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Spatial clustering of identical particles falling through a turbulent aerosol enhances the collision
rate between the falling particles, an important problem in aerosol science. We analyse this problem
using perturbation theory in a dimensionless parameter, the so-called Kubo number. This allows
us to derive an analytical theory quantifying the spatial clustering. We find that clustering of
small particles in incompressible random velocity fields may be reduced or enhanced by the effect
of gravity, depending on the Stokes number of the particles and the Froude number of the flow.

PACS numbers: 05.40.-a,47.55.Kf,47.27.eb

Particles suspended in an incompressible turbulent
flow may cluster together even though direct interactions
between the particles are negligible. This phenomenon is
due to the inertia of the particles. It has been studied
extensively in experiments [1–3] (see [4] for a review), in
direct numerical simulations (DNS) [5–8], model simula-
tions [9], and by theoretical approaches [10–14]. In most
DNS, model simulations, and theoretical studies of clus-
tering, the effect of gravity is neglected. Those DNS that
incorporate gravity tend to show that clustering is weak-
ened when gravity causes the particles to fall through the
flow [15–19]. But it has also been reported that gravity
may increase clustering of particles falling through a tur-
bulent flow [19], see also [15].

Clustering is commonly explained to be due the fact
that inertia allows the suspended particles to spiral out
from vortices and gather in straining regions of the flow
(‘Maxey centrifuge effect’ [10]). This mechanism was de-
rived assuming that the inertia of the particles is not too
large, their Stokes number St ≡ 1/(γτ) must be small.
Here γ is the Stokes drag coefficient and τ is the smallest
characteristic time scale of the flow (the Kolmogorov time
in turbulent flows). Even though the fluid-velocity field
is incompressible, the particle-velocity field acquires a de-
gree of compressibility due to this effect. The strength of
spatial clustering is determined by this divergence. Since
the explicit dependence upon the gravitational acceler-
ation g drops out when this divergence is taken, it is
argued that gravity does not affect clustering when St is
small.

But gravity affects the fluctuations of the flow-velocity
gradients seen by the falling particles. In particular, if
the fluid Froude number Fr ≡ |g|τ/u0 is large enough (u0

is the Kolmogorov speed), then gravity pulls the particles
through the vortices. Do the particles have time to spiral
out from the vortices, or is the Maxey effect destroyed?
What happens at larger St where ‘preferential sampling’
in the absence of gravity is strong, but the particle posi-
tions are less correlated with the straining regions of the
flow? Which effect does gravity have in this case? What
is the effect of the anisotropy in the spatial patterns in-
troduced by gravity (Fig. 1)?

Particles may cluster at stagnation points of the flow.
This effect is weak in incompressible flows, but may be
large in compressible flows where stagnation points oc-
cur close to sinks of the flow [20]. How is the clustering
at stagnation points modified by gravity? It has been
argued that particles are trapped in regions where the
settling velocity is compensated by the fluid velocity u
of large eddies [21]. Is there clustering at the correspond-
ing stagnation points?

Finally, the inertial particle dynamics exhibits ‘caus-
tics’ [22, 23] where the phase-space manifold folds over
that describes the position dependence of the particle
velocities. This gives rise to large velocity differences
between close-by particles [24–29]. How is the rate of
caustic formation affected by gravity?

In order to answer these questions and to quantify the
degree of clustering of particles falling through a turbu-
lent flow we analyse a model system: particles subject
to gravity in a random velocity field in two spatial di-
mensions (see [14] and caption of Fig. 1). We expect no
essential difference in three dimensions. The model has
three dimensionless parameters: St, Fr, and Ku. The
Kubo number Ku ≡ u0τ/η (η is the smallest characteris-
tic length scale of the flow) is a dimensionless correlation
time. For general values of Fr and St we compute the
dynamics of the falling particles perturbatively, taking
into account recursively that the perturbations due to the
flow velocity cause the actual particle trajectory to devi-
ate from its deterministic path. This yields an expansion
in Ku [14, 30, 31], and results in analytical expressions
for the clustering as a function of St, Fr, and Ku.

Neglecting effects due to finite particle size, we model
the dynamics of a particle as

ṙ = Kuv , v̇ = (u(r, t)− v)/ St + Fr ĝ . (1)

Here dots denote time derivatives, r and v are particle
position and velocity, u(r, t) is the fluid velocity eval-
uated at the particle position, and ĝ ≡ g/|g| is taken
to point in the negative y-direction. Note that gravity
does not affect advected particles (St → 0). In Eq. (1)
time- space- and speed scales are dedimensionalised by
the characteristic scales τ , η, and u0 of the flow.
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FIG. 1: (Online colour). Density of particles falling in a
two-dimensional random velocity field u(r, t) = ∇ψ(r, t)∧ ê3

in the negative y-direction according to Eq. (1). Here ê3

is a unit vector orthogonal to the plane, and ψ is a Gaus-
sian random function with zero mean and 〈ψ(r, t)ψ(0, 0)〉 =
(u2

0η
2/2) exp[−|t|/τ − r2/(2η2)]. White/red regions show

low/high particle densities. Particles were initially uniformly
distributed with velocities equal to the settling velocity vs,
and were followed for 100τ . Size of the area shown: 10η×10η.
Parameters: Ku = 1, Fr = 1, St = 0.2 (a) and St = 10 (b).

