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Settling of small particles near vortices and in
turbulence
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(Received 29 September 1999 and in revised form 20 November 2000)

The trajectories of small heavy particles in a gravitational field, having fall speed in still
fluid ṼT and moving with velocity Ṽ near fixed line vortices with radius R̃v and circu-
lation Γ̃ , are determined by a balance between the settling process and the centrifugal
effects of the particles’ inertia. We show that the main characteristics are determined
by two parameters: the dimensionless ratio VT = ṼT R̃v/Γ̃ and a new parameter (Fp)

given by the ratio between the relaxation time of the particle (̃tp) and the time (Γ̃ /Ṽ 2
T )

for the particle to move around a vortex when VT is of order unity or small.
The average time ∆T̃ for particles to settle between two levels a distance Ỹ0 above

and below the vortex (where Ỹ0 � Γ̃ /ṼT ) and the average vertical velocity of particles
〈Ṽy〉L along their trajectories depends on the dimensionless parameters VT and Fp.

The bulk settling velocity 〈Ṽy〉B = 2Ỹ0/〈∆T̃ 〉, where the average value of 〈∆T̃ 〉 is

taken over all initial particle positions of the upper level, is only equal to 〈Ṽy〉L
for small values of the effective volume fraction within which the trajectories of the
particles are distorted, α = (Γ̃ /ṼT )2/Ỹ 2

0 . It is shown here how 〈Ṽy〉B is related to

∆η̃(X̃0), the difference between the vertical settling distances with and without the
vortex for particles starting on (X̃0, Ỹ0) and falling for a fixed period ∆T̃T � Γ̃ /Ṽ 2

T ;
〈Ṽy〉B = ṼT [1 − αD], where D =

∫ ∞
−∞(∆η̃ dX̃0/(Γ̃ /ṼT )2) is the drift integral. The

maximum value of 〈Ṽy〉B for any constant value of VT occurs when Fp = FpM ∼ 1
and the minimum when Fp = Fpm > FpM , where typically 3 < Fpm < 5.

Individual trajectories and the bulk quantities D and Ṽy〉B have been calculated
analytically in two limits, first Fp → 0, finite VT , and secondly VT � 1. They have
also been computed for the range 0 < Fp < 102, 0 < VT < 5 in the case of a Rankine
vortex. The results of this study are consistent with experimental observations of the
pattern of particle motion and on how the fall speed of inertial particles in turbulent
flows (where the vorticity is concentrated in small regions) is typically up to 80%
greater than in still fluid for inertial particles (Fp ∼ 1) whose terminal velocity is
less than the root mean square of the fluid velocity, ũ′, and typically up to 20% less
for particles with a terminal velocity larger than ũ′. If ṼT /ũ

′ > 4 the differences are
negligible.

1. Introduction
Recent theoretical studies have shown how the trajectories of small dense or buoyant

particles in fluid flows induced by steady vortices of strength Γ̃ (with a typical radius
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R̃v and maximum velocity Ũ = Γ̃ /R̃v) have many interesting and even unexpected
forms (e.g. Maxey & Corrsin 1986; Maxey 1987; McLaughlin 1988; Gañán-Calvo
& Lasheras 1991). These depend sensitively on the ratio (β) of the density of the
particles (ρ̃p) to that of the fluid (ρ̃f), the Reynolds number based on the relative
particle motion (Re), and on the ratios of the inertial forces in the fluid, as generated
by the vortices, to the buoyancy and drag forces acting on the particles. The latter
are defined by two non-dimensional numbers, namely the Froude number of the flow
Ff = Ũ2/(g̃R̃v), where g̃ is the acceleration due to gravity, and the Stokes number

St = t̃pŨ/R̃v , where t̃p [= (β − 1)d̃2
p/(18ν̃) for small particles of diameter d̃p in a fluid

of kinematic viscosity ν̃] is the viscous relaxation time of the particle. For particles
moving under gravity, t̃p = ṼT /g̃ and St = ŨṼT /(g̃R̃v).

Depending on whether β is less or greater than one, particles are accelerated
towards or away from the vortices. Also the pattern of motion is quite different
depending on whether the terminal velocity ṼT is large or small compared with Ũ. If
it is small (or VT = St/Ff � 1) and if the inertia is locally small enough, the points
where the motion of the particles are arrested are also equilibrium points (in the sense
that particles could remain there at rest). As with other nonlinear dynamical systems,
general features of particle trajectories can be derived by studying their form near the
equilibrium points of the system (Raju & Meiburg 1997). This approach is applied
here to the important environmental and engineering problem of understanding and
estimating the bulk movement and settling velocities of particles near vortices. We
particularly focus some of our calculations on a parameter range, corresponding to
small solid particles settling in gases, where β � 1 and ReT = d̃pṼT /ν̃ < 1 (see
Appendix A). However, some of the results are applicable in other parameter ranges,
such as those corresponding to heavy particles in liquids. Usually, these features are
defined in terms of the Stokes number St or its inverse, and the settling velocity
in fluid at rest relative to the flow speed VT or the Froude number Ff (see e.g.
Maxey & Corrsin 1986; Chein & Chung 1987; Wen et al. 1992; Martin & Meiburg
1994). However, these dimensionless groups must be modified in order to quantify
and understand the motion of particles near the vortices and especially near the
equilibrium points because here the characteristic time seen by the particles t̃c is not
the residence time of the fluid particles t̃r = Γ̃v/Ũ

2. It is necessary to introduce a
modified non-dimensional Froude number of the particle (see table 1) which is the
ratio of the inertial forces experienced by a particle to the buoyancy forces. We refer
to this as the particle Froude number Fp = Ṽ 3

T/(g̃ Γ̃ )(= St3/F2
f ). It is also equal to

the ratio of the distance taken by a particle to reach its terminal velocity (ṼT t̃p) to
the minimum radius of particle trajectories around the vortex (Γ̃ /ṼT ).

In order to quantify the characteristic features of the particles’ trajectories in
complex flows we must clarify some of the usual measures. We focus here on settling
times and settling velocities. The trajectories in figure 1 show why, if a solid particle
falls from a plane (say ỹ = Ỹ0) well above a vortex to another (ỹ = Ỹ1) well below
the vortex, the time it takes, ∆T̃ , differs from the terminal fall time ∆T̃T it takes in
the still fluid, where ∆T̃T = (Ỹ0− Ỹ1)/ṼT . An equivalent way to define this difference
in the settling of particles with and without a vortex is in terms of the level that
a particle reaches (say Ỹ = Ỹ1 + ∆η̃) in a certain time (say ∆T̃T ). If |Ỹ1| is large
enough, when |Ỹ | is large Ṽy ' −ṼT and therefore ∆T̃ = (Ỹ0 − Ỹ1 + ∆η̃)/ṼT . Hence,

∆η̃ = ṼT (∆T̃ − ∆T̃T ).

Previous studies of velocity statistics of settling particles have focused on different
averages of the settling velocity. The first definition is the Eulerian average velocity
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Description Symbol Definition Comment

Density ratio β
ρ̃p

ρ̃f
β � 1 for aerosol particles

Flow Ff
Ũ3

g̃ Γ̃
=

Γ̃ 2

g̃ R̃3

Fluid inertia

Buoyancy forcesFroude number

Stokes number St t̃p
Ũ2

Γ̃

Particle inertia

Drag forces
if t̃c ∼ t̃r

Dimensionless VT
ṼT

Ũ
=
St

Ff
It determines the position of the

terminal velocity equilibrium points

Particle Fp
Ṽ 3
T

g̃ Γ̃
= t̃p

Ṽ 2
T

Γ̃
= V 2

T St
Particle inertia

Buoyancy forcesFroude number

Flow/particle Rep
d̃pŨ

ν̃
Meaningful if the relative

Reynolds number velocity ∼ Ũ
Terminal/particle ReT

d̃pṼT

ν̃
See Appendix A

Reynolds number

Table 1. Dimensionless ratios for the dynamics of particles near a vortex.

