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Flocculation dynamics accounting for both particle coagulation and aggregate break-
age was simulated mathematically by using modified sectional modeling techniques.
The methodological impro®ement included the use of a continuous-size density func-
tion, instead of a characteristic size for each size section, the applications of a compre-
hensi®e cur®ilinear model for the coagulation kinetics, and the fractal scaling relation-
ship for particle aggregates. Simulation results demonstrated that a flocculation system
could arri®e at a dynamic steady state after a period of flocculation when coagulation
and breakage counterbalanced each other, resulting in a stationary size distribution with
a unique peak mass concentration. Three distinct breakage distribution functions� bi-
nary, ternary, and normal distribution� did not differ considerably based on the simu-
lation results of the steady-state size distributions. A lower shear rate, breakage rate
constant, a higher collision efficiency, and initial particle concentration would result in
larger aggregates in a flocculation system. The numerical simulations compared well
with the results of the jar-test flocculation experiments using latex microspheres, suggest-
ing the applicability of the cur®ilinear � fractal � breakage modeling system for the pro-
cess simulation of the flocculation units used in water and wastewater treatment.

Introduction

Flocculation, which combines small particles into larger
aggregates, is one of the most important unit operations in
water and wastewater treatment. In water-treatment prac-
tice, flocculant sedimentation is commonly used for removing
particulate impurities from water. In biological wastewater
treatment, bio-flocs are formed in activated sludge aeration
tanks and separated from effluent in secondary clarifiers. De-
spite the practical importance of flocculation in water and
wastewater treatment, its mathematical modeling and simula-
tion have not been well established. As there are numerous
particles spun over a wide spectrum of sizes in a flocculation
system, it is a difficult task to simulate the interactions be-
tween particles of various sizes and the transfer of particle

Ž .matter among all sizes Gardner et al., 1998 . A number of
issues also need to be addressed for a reliable mathematical
simulation of particle flocculation. For example, in addition
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to coagulation that joins particles together into larger aggre-
gates, breakage that breaks aggregates into smaller fragments
plays an equally important role in regulating the size distribu-

Žtion of a particle population Spicer and Pratsinis, 1996;
.Flesch et al., 1999 . Both processes have to be included in the

modeling of flocculation dynamics. For modeling the coagu-
lation process, the curvilinear collision kernel, instead of the
conventional but unrealistic rectilinear kernel, should be ap-

Žplied to describe the particle collision kinetics Han and
.Lawler, 1992; O’Melia and Tiller, 1993; Thomas et al., 1999 .

As the aggregates formed by coagulation are fractal in struc-
ture, the fractal mass-size scaling relationship needs to be
incorporated in the simulation of both the coagulation and

Žbreakage processes Jiang and Logan, 1991; Jackson, 1998;
.Lee et al., 2000 .

The mathematical modeling of flocculation usually makes
use of the classic Smolchowski approach, in which the parti-
cle dynamics are simulated by the change in size distribution
that is induced by simultaneous coagulation and breakage.
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Considerable progress has been made over the years in using
numerical techniques to model the growth of particle sizes

Ž .driven by coagulation Thomas et al., 1999 . A sectional
method, which divides the whole particle-size range of con-
cern into a manageable number of size sections, has been
developed to solve the coagulation kinetic equations for the

Žtime evolution in size distribution Gelbard et al., 1980;
Hounslow et al., 1988; Jackson and Lochmann, 1993; Park

.and Lee, 2001 . Attempts also have been made to incorpo-
rate the breakage process into flocculation models. In the

Ž .early work of Fair and Gemmell 1964 , aggregate breakage
was included in a simple numerical study of flocculation, and
the authors demonstrated the important role of breakage in a
flocculation system. Through mathematical simulations,

Ž . Ž .Boadway 1978 and Lu and Spielman 1985 found that
shear-induced coagulation had to be combined with breakage
to fit their experimental results. With detailed examination of
the breakage phenomenon using the flow visualization tech-

Ž .nique, Pandya and Spielman 1982 further revealed the
mechanisms of aggregate breakage in sheared fluid, and de-
fined an elaborate model to describe the breakage kinetics.
Using a numerical method for the breakage of large aggre-

Ž .gates in a shear flow field, Higashitani et al. 2001 demon-
strated that a power relationship holds between the average
number of broken fragments and the intensity of fluid shear.
In recent developments, the numerical approach has been
further improved, which uses the sectional approximation in
combination with simplified breakage functions to simulate
particle flocculation, accounting for both coagulation and

Žbreakage Vigil and Ziff, 1989; Cohen, 1992; Spicer and
.Pratsinis, 1996; Kostoglou et al., 1997; Dasgupta, 2000 . It

has been demonstrated that there is a steady-state particle-
size distribution in a batch flocculation system. The charac-
teristic time for the system to arrive at its steady state and
the corresponding steady-state size distribution are unique for

Ža given flocculation system Spicer and Pratsinis, 1996; Chung
.et al., 1998; Flesch et al., 1999 .