Preferential sampling is characterised by the diver-
gence of the particle-velocity field ∇·v, see Refs. [10, 14].
Following [11, 13, 14] we compute the time average of ∇·v

in terms of the matrix Z of the particle-velocity gradients,
Zij ≡ ∂vi/∂rj . The dynamics of Z follows from Eq. (1):

Ż = St−1(A(r, t)−Z)−KuZ2. In this equation, gravity
does not appear explicitly. But its effect is implicit in
the dynamics of the matrix A of fluid-velocity gradients
with elements Aij ≡ ∂ui/∂rj . To compute the dynamics
of A(rt, t) along a trajectory rt, we expand around the

deterministic (u=0) solution r
(d)
t of Eq. (1):

r
(d)
t = r0 + Kuvst−Ku St(v0 − vs)e

−t/ St . (2)

Here vs ≡ Fr St ĝ is the settling velocity of Eq. (1) with

u = 0. The deviation δrt ≡ rt − r
(d)
t is given by the

implicit solution of Eq. (1):

δrt =
Ku

St

∫ t

0

dt1

∫ t1

0

dt2e
(t2−t1)/ Stu(rt2 , t2) . (3)

For small Ku the deviation δrt is small. This allows
a perturbation expansion in Ku [14, 30, 31]. But here

we expand around r
(d)
t instead of r0. We compute the

steady-state average 〈TrZ〉∞ = 〈∇·v〉∞ using the known
statistics of u(r, t). To order Ku3 we find

〈∇ · v〉∞ =
3 Ku3

4 St5 G8

{
2 G2 St3(5 + 4 St +3 St2−G2 St2(1 + St)) + (1 + St)3(2(1 + St)2 −G2 St2(St−3))F

[
1 + St√
2 St G

]2

−
√

2 G St2(13+17 St+15 St2+3 St3+G2 St2(4−St−3 St2)+G4 St4)F
[ 1+St√

2 St G

]
−4 G St(1+St2(2+St2+G2))F

[ 1

G

]
− 2
√
π(1 + St2) G(−2 + St2(−2 + (−3 + St2) G2))

∫ ∞
0

dt exp
[
G−2 − t/St−G2 t2/4

]
erfc

[
G−1 +G t/2

]}
, (4)

where F [x] ≡
√
πex

2

erfc(x) and G ≡ Ku St Fr (Ku is
small but G can take any value). We now discuss the
implications of Eq. (4).

Centrifuge effect at small St. A series expansion of
Eq. (4) to lowest order in St with G treated as an inde-
pendent parameter gives :

〈∇ · v〉∞ ∼ 3 Ku3 St2/(4 G5)

× (4 G−6 G3−(4− 4 G2 +3 G4)F [G−1]) . (5)

For Fr = 0 the strength of the centrifuge effect is deter-
mined by 〈∇ ·v〉∞ ∼ −Ku St〈TrA2〉∞ [10, 14]. It turns
out that the for Fr > 0 rhs of Eq. (5) is still of this form.
We have verified this by repeating the expansion leading
to Eq. (4) for 〈TrA2〉∞ to lowest order in St. When G
is small in Eq. (5) (for small and moderate values of Fr)
we find:

〈∇ · v〉∞ ∼ −6 Ku3 St2 . (6)

This is exactly the result obtained from the Maxey cen-
trifuge effect in the absence of gravity [14]. In this limit
gravity does not modify the centrifuge effect.

Preferential concentration at larger values of St. Ex-
panding Eq. (4) for small values of G yields:

〈∇ · v〉∞ = −6 Ku3 St2 1 + 3 St + St2

(1 + St)3
(7)

+ 9 Ku3 G2 St2 1 + 5 St +12 St2 +20 St3 +4 St4

(1 + St)5
+ . . . .

Eq. (7) shows that gravity reduces preferential sampling
for all values of St provided G and Ku are small. We
attribute this reduction to the fact that gravity causes
particles to fall through structures in the flow, rendering
preferential sampling in incompressible flow structures
less efficient. We note, however, that sinks in compress-
ible flows may act as particle traps for falling particles,
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FIG. 2: (Online colour). Average divergence of particle
velocity field 〈∇ ·v〉∞ shown as a function of St for Ku = 0.1.
Markers show data from numerical simulations of Eq. (1).
Lines show Eq. (4). Parameters: Fr = 0 (red,◦), Fr = 0.1
(green,�), Fr = 1 (blue,♦), Fr = 10 (magenta,4). Black
dashed curves show the slopes of the asymptotes (6) and (8).

making preferential sampling more efficient when grav-
ity is present. We have confirmed this observation by
generalising Eq. (4) to compressible flows.