(X (t), Y (t))

(X0, Y0)
Y0

Y1 (= –Y0)

(X (∆TT ), (Y (∆TT ))

∆η

|u| = uy max

x

y

Figure 1. Schematic diagram of the coordinates (x̃, ỹ) relative to the centre of the vortex and
trajectories (X̃(t), Ỹ (t)) of particles moving over a period ∆T̃T from a plane Ỹ = Ỹ0. In the absence
of the vortex Ỹ (∆T̃T ) = Ỹ0 − ṼT∆T̃T = −Ỹ0 and with the vortex Ỹ (∆T̃T ) = Ỹ0 + ∆Ỹ = Ỹ1 + ∆η̃.

at x̃, 〈Ṽy〉E , i.e. the average of the vertical velocity of particles at a particular

point, Ṽy(x̃, ỹ, t̃), weighted by the particles’ concentration distribution p(x̃, ỹ, t̃). In
homogeneous turbulence with a statistically homogeneous distribution of particles,
〈Ṽy〉E is also equal to the spatial average. The second definition is the Lagrangian
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average settling velocity,

〈Ṽy〉L =

〈
1

∆T̃T

∫ t̃=∆T̃T

t̃=0

Ṽy(X̃, Ỹ ; X̃0) d̃t

〉
=

〈
Ỹ0 − Ỹ (X̃0,∆T̃T )

∆T̃T

〉
= ṼT − 〈∆η̃(X̃0,∆T̃T )〉

∆T̃T
, (1.1)

where Ỹ (X̃0,∆T̃T ) is the level of a particle at time ∆T̃T . Here, the average has
been taken over an ensemble of particles such as those having different starting
positions; other different ensembles could be defined leading to different values of
〈Ṽy〉L. The third definition, often used in engineering, is the bulk settling velocity,

〈Ṽy〉B = (Ỹ0 − Ỹ1)/〈∆T̃ 〉. For large values of |Ỹ1|

〈Ṽy〉B =
ṼT

〈1 + ∆η̃/(Ỹ0 − Ỹ1)〉 . (1.2)

Comparing the second and third definitions shows that the mean Lagrangian velocity
〈Ṽy〉L is more weighted by trajectories of particles with high velocities, whereas the
bulk settling velocity is more weighted by slow particles. The distinction between
‘bulk’ properties of two-phase flows and spatially averaged quantities defined in the
fluid phase of the flow, such as pressure gradients, was pointed out by Kowe et al.
(1988).

In the special case of a homogeneous velocity field with no mean vertical velocity
(i.e. 〈ũy〉E = 0), if the particle distribution is (artificially) uniform, Maxey & Corrsin

(1986) showed that for particles unaffected by inertia forces (i.e. St → 0) 〈Ṽy〉E =

〈Ṽy〉L = ṼT (an Eulerian result). In most other cases 〈Ṽy〉L does not equal 〈Ṽy〉E and

neither 〈Ṽy〉L nor 〈Ṽy〉B equals ṼT . When the inertia of the particle is small enough

(St→ 0) and ṼT is significantly smaller than the smallest scale fluctuations of the fluid
velocity, the particle trajectories differ only slightly from those of fluid particles (e.g.
Wang & Stock 1993; Hunt, Perkins & Fung 1994). However, in the other limit, where
ṼT is much larger than the root mean square of the vertical velocity component of the
flow field ũ′y so that the particle passes through the turbulence as its falls, then 〈Ṽy〉B
is less than ṼT by an amount of the order of ũ′2y /ṼT (see Appendix B). In the usual
situation when ṼT is of the order ũ′y and St 6= 0, and when the particle concentration
is not uniform across the flow, no simple generalization is possible; different results
have been obtained in different calculations based on differing assumptions. Maxey
& Corrsin (1986) and Maxey (1987) found that 〈Ṽy〉E > ṼT in randomly orientated
cellular flows and numerically simulated homogeneous turbulent flows. Wang &
Maxey (1993), who suggested that there are strong similarities in the settling motion
of particles in these two types of flow, showed that 〈Ṽy〉L > ṼT . However, Fung (1993)

found that 〈Ṽy〉B < ṼT , where ṼT ∼ ũ′y , in a given random velocity field simulating
that of turbulence. In this paper, we show that such differences can be explained by
differences in the definition of 〈Ṽy〉E , 〈Ṽy〉L and 〈Ṽy〉B and the variation in the initial
concentration of particles in certain regions of the flow fields, as well as by physical
parameters, such as ṼT /ũ

′
0.

In § 2, we present the equation of motion and some properties of the equilibrium
points for particles moving near line vortices. In § 3, we derive the asymptotic equations
for particles whose inertia is negligible when settling in a vortex flow. Some of the
singular features of the trajectories of particles are discussed in § 4. In § 5, we calculate
the differential settling distance Ỹ − Ỹ1 for different values of VT and Fp in the
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flow field near vortices and thence derive the average settling velocities (§ 6). These
results help to explain previously published results about different flow fields and
provide general physical concepts to describe the settling and transport of particles
in turbulent flows. We show that our results of settling around vortices are consistent
with those of the recent experiments of Srdic (1999) for particles sedimenting in
homogeneous turbulence. Other conclusions of this work are given in § 7.

2. Equations for the dynamics and trajectories of small particles
moving near vortices

To non-dimensionalize our equations, we scale the dimensional variables using the
maximum vertical velocity of the fluid, Ũ, and the characteristic circulation of the
vortices, Γ̃ . The lengthscales are effectively normalized on the radius of the vortex
R̃v = Γ̃ /Ũ. As explained in § 1, the relative order of magnitude of the particle inertia
to the combined effect of buoyancy and drag forces is proportional to the Stokes
number

St =
(β − 1)

kT

d̃
2

p

18ν̃

Ũ
2

Γ̃
, (2.1)

St is effectively the ratio between two characteristic times: the characteristic viscous
response time of the particle,

t̃p =
ṼT

g̃
=

(β − 1)

kT

d̃
2

p

18 ν̃
,

and the residence time for the change of the fluid velocity seen by a fluid particle
t̃r = Γ̃ / Ũ

2

. Since the timescale of change of velocity seen by the particles can

significantly differ from Γ̃ /Ũ
2

, a modified parameter is introduced in § 3 to represent
the importance of the inertia of particles moving around vortex tubes or moving far
away from any vorticity region. In this paper, we assume that the Reynolds number
of the particles based on their relative motion Ṽrel = |Ṽ − ũ|, i.e. Rep = Ṽrel d̃p/ν̃, is
small. To consider finite values of the particle Reynolds number we introduce kT , the
ratio between the actual drag force and the Stokes drag, defined for Rep = 0. This

allows us to assume a linear relation between drag and Vrel when ReT = |Ṽ T |d̃p/ν̃ < 1
(see Appendix A). The buoyancy forces acting on the particles can be expressed in
terms of the dimensionless terminal velocity VT . This is related to St and the fluid
Froude number, Ff = Ũ

3

/g̃ Γ̃ , by the usual relationship VT = St/Ff . The fluid Froude
number does not depend on the particle size, but on properties of the fluid flow and
on the acceleration of the gravity, g̃.

The equations which determine the instantaneous position, X , and velocity, V , of
a small spherical particle when ReT < 1 are given, in dimensionless form, by (Maxey
& Riley 1983; Magnaudet & Eames 2000)

dX

dt
= V , (2.2a)

dV

dt
=

β − 1

β + CM

1

St
(V T + u− V ) +

1 + CM

β + CM

Du

Dt
, (2.2b)

where d/dt is the derivative following the particle, D/Dt is the derivative following
the fluid, CM is the added-mass coefficient (equal to 1

2
), and u is the velocity of the
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Figure 2 (a,b). For caption see facing page.
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Figure 2. (a) Normalized trajectories of non-inertial particles (X(t), Y (t)) for St = 0 and VT = 0.4.
The position of the node (XE1) and the saddle point (XE2) of the system (2.2) for these values
of St and VT is shown. The elapsed time interval between the tick marks was ∆t = 0.4/V 2

T . Also
dotted circle with radius r = 1 is shown as reference. (b) Normalized trajectories of inertial particles
(X(t), Y (t)) for St = 1.0 and VT = 0.4 (Fp = 0.16). The position of the unstable focus (XE1) and
the saddle point (XE2) of the system (2.2) for these values of St and VT is shown. The elapsed time
interval between the tick marks was ∆t = 0.4/V 2

T . Also dotted circle with radius r = 1 is shown
as reference. (c) Velocity phase plane (Vx, Vy) for the same particles as in (b). The capital letters
indicate the correspondence with the trajectories of (b). Note that the tick marks also correspond
to those of (b).

undisturbed fluid at X . In these equations it is also assumed that the particle diameter
is much less than the characteristic length of the fluid flow, i.e.

dp � ‖∇u‖
‖∇∇u‖ . (2.3)

Equation (2.2b) is valid for small particles in fluids where the only important forces
are gravity, drag, and particle and fluid inertia. Lift and history effects have been
neglected.