Although simulation studies have provided valuable find-
ings for better understanding of flocculation dynamics, the
exact results of most numerical simulations are apparently
rather questionable. Deficiencies can still be identified in the
method of flocculation modeling. For example, a characteris-
tic size, such as the arithmetic average of the lower and up-

Ž .per boundary sizes of a section Spicer and Pratsinis, 1996 ,
has been used to represent all particles in the size section. In
this simplification, particles lose their continuous-size spec-
trum and are grouped into a number of discrete characteris-
tic sizes. This treatment is applicable only when narrow sec-
tions are used, and it becomes inaccurate as the width of

Ž .sections increases Patil et al., 1997 . The rectilinear collision
model, which has been known to overpredict collision fre-

Žquencies between particles Han and Lawler, 1992; Veerapa-
.neni and Wiesner, 1996; Li and Logan, 1997 , is still used to

model the coagulation process. For the description of aggre-
gate breakage, a number of formulations of fragment distri-
bution functions are currently available, such as binary,
ternary, and normal distribution functions. The differences
between these functions have not been fully examined. In ad-
dition, the influences of various important process parame-
ters, such as the shear rate, collision efficiency between parti-
cles, the initial concentration, and the breakage-rate coeffi-

cient, on the steady-state size distribution of a flocculation
system have not been well determined through numerical
simulations. More experimental studies also are needed to
evaluate the results of modeling simulations.

With the introduction of fractal geometry for the particle
aggregates formed by coagulation, the mathematical descrip-

Žtion of the flocculation process has been largely revised Li
and Ganczarczyk, 1989; Jiang and Logan, 1991; Jackson, 1998;

.Lee et al., 2000 . Fractal aggregates have much larger sizes
than the otherwise coalesced spherical particles, which en-
hances both coagulation between particles and the breakage
of aggregates. In our present study, we established a model-
ing system to simulate particle flocculation dynamics. The
fractal scaling characteristics of particle aggregates were in-
corporated in modeling the breakage behavior of particles and
the interactions between particles. An improved sectional ap-

Žproach developed by Jackson and coworkers Jackson and
.Lochmann, 1993; Jackson, 1998 was adopted to more prop-

erly integrate the Smoluchowski equation. This sectional
method is based on the realistic assumption that particles
within a section have a continuous-size distribution that satis-
fies a size density function. A curvilinear collision model

Ž .developed by Han and Lawler 1992 , which is by far the most
complete and comprehensive curvilinear function, was
used for the coagulation kinetics. With the advanced curvilin-
ear�fractal�breakage model, numerical simulations were car-
ried out for the particle flocculation dynamics. In addition,
laboratory experiments of batch flocculation were conducted
to verify the results of numerical simulations in terms of the
particle-size distribution after flocculation.

Methodology
Coagulation and breakage kinetics

The flocculation dynamics in a system of heterodisperse
particles can be modeled by the change in particle-size distri-
bution. When both particle coagulation and aggregate break-
age are considered, the kinetics for the change in the size

Ždistribution can be described Spicer and Pratsinis, 1996;
.Chung et al., 1998; Flesch et al., 1999 below in the form of

the Smoluchowski equation

dn m 1 mŽ . � � � � �s �� mym ,m n mym n m dmŽ . Ž . Ž .Hdt 2 0

�
� � �yn m �� m ,m n m dm y s m n mŽ . Ž . Ž . Ž . Ž .H

0

�
� � � �q � m ,m s m n m dm 1Ž . Ž . Ž . Ž .H

m

Ž .where t is time; n m is the particle-size density function with
respect to the particle size measured by mass, m; � is the
collision frequency function describing the rate of particle
contacts; � is the collision efficiency; m� is the mass of a
particle smaller than m that upon collision with a particle of

� Ž .size mym forms a particle of mass m; s m is the breakup
Ž �.rate function of the aggregates of size m; and � m,m is the

breakage distribution function defining the mass fraction of
the fragments of size m breaking from the larger aggregates
of size m�. The first term on the righthand side of Eq. 1

July 2003 Vol. 49, No. 7AIChE Journal 1871



represents the gain term for the particles of size m by coagu-
lation between smaller particles. The second term is for the
loss of particles of size m due to their growth in size by at-
tachment with other particles. The third term is for the loss
of the aggregates of size m as the results of breakage, and
the fourth term is for the gain of particles of size m from the
fragments of broken aggregates.