Our analytical result (4) is compared to results of nu-
merical simulations of Eq. (1) for Ku = 0.1 in Fig. 2. We
observe good agreement except when G is small and St
is large.

In the limit of large G and St, Eq. (4) approaches

〈∇ · v〉∞ ∼ −3
√

2π/(4 Fr3 St2) . (8)

This result matches the Maxey limit (6) at Stmax ∼
(Fr Ku)−3/4. Our theory shows that gravity decreases
|〈∇ · v〉∞| strongly for St > Stmax.

Clustering of rapidly falling particles. Particles with
large settling speeds are insensitive to instantaneous fluid
configurations. One might expect them to fall uniformly
distributed. But Fig. 1b shows that rapidly falling par-
ticles may cluster. We quantify the degree of clustering
by the spatial Lyapunov exponents

λ1 ≡ lim
t→∞

t−1 lnRt , λ1 + λ2 ≡ lim
t→∞

t−1 lnAt , (9)

the expansion (contraction) rates of the spatial separa-
tion Rt between two initially nearby particles, and of
the area element At spanned by the separation vectors
between three nearby particles [9, 11, 13, 32–34]. The
Lyapunov exponents characterise the spatial distribution
of the particles; they form a fractal with dimension [35]

dL ≡ 2− (λ1 + λ2)/λ2 (10)

(assuming λ1 > 0 and λ1 + λ2 < 0).
We now show how to evaluate Eq. (10) in the limit of

rapidly settling particles (Fig. 1b), assuming that G �
1. The deterministic settling trajectory is r

(d)
t = G t

(assuming r0 = 0 and v0 = vs in Eq. (2)), and the
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FIG. 3: (Online colour). Fractal dimension dL from numeri-
cal simulations of Eq. (1). a Contour plot of dL as a function
St and Ku for Fr = 0. Lines show Kueff , (13), as a function
of St for Fr = 0 (solid red) and for Fr = 1 (dashed blue).
For Fr = 1, St∗ ≈ 1.25. See Eq. (13). b Shows dL versus St
with Ku = 1 for Fr = 0 (red,◦) and Fr = 1 (green,�). Black
dashed line shows limiting behaviour dL ∼ 2 − CKu St2 (co-
efficient C1 = 14 was fitted). Blue solid line shows results of
numerical integration of Eqs. (11) and (12).

particles experience rapid fluctuations of the flow velocity

u(r
(d)
t , t). In this limit we approximate the dynamics of

the separation R [R = |R| in Eq. (9)] and the relative
velocity V between two particles by a Langevin equation:

δR′ = V ′ δt′ , δV ′ = −V ′ δt′ + δF . (11)

Here we rescaled t = t′ St and v = v′/(Ku St) as conve-
nient in the white-noise limit [11–13, 30]. Further δF
is Gaussian white noise with zero mean and variance
〈δFiδFj〉 = 2δt′Ku2 St

∑
klDik,jlRkRl. The non-zero

Dik,jl are given by

D21,21 =
3√
8G
F
[

1√
2 G

]
, D12,12 =

G2−1

2 G4 +
D21,21

3 G4 ,

D11,11 = D22,22 = −D11,22 = −D22,11 = −D12,21

= −D21,12 =
1

2 G2 −
D21,21

3 G2 . (12)

Since D12,12 6= D21,21 we see that gravity breaks isotropy.
This anisotropy is visible in the vertically extended struc-
tures in Fig. 1b, compared to the more isotropic struc-
tures in Fig. 1a. In Fig. 3b we show dL obtained by
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numerically integrating Eqs. (11) and (12). We observe
good agreement with the results of direct numerical sim-
ulations of Eq. (1).

A qualitative explanation of the clustering of rapidly
falling particles goes as follows. Fig. 3a shows the degree
of clustering as a function of St and Ku for Fr = 0. For
large values of G the diffusion constant D21,21 ∼ G−1

dominates in Eq. (12). When Fr = 0 the diffusion coef-
ficients in Eq. (12) are independent of Ku and St. We
map the Fr > 0 dynamics onto the Fr = 0-dynamics by
defining an effective Kubo number, Kueff , defined so that
D21,21|Ku=Kueff

equals D21,21|Fr=0

Kueff ∼
{

Ku if St� St∗√
π/2/(Fr St) if St� St∗

. (13)

Here St∗ =
√
π/2/(Ku Fr) is the scale at which the large

G asymptote D21,21 ∼ G−1 meets the G = 0 asymptote.
Following the curve Kueff for Ku = 1 shown in Fig. 3a,

the clustering is approximately unmodified for St < St∗

[see Fig. 3b]. When St > St∗ the effective Kubo num-
ber rapidly becomes so small that the curve reenters the
region in parameter space where clustering occurs. In
this limit the clustering is caused by many independent
random accelerations (‘multiplicative amplification’) [14],
the instantaneous fluid configuration plays no role.

