurs at very small Stokes number where the
dynamics and its numerical measurement requires very largeyapunov dimension behaves al@zd—CSf] with C>0.
numbers of particles. To obtain a simple estimate of the atThis quadratic behavior near zero was predicted for the cor-
tractor dimension, Kaplan and Yor¥eproposed to use the relation dimension by Balkovskst al® using the method of
Lyapunov dimensiant is given by the Lyapunov exponents the synthetic compressible flow cited earlier, as an approxi-
N1>-->N\,q, Which measure the exponential growth of in- mation at low Stokes numbers. The second observation is the
finitesimal distances, surfaces and volumes in the phasgresence of a critical value for the Stokes number below
space and are expressed in terms of the limiting singulawhich the attractor dimension is smaller thdrand where
values of the Jacobi matrix, i.e., the particles form fractal clusters in the physical space. The
two regimes corresponding to different values of the Stokes
1 . number are illustrated f_o_d=2 in Fig. 2. When the Stokes
\j= |imT|n|jte]|, %ETexpf Mdds, (5 nhumber is below the critical valu@), the particles concen-
t—oo 0 trate onto a fractal set and both very dense and almost empty

: (6)

Nj+1
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of the eigenvalues of the Jacobi mattik defined in(5).
Using Browne’s theorem which bounds the singular values
of a square matrix by its eigenvalues, a necessary condition
for the fractal clustering of particles is that the sum of the
largest stability exponents is positive. For heavy particles
(B<1), this sum can be estimated from the local analysis of
the dynamics. First, since such particles tend to cluster
within the hyperbolic regions of the flow, they are spending
there a fraction of time much larger than in the elliptic re-
gions. Let us assume that the relationship between the eigen-
values of the evolution matrixM; and those of the stress
tensor o(t) can be extended to the stability exponents, at
FIG. 2. Snapshots of the position Bi=10° heavy particles §=0) asso- ~ 1€ast as an approximation; we can then derive a necessary
ciated to two different Stokes numbers) smaller than the critical value, condition for the presence of fractal clusters in the physical

for which the particles form fractal clusters, afig) larger than the critical space. Fod= 2. this condition can be easily written as
value for which they fill the whole domain. The carrier incompressible flow '

is generated randomly by four independent modes with a finite correlation

S 1
time. Sngm(ﬁ—Z—i—Z\/l—ﬁ%—ﬂz), (7)

(a) S, = 102 ()8, =1

regions appear. On the contrary, for a Stokes number abowhere A is the (non-dimensional largest Lyapunov expo-
the thresholdb), the particles fill the whole domain, albeit nent associated to the carrier velocity field and calculated
with a nonuniform density. along the trajectory of a simple fluid particle. It was easily
When the particles have a finite mags#0), there also verified that this bound is compatible with what is observed
exists a critical Stokes number for their concentration ontgumerically in Fig. 3.
fractal clusters. Figure 3 shows fde=2 the phase diagram It is often stated in the literature that the clustering of
obtained numerically which divides the parameter spacénertial particles is essentially due to the presence of coherent
(B,S,) between three different regimes. When the sum ofstructures in turbulencesee, e.g., Squires and Eatonlt is
the two largest Lyapunov exponents is negafiight gray  indeed generally assumed that the structures with long life
domain, we haved, <d and the particles form fractal clus- times appearing in the flow are responsible for a determinis-
ters in the physical space. When the sum is positivkite  tic motion of the particle leading to their concentration inside
domain, we haved, >d and the particles fill the whole do- Or outside the vortices. Although this argument, based on the
main. The third case occurs only for particles lighter than thdocal structure of the carrier flow, allowed us to find an upper
fluid and corresponds to a negative largest Lyapunov expdDOLlnd for the critical value of the Stokes number, it is im-
nent(dark gray arem The particles form pointwise clusters portant to stress that preferential concentrations of particles
and, when the domain is bounded, they all converge to &rise solely as a consequence of the dissipative character of
single trajectory. the motion. Indeed, we have also performed simulations with
We now present a heuristic argument, which we a|read)ﬁarrier flows which are delta-correlated in time and that are
gave in the cas@=0 of heavy particles? and which pre- thus completely devoid of structufeThese simulations
dicts the threshold in Stokes number. It relies on the use o$how that the dependence of the Lyapunov dimension on the

the stability exponenisthat are the exponential growth rates Stokes number 3is very similar to that obtained in Fig. 1.
The main difference is the behavior df as §,—0: in the

delta-correlated case, the Lyapunov dimension tends linearly,
; and not quaderatically, to the space dimensiorin the delta-
Heavy particles | Light particles correlated case, preferential concentrations are actually
|
[

stronger than for a finite correlation time, contradicting the
mechanism frequently invoked to explain concentrations.
A+, >0 | Of course, it is not sufficient to know that the particles
are concentrated in fractal objects; a fuller statistical descrip-
© A +4, <0 tion of their distribution is desirable. In particular, for a
0.4r 1 quantitative description of their spatial intermittency, one

0.8}

0.67

l needs their multifractal propertiéscaling exponents of the
l % <0 ] various moments of the mass contained in a sphere of radius
| r: see, e.g., Chap. 8 of the book by Fri&dh Preliminary
‘ : ( ) : results, for heavy particles, indicate that strong spatial inter-
0 0.5 1 15 2 2.5 3 mittency can be present, even when the Lyapunov dimension
p is just slightly below that of the physical space. Let us also
FIG. 3. Phase diagram in the parameter spageSp) for the two- mention that more quantitative results are likely to be within

dimensional case, representing the three different regimes classified by ti€ach using multi-time methods in _the asyn_wptotiqgéfﬁ. _
behavior of the Lyapunov exponents. Small Stokes numbers are of considerable interest since in

0.2¢
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