For all the cases examined here, the initial condition at the position X 0 is the
simplest possible, namely that the particles are in equilibrium with the surrounding
flow conditions:

X (t = 0) = X 0,

V (t = 0) = u(X 0, t = 0) + V T . (2.4)

Thus, if u were constant, V would not change. Since the characteristic response time of
the particle to the flow conditions (t̃p) is much smaller than the time it takes to reach
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the vortex, the influence of the initial conditions can be neglected. The trajectories of
particles were obtained by integrating the system of ordinary differential equations
(2.2) corresponding to the x- and y-components of the vectors, using a variable-order
variable-step size Runge–Kutta method (Press et al. 1992).

In order to show the main features of the dynamics of heavy particles moving in
vortex flows, we consider the Rankine vortex, defined by a smooth transition from
solid rotation close to its centre to an irrotational ‘free-vortex’ flow field from it. The
normalized velocity field in Cartesian coordinates is given by

u = (ux, uy) =

( −2y

1 + x2 + y2
,

2x

1 + x2 + y2

)
, (2.5)

so that the maximum value of the velocity |u| = 1 is given on the unit circle. For the
falling particle V T = (0,−VT ), where the Y -axis is anti-parallel to the direction of
gravity (without loss of generality). To simplify the problem, we have studied the case
of aerosol particles β � 1. Then (2.2b) can be substituted by

dV

dt
=

1

St
(V T + u− V ). (2.6)

In figure 2(a), we have first plotted the trajectories of non-inertial aerosol particles
with St = 0 and VT = 0.4, and then in figure 2(b), those of inertial aerosol particles
with St = 1.0 and VT = 0.4, calculated using (2.5) and (2.6). In the limit of zero
Stokes number, the trajectories are symmetric about y = 0 and some particles
follow closed trajectories around the centre of the vortex. When St > 0, as first
demonstrated for cellular flows by Maxey & Corrsin (1986), closed trajectories do
not exist. Because of the centrifugal inertial force, particles released inside the vortex
gradually drift outward on a timescale t = f(VT )/Ff , where f(VT ) is a function of
the dimensionless terminal velocity (Perkins & Hunt 1987). In figure 2(c), we have
plotted the instantaneous horizontal and vertical velocity of particles for the same
trajectories and values of the dimensionless parameters chosen in figure 2(b).

The equilibrium points of the system (2.2), where dX/dt = d2X/dt2 = 0, are defined
as XE = (XE, YE). The position of the equilibrium points in an irrotational vortex for
any value of the density ratio β and the parameter VT has been obtained by Raju &
Meiburg (1997). We have concentrated on the case β � 1. Therefore, at these points,

u(XE) + V T = 0. (2.7)

We consider the displacement of inertial particles near these equilibrium points, noting
that only when St → 0 do the particles reach equilibrium at these points, as shown
later. When the inertia of the particles is small, (2.7) is valid even when β ∼ 1.

For the Rankine vortex (with maximum normalized velocity |u| = 1), (2.7) has two
real solutions if VT < 1 and no solution if VT > 1, namely

XE1 =
1−

√
1− V 2

T

VT
, YE1 = 0, XE2 =

1 +
√

1− V 2

T

VT
, YE2 = 0. (2.8)

As VT → 0, XE1 → (0, 0), while XE2 tends to (2/VT , 0). Hence, the characteristic
length-scale over which the particle trajectory changes is 1/VT , or in dimensional
terms Γ̃ /ṼT . XE1 is a focus (unstable if St > 0, i.e. β > 1) and XE2 is a saddle point.
The position of these points are shown in figures 2(a) and 2(b). Similar results for a
Burgers vortex were obtained by Marcu, Meiburg & Newton (1995). They showed
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that when there is a small strain on the vortex, the trajectories of the particles change
far from the vortex core and a third equilibrium point (stable node) appears.

3. Asymptotic analysis for particles of small inertia

3.1. Heavy particles with small inertia along their whole trajectory

When the fall speed VT is small or of order unity and if the inertia is small enough, as
heavy particles react to the changes in the flow, their trajectories are modified by the
vortices over regions where the fluid velocity |u| ∼ VT . Their velocities are such that
|V | ∼ VT , as shown in figure 2(c), an estimate consistent with the results given in the
previous section. We showed that for small values of VT there is a saddle point at a
distance from the origin of the vortex of the order 1/VT . Since in the Rankine vortex
(outside the core) the fluid velocity decays as 1/|x|, the fluid velocities are of the order

VT . It follows that the timescale for particle motion in this region is t ∼ 1/V
2

T . The
same argument can be used for other vortical flows which decay more slowly with
radius, in proportion to 1/|x|a. (A value of a < 1 but close to one is usually measured
in three-dimensional vortex tubes, a being the parameter that determines the critical
Squires number for the vortex breakdown; Fernández-Feria, Fernández de la Mora
& Barrero 1995). Hence, the appropriate dimensionless variables to be used for this
problem are

V̂ =
Ṽ

ṼT
=

V

VT
, û =

ũ

ṼT
=

u

VT
,

X̂ =
X̃

Γ̃ /(ṼT Ũa−1)1/a
= V

1/a
T X , t̂ =

t̃

Γ̃ /(Ṽ a+1
T Ũa−1)1/a

= V
(1+1/a)
T t.

 (3.1)

Note that the characteristic length of the trajectories of the particles, l̃ = Γ̃ /(ṼT Ũ
a−1)1/a,

is of the order of Γ̃ /ṼT for a ' 1 . If β ∼ 1 and VT is small, the saddle point is also
far from the vortex core in regions where the fluid acceleration is negligible and the
characteristic scales are the same.

Substituting (3.1) in (2.2) we obtain a rescaled governing equation for the particles

d2X̂

dt̂2
=

dV̂

dt̂
=

β − 1

β + CM

1

Fp
(û− V̂ − j) +

1 + CM

β + CM

Dû

Dt̂
, (3.2)

where j = −g/|g|. The parameter Fp is a measure of the ratio of the particle inertia
to the buoyancy forces and is defined by

Fp = V
(1+1/a)
T St =

(
ṼT

Ũ

)1/a
Ṽ 2
T Ũ

|g̃|Γ̃ =
t̃p

Γ̃ /(Ṽ a+1
T Ũ

a−1 )1/a
. (3.3)

In physical terms, it can be expressed as a ratio of two characteristic lengths: the first
being the distance over which a particle accelerates from zero velocity to the terminal
velocity, ṼT t̃p, and the second being the minimum radius of curvature of trajectories

of particles moving around line vortices, Γ̃ /ṼT . Note that when a ' 1, Fp is only

dependent on Γ̃ and therefore does not depend on the radius of the vortex.

The rescaling of the inertial forces for the particles implies that the condition (2.3)
of small particle diameter with respect to the characteristic size of the flow seen by
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the particles (of the order of Γ̃ /ṼT ) can be more precisely stated as

d̃pṼT

Γ̃
=

(β − 1)d̃3
pg̃

18kT ν̃2Ref
� 1. (3.4)

For the movement of particles around the smallest vortices of a turbulent flow, where
Ref = Γ̃ /ν̃ ∼ 1, this means that for particles in air, where β is of the order of 103, d̃p
should be smaller than 10 µm. For this range of sizes, the parameter Fp can be large
or small compared with unity. However, in water, most particles have comparable
density, so that β − 1 ∼ 1 . In this case, d̃p should be smaller than 0.1 mm in order
for (3.4) to be valid. The equivalent condition for the local Reynolds number of the
particles based on the relative velocity, ReT = d̃pṼT /ν̃, is ReT � Ref . See Appendix
A. This is also equivalent to Fp � (β − 1)/18kTRef . Therefore, this model implies
that for particles in turbulent flows of liquids where VT ∼ 1 or VT < 1, Fp must be
much less than one.

Provided |û − j | is O(1), which means excluding regions near equilibrium points
(defined by (2.7)), for small Fp the particle velocity normalized on VT can be expanded
as a series in Fp

V̂ = û− j − FpV̂ (1) + F2
p V̂ (2) + · · · , (3.5)

where

V̂ (1) =
∂û

∂t̂
+

(
û− β + CM

β − 1
j

)
· ∇û,

V̂ (2) =
β + CM

β − 1

[
∂V̂ (1)

∂t̂
+ V̂ (1) · ∇û+ (û− j) · ∇V̂ (1)

]
, · · ·

Hence,

V̂ = û− j − Fp
[
∂û

∂t̂
+

(
û− β + CM

β − 1
j

)
· ∇û

]
+ O(F2

p ). (3.6)

This means that except within a distance |X̂ − X̂E | of order Fp from the equilibrium
points, the effect of a small inertia is of the order of Fp. Note that ∂û/∂t = 0 for a
Rankine vortex.