The example Ku = Fr = 1 shown in Fig. 3a gener-
alises to other parameter values. Eq. (13) shows that
larger values of Ku Fr alter St∗ to shift the curve Kueff

towards smaller values of St. Larger values of Ku shift
the curve towards larger Kueff . In the white-noise limit,
clustering is strongest near Ku ∼ 0.3 St−1/2 (Fig. 1 in
[36]). This line is crossed for large enough values of St if
St∗ > 0.1 Ku−2, i.e. if Fr < 10 Ku. For larger values of
Fr the curve turns early and clustering may be small for
all values of St (c.f. Fr = 1 and Fr = 10 in Fig. 2).

Finally, we emphasise that this picture is simplified.
When G < 1 then the situation is more complicated
because the correlation functions sampled by the falling
particles are modified. This is reflected in Eq. (4).

Caustics. When caustics are frequent, the expansion
leading to Eq. (4) and related expansions in the white-
noise limit do not converge, as seen in Fig. 2 for large
values of St and Fr = 0), and discussed elsewhere [11, 13,
14]. However, for St > St∗ caustics are less frequent: in
the white-noise limit the rate of caustic formation is of
the form J ∼ e−1/(3 Ku2 St) [22]. It follows from Eq. (13)

that e−1/(3 Ku2
eff St) is small in this regime. We thus expect

that perturbation theory in Kueff could work well in this
regime. We note that caustics are rare when St∗ is so
small that the curve in Fig. 3a turns before caustics are
activated.

Conclusions. We have derived an analytical theory
describing spatial clustering of particles falling through
a turbulent aerosol. The theory makes it possible to de-
termine how the clustering depends on the dimensionless

parameters of the problem, Fr, St, and Ku.

For small and intermediate values of St, particles
falling at finite Fr cluster less, because correlations be-
tween particles and flow structures are destroyed. But at
very small values of St, unless Fr is very large, cluster-
ing due to the Maxey centrifuge effect is only slightly
reduced, while clustering at intermediate values of St
is reduced more. In compressible flows the situation
is entirely different. In this case we find that gravity
enhances clustering at the stagnation points. This dif-
ference may be due the fact that clustering by the cen-
trifuge effect takes longer time [the clustering time scale is
(λ1+λ2)−1 ∼ St−2] and is thus more sensitive to decorre-
lations than clustering at stagnation points in compress-
ible flows [(λ1 + λ2)−1 ∼ const.]. But how clustering at
stagnation points of u and u−vs in incompressible flows
is modified by gravity remains an open question.

For large values of St, our calculations show that grav-
ity may increase clustering: if the particles fall rapidly
enough, the signal seen by the particles can be approx-
imated by a white-noise model. In this limit we find
significant clustering, and the mechanism (multiplica-
tive amplification) is different from that causing cluster-
ing at small Stokes numbers. In turbulent flows sweep-
ing by large eddies may affect the dynamics of rapidly
falling particles. In [19] it is argued that the clustering
of rapidly falling particles is caused by interactions with
large eddies. It would be of great interest to compare the
strengths of these two mechanisms.

Finally, we find that the rate of caustic formation is
reduced when St is large and Fr not too small.

The problem of particles falling under gravity through
a turbulent aerosol is important for rain initiation in
warm turbulent rain clouds [37]. In this case the Stokes
number takes values St ∼ 10−3(a/µm)2 [38]. The Stokes
number increases four decades as water droplets grow
from St ∼ 10−3 for small droplets (size 1µm) to St ∼ 10
for large droplets (100µm). In the absence of gravity in a
flow with Ku ∼ 1, clustering is largest when St is of order
unity. Typical values of the characteristic scales in vig-
orously turbulent rain clouds are τ ∼ 10 ms, η ∼ 1 mm
and u0 ∼ 0.1 m/s [38] which gives Ku and Fr of order
unity (blue curve in Fig. 3). Gravity starts to become
important for the motion of droplets larger than about
20µm [39]. This value (St ∼ 0.4) is consistent with the
findings in this Letter. Since gravity mainly affects large
particles it is necessary to investigate under which cir-
cumstances corrections to the point-particle approxima-
tion may become relevant.

In summary our model calculations have shown that
the inertial response of the suspended particles to flow
fluctuations and the effect of gravity are not additive.
They interact in intricate ways giving rise to a rich phase
diagram in the dimensionless parameters Ku, St, and Fr.
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