To solve Eq. 1, which represents a family of complex inte-
grodifferential equations, the numerical technique with sec-

Žtional approximation needs to be applied Gelbard et al.,
.1980; Hounslow et al., 1988 . Following the common practice

Žof the sectional method Gelbard et al., 1980; Jackson and
.Lochmann, 1993; Jackson, 1998; Li and Zhang, 2003 , the size

sections are so generated that the upper bound of a section is
twice its lower bound in terms of particle mass, that is, m sk
2m . Within each size section, it is assumed here that theky1
particle mass distributes uniformly along the log-scale, that

Ž . Ž . Žis, � Mr� log m s constant, or dMrd log m s ln
. 2 Ž . Ž .10 m n m sconstant Seinfeld, 1986 , where M is the cu-

mulative mass distribution. Since the total mass concentra-
m k Ž .tion in the k th section is Q s mn m dm, the particle-Hk

m ky1
Ž .size density function, n m , can be derived as

Qk
n m s 2Ž . Ž .2ln 2 mŽ .

Sectional go©erning equations
Attachment between two particles of masses m and mx y

from sections i and j, respectively, where m Fm , can movex y
the mass into or out of the k th section. Breakage of the par-
ticle aggregates of mass m in the kth section and those of
the mass m that is larger than m can also move the massz
into or out of the k th section, respectively. These simultane-
ous coagulation and breakage actions regulate the change of
the particle mass concentration in a section. With the treat-
ment of the sectional method, Eq. 1 can be converted into a
kinetic expression of Eq. 3, for the particle mass in section k.
Transformation from Eq. 1 to the new governing equation

Žcan be found in detail elsewhere Gelbard et al., 1980; Jack-
.son, 1998; Li and Zhang, 2003 . For any given section, for

example, the k th section, there are a total of seven cases of
coagulation and breakage involved in the mass movement.
Table 1 illustrates these seven particle interactions resulting
in the gain and loss of particle mass in the k th section, where
s signifies the last size section. 1B , 2B , 3B , 4B ,i,ky1,k i,k ,k i,k ,k k ,k ,k
and 5B are the sectional coagulation coefficients, andk, i,k
1S and 2S are the sectional breakage coefficients. Thek k, i
computation of these coefficients is also summarized in Table
1.

ky1 kdMk 1 2sM B M qM B MÝ Ýky1 i ,ky1,k i k i ,k ,k idt is1 is1

k
3 4 2yM B M y B MÝk i ,k ,k i k ,k ,k k

is1

s s
5 21yM B M y S M q S M 3Ž .Ý Ýk k , i ,k i k k k , i i

is kq1 is kq1

As k varies from 1 to s, Eq. 3 represents a finite number
of coupled ordinary differential equations for the rates of
mass transfer between all of the size sections. Thus, the si-
multaneous coagulation and breakage dynamics can be simu-
lated by solving these equations for the time evolution of par-
ticle-size distributions. In the present study, the fourth-order
Runge�Kutta method has been employed for the numerical
integration of Eq. 3. As shown in Table 1, the sectional coag-
ulation and breakage coefficients are independent of time and
mass concentration; thus, their calculations need to be con-
ducted only once before the computation of mass exchange
between sections.

Fractal and fractal aggregates
Although mass is the property conserved in particle attach-

ment and aggregate breakage, the actual length determines
more directly the particle behaviors and the interactions be-
tween particles. Particle aggregates, which have been charac-

Žterized as fractals Meakin, 1988; Li and Ganzarczyk, 1989;
.Jiang and Logan, 1991; Li and Logan, 1995 , are highly porous

and irregular in shape. For fractal aggregates, their masses
and lengths l can be related according to m� l D, where D is
the fractal dimension. The actual length of an aggregate may

Žbe obtained from the mass Jiang and Logan, 1991; Li and
.Logan, 1995 using

1rDm
lsc 4Ž .ž /�p

where � is the density of primary particles, and c is an em-p
pirical constant. The settling velocity of a fractal aggregate
with a density of � can be calculated using Stokes’ law Usa
Ž Ž . 2.g � y � l r18	, ora l

g � y � mŽ .p l
Us 5Ž .