The expansion (3.5) can be used to explain why particles tend to accumulate
as a result of inertial forces. The velocity of the particles can be considered as a
single-valued field if Fp � 1 (see (3.6)), assuming the particle concentration to be
continuous. Thus, by taking the divergence of the particle velocity field, if the flow is
incompressible

∇ · V = −Fp
[

1

4

(
∂ui

∂xj
+
∂uj

∂xi

)2

− 1

4

(
∂ui

∂xj
− ∂uj

∂xi

)2
]

+ O(F2
p ), (3.7)

which shows how inertial effects lead to divergence of particles from vortical regions
and that particles tend to accumulate in regions of high strain rate and low vorticity.
(See also Squires & Eaton 1991.) If VT < 1, Fp is smaller than the Stokes number and
therefore the rate of accumulation may be smaller than the value predicted by Maxey
(1987) (his equation (5.10)), whose asymptotic analysis for small particle inertia was
not focused on vortex flows.

Some further remarks on (3.6) should be made. The scaling (3.1) and the equation
(3.6) are based on the assumption that the particles are moving in the outer region
around the vortices and that |û − j | is O(1). This may not occur if the particles
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are released near the vortex cores. Also note that although the parameter VT does
not appear explicitly in (3.2) and (3.6), it has an implicit significance because û is
normalized on VT . Expanding the expression of û in terms of VT , where (for the
Rankine vortex)

û =
−2ŷ

V
2

T + x̂2 + ŷ2
i +

2x̂

V
2

T + x̂2 + ŷ2
j ,

shows that this dependence is of the order of V 2
T and therefore quite weak when

VT � 1.

3.2. Asymptotic analysis for particles with small inertia far from singular regions

Provided |û− j | is O(1), it follows from (3.6) that the expansion (3.5) is valid for the
whole domain if Fp is small. If Fp is of the order unity, the approximation is valid
in a limited part of the domain where the acceleration in the velocity is small. If
the acceleration is of O(µFp), µFp would replace Fp in (3.5). This is the appropriate
method for calculating the trajectories of particles when they are sufficiently far
from the origin (see also Lasheras & Tio 1994). Then, the vortex appears as a point
vortex with circulation Γ̃ whose azimuthal velocity ũθ varies as Γ̃ /|x̃|. By integrating

dX̂/dt̂ = V̂ and using (3.5), the trajectory of a particle can also be expressed as an

asymptotic series. If the coordinates of a particle released at time t̂0 from (X̂0, Ŷ0) are
X̂ = (X̂, Ŷ ) at time t̂0 + ∆t̂, such that |X̂ | � 1, i.e. the particle moves far from the
centreline of a vortex, they can be expanded as:

εX̂ = X̂(0) + εX̂(1) + ε2X̂(2) + · · ·
εŶ = Ŷ(0) + εŶ(1) + ε2Ŷ(2) + · · ·

}
(3.8)

where ε = 1/|X̂ 0| � 1. From (3.6) (with ûθ = 2/|X̂ | for consistency with (2.5)), we
obtain

dX̂(0)

dt̂
= 0,

dŶ(0)

dt̂
= −ε,

dX̂(1)

dt̂
=
−2εŶ(0)

X̂2
(0) + Ŷ 2

(0)

,
dŶ(1)

dt̂
=

2εX̂(0)

X̂2
(0) + Ŷ 2

(0)

,

dX̂(2)

dt̂
=

−2(Ŷ(0) + εŶ(1))

(X̂(0) + εX̂(1))2 + (Ŷ(0) + εŶ(1))2
+

2Ŷ(0)

X̂2
(0) + Ŷ 2

(0)

+ 2εFp
Ŷ 2

(0) − X̂2
(0)

X̂2
(0) + Ŷ 2

(0)

,

dŶ(2)

dt̂
=

2(X̂(0) + εX̂(1))

(X̂(0) + εX̂(1))2 + (Ŷ(0) + εŶ(1))2
− 2X̂(0)

X̂2
(0) + Ŷ 2

(0)

− 4εFp
X̂(0)Ŷ(0)

X̂2
(0) + Ŷ 2

(0)

.

Hence,

X̂ = X̂0 + ln
X̂2

0 + (Ŷ0 − ∆t̂)2

X̂2
0 + Ŷ 2

0

+ O(ε, ε2 V 2
T , ε Fp), (3.9)

Ŷ = Ŷ0 − ∆t̂+ θ̂1 + 2Fp

[
X̂0

X̂2
0 + Ŷ 2

0

− X̂0

X̂2
0 + (Ŷ0 − ∆t̂)2

]

− 2(Ŷ0 − ∆t̂)

X̂2
0 + (Ŷ0 − ∆t̂)2

[
ln
X̂2

0 + (Ŷ0 − ∆t̂)2

X̂2
0 + Ŷ 2

0

+
θ̂1(Ŷ0 − ∆t̂)

X̂0

]
+ O(ε2, ε2 V 2

T , ε
2 F2

p ),

(3.10)
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Figure 3. Trajectories of particles for Fp = 1 and VT = 1. —–, solution of the original system of
(2.2). – – –, asymptotic expansion (3.9)–(3.10). Also a dotted circle with radius 1/VT is shown as
reference.

where

1
2
θ̂1 = arctan

(
Ŷ0

X̂0

)
− arctan

(
Ŷ0 − ∆t̂

X̂0

)
.

Note that the extra displacement of particles induced by the vortex ∆ξ = X̂ − X̂0,
increases without limit, but ∆η = ∆Ŷ + ∆t̂ = Ŷ − (Ŷ0 − ∆t̂) reaches a finite limit as
∆t̂→∞. Their dependence on the inertia and on the terminal velocity is of order εFp
or ε2V 2

T for |X | � 1 and therefore tends to zero as |X̂ | → ∞. In figure 3, we have
plotted some trajectories of particles for Fp = 1 and VT = 1. Comparing the numerical
solution of the original system (2.2) (solid line) with the trajectories obtained from the
asymptotic analysis in (3.9) and (3.10) (dashed line) shows close agreement far from
the origin of the vortex. These asymptotic results are also quantitatively applicable to
the irrotational regions of all types of flow far from any confined region of vorticity.

4. Singular features of particle settling near line vortices
Note that the dynamical system (2.2) has dimension 4 (i.e. X ,V ). However, when

Fp � 1, the system becomes two-dimensional and V can be expressed as a function of
X , as shown by (3.6), independently of the initial position or velocity of the particle. If
the particle’s inertia is small, they match the surrounding flow and gravity conditions
(∆V ∼ V T + u−V ) in a short time interval ∆t ∼ St, i.e. ∆t̂ ∼ Fp (see (3.6)). However,
if the inertia of the particles is finite, the history of the particles’ motion is significant.
When falling from above, the vortices do not reach the equilibrium points with zero
velocity. In this case, there may still be a particle stagnation point XP where V = 0,
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but, in general, dV /dt 6= 0 at X = XP . XP is on the same side of the vortex as XE2

and for Fp � 1, |XP − XE2| � 1.
In most practical situations, the particles are released above the vortices. For

particles with small inertia some ‘empty’ regions may appear (Raju & Meiburg 1995).
The geometry of these empty regions strongly depends on the terminal velocity. In
figure 4(a) the limit trajectories of (2.2) (with initial condition V = 0 at XE2) are
shown for different values of VT for St = 0.125 and β → ∞. As we have already
mentioned, the radial distance of the equilibrium point XE2 increases in proportion to
1/VT . As a consequence, the region enclosed between the limit trajectories becomes
wider as VT decreases. The dependence on the Stokes number is shown in figure 4(b),
where we have plotted the limit trajectories for β →∞, VT = 0.2 and St = 0.5, 2 and
8.

Figure 4(b) shows how the region enclosed by the two limit trajectories varies in size
and form as the particle inertia (Fp) increases, which implies that the empty region
for particles with small inertia also changes with Fp. However, when Fp is large, the
particles can cross the limit trajectories and the empty region may disappear. These
effects are shown quantitatively in figure 5 through a plot of the non-dimensional
asymptotic width Ŵe (as ŷ → −∞) of the strip of the empty region created by a
Rankine vortex as a function of Fp and of the normalized terminal velocity VT . For

small values of Fp, Ŵe is of the order of the product of Fp and the time it takes to go
around the vortex (see (3.6)). Therefore,

Ŵe ∝ Fp, (4.1)

in agreement with our calculations. Since V̂ = 0 at XE2, the proportionality constant
has a large value, e.g. Ŵe ∼ 40Fp for VT = 0.1.

For larger values of Fp, the increased inertia of the particles prevents them from
responding to the vortex flow, to such an extent that some of them even cross the
limit trajectories. Then, naturally, Ŵe decreases (see figure 6). These arguments are
consistent with the computations which show that Ŵe increases with Fp until Fp ∼ 1,

above which Ŵe rapidly decreases. The maximum value of Ŵe is related to the
nonlinear processes appearing around the saddle point XE2. For VT ∼ 1, it depends
strongly on the local values of the velocity in the vortex core.

Empty regions and equilibrium points vanish when the value of VT increases
sufficiently that, even if Fp is small, the particles cut through the vortex. However,
in many aerosol-particle motions with significant fluid acceleration, i.e. Ff � 1, the
particle Froude number Fp ∼ 1 and the fall speed is small, i.e. VT < 1. In this case,
open empty regions appear and the width of the strip is largely related to the effect
of particle inertia, effectively the value of Fp = St3/F2

f (table 1). In figure 5, we
have also plotted the thickness of the empty region for constant values of the flow
Froude number (dashed lines), indicating the situations appearing in a certain flow
with particles of different properties. Note that for values of VT > 1, there are no
equilibrium points and Ŵe → 0. Similar effects can be expected in other flows with
concentrated vorticity, where saddle points create regions which cannot be reached
by particles with finite inertia.

For a better understanding of the effect of the particle inertia, we now analyse the
trajectories of aerosol particles near the equilibrium points XE2. Note how, in figure 6,
a trajectory passing close to the equilibrium point XE2 has an abrupt change in its
direction and then crosses other trajectories. Sudden changes in the direction of the
velocity of particles were noted by Maxey & Corrsin (1986; see their figure 9). In
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Figure 4. (a) Limit trajectories of inertial particles for fixed St = 0.125. ———, VT = 0.2
(Fp = 0.005); – – –, VT = 0.4 (Fp = 0.02); − · −, VT = 0.8 (Fp = 0.08). (b) Limit trajectories
of inertial particles having the same VT = 0.4 (and saddle point XE2). − · −, St = 0.5 (Fp = 0.08);
– – –, St = 2 (Fp = 0.32); ———, St = 8 (Fp = 1.28).
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Figure 5. Asymptotic dimensionless width Ŵe of the empty region for VT = 0.1, 0.4 and 0.8 as the

inertial Froude number of the particles Fp increases over the range 10−3 to 10. —–, Ŵe versus Fp
for constant value of VT ; − · −, Ŵe versus Fp for VT = 0.1 calculated using (3.6); – – –, Ŵe versus
Fp for constant values of the flow Froude number Ff .
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Figure 6. Trajectories (X̂(t), Ŷ (t)) of inertial particles where VT = 0.8 and Fp = 1.8 (marked by an
asterisk in figure 5). Notice that the central trajectory crosses some of the outer ones. The shadowed
region represents the positions that the particles cannot reach (‘empty region’).
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Figure 7. —–, trajectories of inertial particles near the particle stagnation point XP for Fp = 4 and
VT = 0.1; – – –, limit trajectories.

regions where u− V T ∼ St (or û− j ∼ Fp), the effect of the particle inertia changes
the trajectory even if Fp is very small (see (3.2)). Consider a particle approaching XE2;
it cannot react instantaneously to the flow conditions and, as a consequence, it may
cross one of the limit trajectories. Once the particle has crossed the limit trajectory,
the local direction of the combined vector u+V T is opposite to that of the velocity of
the particle at that point. From (2.6), it follows that the small changes in the particle
velocity can occur over a time δt and a distance δX where

δt =
δX

V
= St

δV

u+ V T − V . (4.2)

For the particle velocity to come to rest from its initial velocity, |δV | ∼ VT . This takes
a distance |δX | ∼ VTSt or smaller. Since for a line vortex |XE2| ∼ 1/VT , this implies
that |δX |/|XE2| ∼ V 2

TSt = Fp. Therefore, if Fp is of order unity or less, the particle
reaches a velocity zero at a particle stagnation point (PSP) XP near the equilibrium
point XE2. The larger Fp is, the greater is the distance between the equilibrium point
XE2 (where u + V T = 0 and V = V̇ = 0) and the PSP XP , and the position of XP

moves closer to the vortex. Note that at the PSP, u + V T 6= 0 and there is locally
a large acceleration given by dV /dt = (1/St)(u + V T ) which has the opposite sign
to V T and V . Figure 7 shows how this results in a sharp corner in the trajectory
of the particle at XP . When Fp increases above a certain value Fpm, V is never zero
anywhere and no PSP exists. The characteristic stopping distance for a particle with

small inertia is |X̂E2 − X̂E1| = |XE2 − XE1|VT = 2
√

1− V 2
T (for VT < 1). Thus,

the overshooting effect is greater for smaller values of VT , in agreement with our
numerical finding that the critical value Fpm, for which there are no more turning
points, increases whenever VT decreases. In figure 7, we have plotted the trajectories
of particles for Fp = 4 and VT = 0.1 near the saddle point XE2. The actual particle
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stagnation point XP is marked. Since the value of the inertia parameter is relatively
large and VT is small, it is evident that the direction of the velocity of the particles
changes over a large scale of the order of Fp. This phenomenon has also been studied
on the saddle points of a two-dimensional shear layer by Martin & Meiburg (1994).

Up to this point, we have consolidated some ideas about the basic features of
particles moving around vortices. In the following section, we define global quantitative
expressions for the concepts established in §§ 3 and 4.

5. Settling of particles near a Rankine vortex
The sedimentation of particles in complex flows is best understood in terms of the

horizontal and vertical displacement differences (∆ξ,∆η) between the displacements
∆X̂,∆Ŷ of particles moving in the flow and those ∆X̂T ,∆ŶT in the still fluid over the
same time interval ∆t̂ = ∆T̃T (Ṽ 2

T/Γ̃ ). The dimensionless displacements, for particles

released at X̂0, Ŷ0 at t̂ = 0, can be defined as

∆X̂(X̂ 0, X̂ ,∆t̂) = X̂(X̂ 0,∆t̂)− X̂0,

∆Ŷ (X̂ 0, X̂ ,∆t̂) = Ŷ (X̂ 0,∆t̂)− Ŷ0. (5.1a)

These can be expressed in terms of perturbations from their values in still fluid
∆X̂T = 0 and ∆ŶT = −∆t̂,

∆ξ = ∆X̂ − ∆X̂T = ∆X̂,

∆η = ∆Ŷ − ∆ŶT = ∆Ŷ + ∆t̂.

}
(5.1b)

If the particle settling is slowed down by the vortex, |∆Ŷ | is less than in still fluid, i.e.
∆η > 0. To analyse the overall effect of the vortex, we consider trajectories between
two levels Ŷ = ±Ŷ0 well above or below the vortex, i.e. Ŷ0 � 1 and ∆t̂ = 2Ŷ0 (see
(3.9)–(3.10)). Under these conditions, ∆ξ and ∆η are only functions of X̂0 and of the
dimensionless parameters of the problem, Fp and VT . In figures 8(a)– 8(c) we have

plotted ∆η versus X̂0 for ∆t̂ = 2 × 104, Ŷ0 = 104, Fp = 1, and VT = 0.4, 1.2 and 5.
A strong peak appears when the dimensionless terminal velocity VT is smaller than
one and the stopping distance of the particles is of the order of the radius of the
vortex or smaller (i.e. Fp < O(1)) (figure 8a). Owing to the existence of the turning
points XP , the particles spend a long time near these points. Particles having initial
positions (X̂0, Ŷ0) far from the vortex with |X̂0| � 1, whatever the values of Fp and

VT , almost follow straight lines and ∆η � 1 . When ṼT is greater than the maximum
vertical velocity of the vortex (i.e. VT > 1), there can be no equilibrium points and
the peak in ∆η becomes finite, as shown in figure 8(b). Finally, if the particles have a
large VT , they move with velocities close to the terminal velocity and ∆η is small for
any value of X̂0 (figure 8c).

In figure 9, we have plotted the maximum value of ∆η versus Fp for VT = 0.1,
0.4, 0.7 and 1.0 . Decreasing Fp for a given value of VT , we reach a critical value

Fpm(VT ) (independent of Ŷ0) below which the maximum value of ∆η increases very
rapidly. In order to understand this behaviour, we have calculated many trajectories
of particles for values of Fp close to Fpm and for different VT . As we would expect,
Fpm corresponds to the limit value of Fp above which there is no particle stagnation
point. As shown in § 4, this phenomenon of overshooting only appears for small
and intermediate values of Fp and is more marked for smaller values of VT . This
is consistent with the dependence of Fpm on VT , which, as figure 9 shows, decreases
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Figure 8. Dimensionless differential settling length ∆η (normalized on a length Γ̃ /ṼT ) versus the

initial horizontal position of the inertial particles, X̂0 for Ŷ0 = 104, ∆t̂ = 2 × 104, and Fp = 1. (a)
VT = 0.4, (b) VT = 1.2, (c) VT = 5.

when VT increases. We show below that Fpm is also a critical value for the dependence
of the bulk settling velocity on Fp.

Since the initial position of particles moving in a complex flow is random, we must
define a mean settling length 〈∆Ŷ 〉 averaged over all initial positions in relation to a
fixed time, say ∆t̂, in terms of the average displacement difference 〈∆η〉 as

〈∆Ŷ 〉 =
1

L̂x

∫ L̂x/2

−L̂x/2
∆Ŷ dx̂0 = 〈∆η〉 − ∆t̂, (5.2)

where L̂x is the dimensionless distance over which the average is made and ∆Ŷ is
defined in (5.1a). In order to study the local effect of a single vortex, we express 〈∆η〉
as

〈∆η〉 =
1

L̂x

[
D + f

(
Ŷ0

L̂x

)]
, (5.3)

where D is a drift integral of ∆η,

D =

∫ ∞
−∞

∆η(X̂0) dX̂0, (5.4)

which is independent of Ŷ0 and is only a function of Fp and VT if Ŷ0 → ∞. The
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Figure 9. Maximum value of the normalized differential settling length ∆η versus the particle
Froude number Fp for ———, VT = 0.1; – – –, VT = 0.4; − · −, VT = 0.7; · · ·, VT = 1. For any VT ,
Fpm corresponds to the value of Fp for which ∆η goes to infinity.

function f(Ŷ0/L̂x) depends on Ŷ0, but does not depend on Fp and VT (see § 3.2) and
is defined (from (5.1a) and (5.2)) by

f(Ŷ0/L̂x) = −
∫ ∞
L̂x/2

[∆Ŷ (X̂0) + ∆Ŷ (−X̂0) + 2∆t̂] dX̂0, (5.5)

where it is assumed that L̂x � 1. From (3.10), we obtain (ignoring higher-order terms)

f

(
Ŷ0

L̂x

)
= 16

∫ arctan (2Ŷ0/L̂x)

0

r tan r dr. (5.6)

To simplify the problem, we have assumed large horizontal averaging settling length
L̂x so that Ŷ0/L̂x → 0 and f(Ŷ0/L̂x) = 0. Later, we show that the result of the bulk

settling velocity does not depend on Ŷ0/L̂x if Ŷ0 →∞.
The numerical integration of D has been carried out by two different procedures:

the trapezoidal rule and a fourth-order Runge–Kutta. To reduce numerical errors, the
asymptotic results presented in § 3.2 have been used. In figure 10, D is plotted versus
Fp for different values of the dimensionless terminal velocity. The same asymptotic
value was reached for Fp → 0 as is obtained by integrating (3.6) instead of (2.2). The
positive peaks in ∆η, shown in figure 8, make only a small contribution to the drift
integral, because the logarithm of ∆Ŷ close to the saddle point, when integrated,
tends to a contribution of the order of O[(X̂0 − X̂∗0 ) log(X̂0 − X̂∗0 )], which tends to

zero as (X̂0 − X̂∗0 )→ 0. There is a value F∗p for which D is zero so that, for Fp < F∗p ,
the drift integral D < 0, which means that particles fall faster in the presence of the
vortex. In the inertialess limit of Fp → 0, the negative drift integral D increases with
VT (figure 11), but suddenly decreases to zero when VT > 1 because no equilibrium
point exists and the ‘empty’ region disappears. For Fp > 0, the smaller VT is, the

greater is |D|, because the empty region becomes larger relative to Γ̃ /ṼT .
When Fp increases up to a maximum value FpM , the drift becomes more negative as
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Figure 11. Normalized drift integral D of non-inertial particles versus VT for —–, Fp = 0; – – –, 0.1.

a consequence of the inertial effect shown by (3.7) for any value of VT . The particles
displaced towards the downflow side of the vortex (negative values of X̂ in our case),
as a result of the inertia, do not return to the upflow side and therefore fall faster.
This tendency also increases the width of the empty region, Ŵe. As figure 5 shows, this
increases as Fp increases until the inertia of the particle and Fp are large enough that
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Figure 12. Dimensionless differential settling length ∆η versus the initial horizontal position of the

particles X̂0 for Ŷ0 = 104, ∆t̂ = 2× 104, VT = 0.2 and —–, Fp = 4; – – –, 8.

any deflection by the vortex is very small. Note that the increase in Ŵe is correlated
with the increase of (−D).

When Fp ∼ 1, the particle inertia is so strong that some trajectories coming from
above the vortex with a negative vertical velocity cross through the limit trajectories
to the upflow side that pass through XP , as shown in figures 6 and 7. Positive values
of the drift integral D are found for Fp > F∗p . To explain this fact, we have plotted
∆η versus X̂0 for VT = 0.2 and Fp = 4 and 8 in figure 12. The peak in ∆η, which
corresponds to the trajectories passing near the PSP XP broadens for larger values
of Fp. This is related to the phenomenon of ‘overshooting’ discussed in § 4. Owing
to the delay in the particle response to the flow conditions, sudden changes in the
velocity direction occur, which means that the particles effectively take a longer time
to settle. This happens when trajectories cross the region where |û− j | ∼ Fp, so that
there is a wider range of initial locations X̂0 where ∆η is large. Moreover, the peak
moves towards lower values of X̂0 since particles with larger inertia describe straighter
trajectories when they move above the vortex. The result of both tendencies is that
the particles settle more slowly and there is an increase of the drift integral.

As shown in figure 9, when Fp exceeds Fpm the particle stagnation points, where
Vy = 0, disappear. Then, the peak of ∆η is finite and decreases monotonically as
Fp increases. This is shown in figure 13 where we have plotted the settling length
versus the initial position of the particles for VT = 0.4 and Fp = 7, 8 and 9. Note
that for these values, there is no significant change in the position of the peak. Since
the drift integral D is largely determined by the ‘area’ under the peak when Fp > 1,
the maximum value of D is reached for Fp ' Fpm and decreases monotonically as Fp
increases. Large values of D can be found for smaller VT because, as mentioned in
§ 4, the region where sudden changes in the direction on the velocity of particles can
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Figure 13. Dimensionless settling length ∆η versus the initial horizontal position of the particles

X̂0 for Ŷ0 = 104, ∆t̂ = 2× 104, VT = 0.4. ———, Fp = 7; – – –, Fp = 8; − · −, Fp = 9.

occur increases whenever VT decreases. Thus, the value of D can be relatively large
if there are vortices with Fp close to Fpm for small values of VT .

This shows again the importance of the particles’ inertia and, in particular, the
importance of the overshooting phenomenon in this problem. Clearly, the asymptotic
approximations for small inertia parameters give misleading estimates of the settling
process both qualitatively and quantitatively.

6. The bulk settling velocity in vortex flows
If the bulk settling velocity 〈Ṽy〉B is defined as the reciprocal of the mean time 〈∆T̃ 〉

for particles to fall between two levels a distance Ỹ0− Ỹ1 apart (where Ỹ0 > Ỹ1), then
〈Ṽy〉B = (Ỹ0 − Ỹ1)/〈∆T̃ 〉. Here, the mean is taken over all initial positions at the level

Ỹ0. Now, if the particles fall a large distance past the vortex, ∆T̃ can be expressed as
a function of the drift integral D (see (1.2) and (5.3)),

〈Ṽy〉B =
ṼT

1 + D/(Ŷ0 − Ŷ1)L̂x
. (6.1)

This is not equal to the average velocity along the trajectory, which is defined in (1.1) as

〈Ṽy〉L = ṼT − 〈∆η̃〉
(Ỹ0 − Ỹ1)

ṼT = ṼT

[
1− D

(Ŷ0 − Ŷ1) L̂x

]
. (6.2)
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Equations (6.1) and (6.2) show that, since D is finite, the average bulk and Lagrangian
settling velocity of particles near a single but infinite vortex between two planes very
far apart is asymptotically equal to the terminal velocity ṼT in still fluid for any
value of the inertia parameter and for any value of the terminal velocity. However,
in the real flows of natural and industrial processes, the average settling velocity is
effectively defined over finite regions around each vortex. Therefore, comparing (6.1)
and (6.2), the bulk and Lagrangian settling velocities differ from each other and from
the terminal velocity, because the characteristic length of the trajectories of the par-
ticles Γ̃ /ṼT is not much less than the characteristic horizontal and vertical distances
between vortices L̃x and Ỹ0.

Although there are no general methods for predicting the value of 〈Ṽy〉B in
turbulence flows, our analysis indicates its general dependence on Fp and VT if
these parameters are suitably redefined in terms of the most energetic vortices in
these flows. Consider a three-dimensional flow composed of N groups of distinct
vortex tubes defined by a circulation Γ̃i, a radius R̃i, a length L̃i, and a unitary vector
parallel to the axis ni. The resulting bulk settling velocity, obtained by adding the
effect of every vortex, is

ṼB = ṼT

[
1−

N∑
i=1

αiD(Fpi, VT i)

]
, (6.3)

where αi is the effective volume fraction within which the trajectories of the particles
are distorted by the vortex, (Γ̃i/ṼT i)

2L̃i, divided by the volume occupied by a vortex
of the i group, and D(Fpi, VT i) is the drift integral of the differential settling length.
The local particle Froude number is

Fpi =
τ̃pΓ̃i

R̃2
i

V 2
Ti

=
τ̃3
p

Γ̃i
[g̃− (g̃ · ni)ni]2,

and the equivalent dimensionless terminal velocity for each vortex (removing the effect
of gravity due to the component parallel to its axis) is

VT i =
τ̃pR̃i

Γ̃i
|g̃− (g̃ · ni)ni|.

The reason why this idealized model is relevant to the settling of particles in turbulence
is because flow visualization (e.g. Perkins, Ghosh & Phillips 1991) and direct numerical
simulations (e.g. Squires & Eaton 1991; Vincent & Meneguzzi 1994) have shown that
in most three-dimensional turbulent flows, distinct elongated coherent vortices occur.
Usually, they have a length that scales with the integral scale Lx and a radius that
scales with the Kolmogorov microscale (Jiménez et al. 1993). Only those vortices with
the largest circulation and whose axes are approximately horizontal have a large effect
on particle settling. Based on these observations, our result in figure 10 suggests that
for 0 < VT < O(1) and Fp < O(1), the average settling speeds rises to a maximum
value of above 80% of the settling velocity in still fluid. How do these suggestions
compare to previous investigations and to experiments?

The numerical simulations of heavy particles in isotropic homogeneous turbulence
performed for Reλ from 20 to 60 by Wang & Maxey (1993) showed a significant
increase in the Lagrangian average vertical velocity 〈Ṽy〉L for particles with viscous
response time and terminal velocity comparable to the Kolmogorov scales of the
turbulence. In their simulations, the value of Fp associated with the smaller scales
was of the order of unity. Hence, for the large-scale structures of the flow, Fp would
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be very small, corresponding to regions where there is no concentration of particles
(see (3.7)). They found that the transient time for the concentration field and for
〈Ṽy〉L averaged over many particles is of the order of the integral timescale of the
turbulence. This suggests that the particles need a time of that order of magnitude to
find themselves in the locality of significant vorticity (of scale ηK). Thus, the distance
between the vortices is much larger than their radii and we can apply our results. We
also have to assume that the local vortical structures are approximately steady for
time intervals of the order of magnitude of the settling of the particles. Vincent &
Meneguzzi (1994) found that the lifetime of these intense vortical structures is of the
order of the eddy turnover time, T̃E . Hence, T̃E should be much larger than Γ̃ /Ṽ 2

T

(see (3.1)). In this case, the bulk settling velocity would be

〈Ṽy〉B ' 〈Ṽy〉L = ṼT [1− ᾱD̄], (6.4)

where ᾱ is the effective volume fraction occupied by the vortices and D̄ is an average
value of the drift integral for the different values of Fp and VT appearing in the flow.
Therefore, if these two dimensionless parameters are at most of the order of unity,
D̄ would be always negative (see figure 10) with a minimum for Fp = St V 2

T ∼ 1 and

〈Ṽy〉L would exceed ṼT . This result is consistent with Wang & Maxey’s simulation
(1993). However, for very small values of the Stokes number, their results show a very
small increase in the average settling velocity. This can be explained because initially
they located the particles randomly with a uniform distribution and some of them
would have been trapped inside the vortices for a very long time, an effect that is even
stronger when St or VT are smaller (Perkins & Hunt 1987). For particles without
inertia (Fp → 0), the result of Maxey & Corrsin (1986) shows that 〈Ṽy〉L = ṼT is
only valid in the limit of St = 0, for which some particles released in the vortex core
remain trapped. However, for particles with small inertia, Maxey (1987) showed that
the Lagrangian average settling velocity 〈Ṽy〉L is always larger than ṼT .

Using numerical simulations of a three-dimensional random velocity field that
approximates to a turbulent field, Fung (1993) found that 〈Ṽy〉B is less than ṼT over
a limited range of values of Fp and VT (> O(1)). Recently, Ushijima (1998) found

that 〈Ṽy〉B is 15% greater than ṼT for ṼT < ũ′y . We have found that for line vortices,
because D may become positive for a certain range of the parameter Fp, 〈Ṽy〉B may

be greater as well as less than ṼT .
Our result is in good agreement with the experimental results of Srdic (1999), who

measured particles settling in turbulence generated by an oscillating grid in a water
tank. He found that 〈Ṽy〉L > ṼT for small values of Fp whereas 〈Ṽy〉L < ṼT for
moderate values of Fp (notice that in his definition of Fp he uses the integral timescale
of turbulence as the characteristic timescale). He found that the maximum average
settling velocity was as much as 80% higher than the particle terminal velocity
and that the maximum reduction was about 20% of the terminal velocity. For very
large values of Fp, the bulk and Lagrangian settling velocity, 〈Ṽy〉L, 〈Ṽy〉B tended

monotonically towards the terminal velocity ṼT .
Wang & Maxey (1993, figure 21) showed that 〈Ṽy〉L increases with the dimensionless

terminal velocity until a maximum is reached for VT ∼ 1. Increasing VT results in an
increase of Fp = StV 2

T . Thus, for a small value of St, the bulk settling velocity changes
from being larger to being smaller compared with the terminal velocity of particles.
Srdic (1999) also found this evolution of the average settling velocity as a function of
the dimensionless terminal velocity and he found that 〈Ṽy〉L < ṼT for ṼT > ũ′y for all
values of Fp .
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6.1. Colliding distance of particle pairs

The colliding distance of pairs of a large (L) and a small (S) particle in still fluid is
l̃0 = (Ṽ L

T − Ṽ S
T )∆t̃ . A similar argument can be derived for particles moving around

vortex lines. A particle released at a level Ỹ0 far above the vortex, after falling a time
∆t̃� 2Ỹ0/ṼT will be at Ỹ = Ỹ0 − ṼT∆t̃+ ∆η̃, (see figure 1). Therefore, to arrive at a
fixed level Ỹ1, it should be released at Ỹ0 = Ỹ1 + ṼT∆t̃−∆η̃, and the colliding distance
of particle pairs is

l̃ = Ỹ L
0 − Ỹ S

0 = (Ṽ L
T − Ṽ S

T )∆t̃− (∆η̃L − ∆η̃S ). (6.5)

Since ∆η̃ = (Γ̃ /ṼT )∆η̂,

〈̃l〉
l̃0

= 1− 〈∆η̃
L〉 − 〈∆η̃S〉

(Ṽ L
T − Ṽ S

T )∆t̃
= 1 +

(Γ̃ /Ṽ S
T )

Ṽ L
T∆t̃

λ〈∆η̃L〉 − 〈∆η̃S〉
λ− 1

, (6.6)

where λ = Ṽ S
T /Ṽ

L
T . From (5.3), we obtain

〈̃l〉
l̃0

= 1 +
(Γ̃ /Ṽ S

T )2

(Ṽ L
T∆t̃)L̃x

[
λ2DL − DS

λ− 1
+ (λ+ 1) f

(
Ŷ0

L̂x

)]
. (6.7)

The highest collision efficiency between particle pairs (cross-section value) is given
for similar sizes, i.e. λ ' 1 . In these conditions, the maximum 〈̃l〉/̃l0 is given at
Fp ' 0.1 (see figure 10). In the case of water drops in air with vortices of radius

R̃v = 1.5 mm, this means drops of radius around 20 µm (with a dimensionless terminal
velocity VT = ṼT /(Γ̃ /R̃v) = 0.48). Recent experiments of water droplets in clouds
show that this size corresponds to the critical value around which the collision rate
has its maximum (Jonas 1996 and references therein).

7. Conclusions and implications of the results
We have studied the behaviour of small heavy particles moving around line vortices.

In particular, we have analysed some singular properties of the trajectories in order
to understand the physics of the settling of particles and other related problems of
interest. We have defined the key dimensionless parameters when the lift and history
forces are negligible, to be the particle Froude number Fp and the dimensionless
terminal velocity VT normalized on the peak vertical velocity. By considering these
parameters and the trajectories near the particle stagnation point XP , many of the
effects of particle inertia for any value of the terminal velocity can be explained. We
have included the effect of finite Reynolds number of the particle by using a modified
(but linear) Stokes drag law.

When the terminal velocity ṼT is less than the maximum vertical velocity of the
vortex ũymax , there exist some regions that the particles cannot reach. For very small

values of Fp, these empty regions are narrow bands of width W̃e ∝ R̃vFp/VT (see

(4.1)). When Fp is of order unity and VT � 1, W̃e is much larger than R̃v , the radius
of the vortex. In three-dimensional flows with vortices having random orientations,
only a few particles would enter these regions, so there would be zones of low particle
concentration.

The asymptotic methods presented in § 3 are valid for any values of Fp and VT and
any localized two-dimensional or three-dimensional vorticity flows, assuming that the
characteristic distance between the vortices is of the order of, or much larger than,
Γ̃ /ṼT when the particles are moving far from the vortex cores. Therefore, it could
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be applied to any general type of flow where vorticity is locally concentrated. As
figures 5 and 10 show, results using asymptotic analysis give a good approximation
to W̃e and 〈Ṽy〉L for Fp < 0.1. This concept may possibly be useful for modelling
one- and two-particle dispersion (J. C. Vassilicos 1997, private communication) and
to simplify numerical codes for two-phase flows.

We have analyzed the phenomenon of ‘overshooting’, when the trajectory of a
particle has an abrupt change in its direction. This is likely to appear near any kind
of vortex when Fp is of order unity and in regions where the velocity of the particle is
small, i.e. near the equilibrium points of the system for a given fluid velocity field. In the
situation where VT < 1, XP approaches the vortex core as Fp increases. The maximum
value of Fp calculated in these cases for the Rankine vortex, Fpm, is of order unity. This
is because if the inertia is too large, the particle velocity cannot be reduced to zero
before it passes through the vortex core. These concepts are also applicable to dense
particles in liquids. Even if β ∼ 1, the motions are largely determined by Fp and VT .

The bulk settling velocity 〈Ṽy〉B is always larger than the terminal velocity for small
Fp, and VT less than unity. In this range of VT , it increases with Fp until a maximum is

reached at a certain value FpM ∼ 1. Notice that St� 1 at the maximum 〈Ṽy〉B if VT �
1. For large values of the particle Froude number, 〈Ṽy〉B is smaller than ṼT with a
minimum at Fp = Fpm which increases whenever VT increases. For very large values of

Fp, as well as for very large values of the dimensionless terminal velocity, 〈Ṽy〉B → ṼT .

Although these results have been demonstrated only for particles settling near
a Rankine vortex the same qualitative results are expected to be valid for many
other flows with coherent vortices, because these vortices determine the differential
settling. The results may have significant practical application in estimating particle
displacements in strongly rotational flows such as centrifuges. In such flows, the
vortices of the turbulence tend to be aligned parallel to that of the rotation axis so
that the concepts developed here are quite relevant. Our study is restricted to steady
flows, but the results can be used to indicate settling behaviour in turbulent flows
with intermediate Reynolds numbers if the characteristic time for the deformation
of the vortical structures is much larger than the characteristic time of the settling
process Γ̃ /Ṽ 2

T . It can be seen from (3.6) that the effect of the unsteadiness appears
in the first-order approximation of the small Fp asymptotics. The ratio between this

effect and the centrifugal forces is the Strouhal number, (Γ̃ /Ṽ 2
T )/̃tc, where t̃c is the

characteristic time of changes of the flow structures.

Some investigations have suggested that the average settling velocities can be
estimated by considering the variation in the concentration of particles in different
points of the flow around the vortices. There is certainly a good correlation between
concentration of particles and settling velocity when the inertia of the particles is
small because for Fp < 1 the main effect is the inertial bias of particles towards regions
of low vorticity and high strain rate (Squires & Eaton 1991). However, the subtle
effects exposed here about the motion of inertial particles near vortices suggest that
it is not possible to estimate the averages values of Ṽy derived from the distribution
of particle concentration and on estimates of the local fall speed. One of the reasons
is that for particles with large inertia, the overshooting effect described in § 4 is much
more important. As a result, the correlation between particle concentration and 〈Ṽy〉B
is poor, especially for Fp > O(1).
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the Arizona State University. J.C.R.H. acknowledges financial support from Trinity
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Appendix A. Influence of the particle Reynolds number
An accurate value of the drag force on a spherical rigid particle at moderate

and low Reynolds number of the particle, Rep = d̃p(|ũ − Ṽ |)/ν̃, where ũ and Ṽ are,
respectively, the velocity of the fluid and the particle at the same point, is

3πf1d̃pρ̃f ν̃(ũ− Ṽ ), (A 1)

where f1 = 1+0.15Re
2/3
p (Clift, Grace & Weber 1978). Since Ṽ ' ũ+ Ṽ T for particles

with small inertia (see (3.6)) we linearize f1 around ũ− Ṽ = −Ṽ T ,

f1 ' kT + 0.1Re
2/3
T |û− j − V̂ |, (A 2)

where kT = 1 + 0.15Re
2/3
T and, as a result of scaling the velocities with ṼT , we have

defined the terminal Reynolds number of the particle ReT = d̃pṼT /ν̃. Thus, f1 ' kT
is a good approximation if

ReT < 1. (A 3)

In this way, the linear drag law can be extended to consider the influence of the
particle Reynolds number.

Appendix B. Bulk settling velocity for particles with large VT
Consider a particle with settling velocity Ṽ T = (0,−ṼT ) in still fluid, moving in

a velocity field having a vertical velocity ũy(x̃, t̃) with 〈ũy〉E = 0, r.m.s. value ũ′y and

integral scale L̃. Consider the limiting situation where ṼT � ũ′y so that from (3.6) the
vertical velocity of the particle

Ṽy = ũy(X̃ , t̃)− ṼT , (B 1)

where dX̃/d̃t = Ṽ . The error in this approximation is t̃p dṼy/d̃t ' −t̃pṼT ∂ũy/∂ỹ,

which tends to zero as St or Fp → 0 . The settling time ∆T̃ between levels Ỹ0 and Ỹ1,

where Ỹ0 − Ỹ1 � L̃, is given by

∆T̃ =

∫ Ỹ1

Ỹ0

dỸ

ũy − ṼT =
Ỹ0 − Ỹ1

ṼT
+

∫ Ỹ0

Ỹ1

ũy

Ṽ 2
T

dỸ +

∫ Ỹ0

Ỹ1

ũ2
y

Ṽ 3
T

dỸ + · · · , (B 2)

if (ũy)E = 0,

〈∆T̃ 〉 =
Ỹ0 − Ỹ1

ṼT

(
1 +

(
ũ2
y

)
E

Ṽ 2
T

+ · · ·
)
.

Thence, from its definition, the bulk settling velocity

〈Ṽy〉B =
Ỹ0 − Ỹ1

〈∆T̃ 〉 = ṼT

(
1−

(
ũ2
y

)
E

Ṽ 2
T

+ · · ·
)
< ṼT . (B 3)

This is qualitatively consistent with the results of §§ 5 and 6 in that if the particle
distribution is uniform, the spatial average of ũy over all particles is equal to 〈ũy〉E .

Hence from (B 1), 〈−Ṽy〉E = ṼT since 〈ũy〉E = 0. Notice also that if VT < 1, regions
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with positive contribution to 〈ũy〉L disappear from the integrals and as a result

〈ũy〉L < 0. Note also that in the case of a line vortex where Ỹ1 = −Ỹ0,∫ Ỹ0

Ỹ1

〈ũy〉 dỸ = 0,

∫ Ỹ0

Ỹ1

〈ũ2
y〉 dỸ = A(Γ̃ 2/R̃v) > 0,

where A is a coefficient of order unity. Therefore, for our particular case,

∆T̃ =
Ỹ0 − Ỹ1

ṼT
+ A

(Γ̃ 2/R̃v)

Ṽ 3
T

, (B 4)

and from its definition

〈Ṽy〉B ' ṼT
[
1− A Γ̃ 2/R̃v

(Ỹ0 − Ỹ1)Ṽ
2
T

]
= ṼT

[
1− A R̃v

(Ỹ0 − Ỹ1)

Ũ2

Ṽ 2
T

]
, (B 5)

shows how particles which cut trough the eddies have a lower bulk settling velocity.
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