3
	� lp

where g is the gravitational constant, � is the density of thel
Žliquid, and 	 is the fluid viscosity Johnson et al., 1996; Li

.and Yuan, 2002 .

Breakage rate and breakage distribution functions
The breakup of aggregates in water is brought about mainly

Žby hydrodynamic stresses, such as fluid shear Tambo and
Hozumi, 1979; Peng and Williams, 1994; Serra and Casmit-
jana, 1998a,b; Kramer and Clark, 1999; Higashitani et al.,

.2001 . The fragility of an aggregate is generally proportional
to its size�as the aggregate increases in size, it becomes more

Žvulnerable to breakage Pandya and Spielman, 1982; Potanin,
.1991; Yeung and Pelton, 1996; Spicer et al., 1998 . Based on

the understanding of the breakage mechanisms, the breakage
rate coefficient can be written as a function of the shear rate,

ŽG, and the aggregate size in volume, V Chen et al., 1990;
.Peng and Williams, 1994; Flesch et al., 1999 , or

s V sEG bV 1r3 6Ž . Ž .

where E and b are the breakage rate constants. A pair of
Es7.0�10y4 and bs1.6 have been successfully used by
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Ž . Ž .Flesch et al. 1999 to fit the data of Oles 1992 and their
own experimental studies. These values therefore are adopted
in the present numerical simulation. Using the fractal scaling

Ž . 3correlation of Eq. 4 and Vs 
r6 l , Eq. 6 can be converted
below as a function of the shear rate and particle mass

s m sE�G1.6m1rD 7Ž . Ž .

where

1rD1r3
 1
�E s cEž / ž /6 �p

There are generally three distinct breakage distribution
functions, binary, ternary, and normal distribution, that have
been used to describe the fractions of the fragments of size

� Žm breaking from the larger aggregates of size m Coula-

loglou and Tavlarides, 1977; Chen et al., 1990; Spicer and
.Pratsinis, 1996; Flesch et al., 1999 . Binary breakage means

the breakup of an aggregate into two equal fragments, which
has a distribution form of

2 msm�r2Ž .�� m ,m s 8Ž . Ž .�½ 0 m� mr2Ž .

Ternary breakage describes the breakup of an aggregate into
two equal fragments, and one of the fragments breaking fur-
ther into two equal and smaller pieces. This distribution
function can be written as

2 msm�r4Ž .°
�� ~1 msmr2Ž .� m ,m s 9Ž . Ž .¢ � �0 m� mr4,mr4Ž .
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Normal breakage produces a normal-size distribution of the
fragments, which can be described as

2� mymm 1m Ž .k f�� m ,m s exp y dm 10Ž . Ž .H 2'm 2�� 2
m fky1 f

where m is the mean mass and � is the standard deviationf f
of the fragment-size distribution. Following previous studies
ŽCoulaloglou and Tavlarides, 1977; Spicer and Pratsinis,

. � �1996 , m smr2 and � smr10 are assumed in the presentf f
simulation, which give a relatively narrow fragment distribu-
tion around the half-size of the broken aggregates.

Coagulation kernels
Particles in water are brought into contact by three differ-

ent collision mechanisms: Brownian motion, fluid shear, and
differential sedimentation. Several models with different lev-
els of accuracy have been developed to describe the collision
frequency functions. The rectilinear model, which assumes
that particles move in straight lines until collisions occur, has
the following formulations:

For Brownian motion

2kT 1 1
� i , j s q l q l 11Ž . Ž .Ž .Br i jž /3	 l li j

where k is Boltzmann’s constant and T is the absolute tem-
perature.

For fluid shear

G 3
� i , j s l q l 12Ž . Ž .Ž .Sh i j6

For differential sedimentation


 2 � �� i , j s l q l U yU 13Ž . Ž .Ž .DS i j i j4

The three interparticle collision frequency functions are in-
dependent and additive, that is

� i , j s� i , j q� i , j q� i , j 14Ž . Ž . Ž . Ž . Ž .Br Sh DS

The curvilinear collision model takes into account hydrody-
namic interactions and short-range forces between approach-
ing particles, which results in reduced, but likely more realis-
tic, collision frequencies. Accurate analytical expression of the
curvilinear model, however, is not readily available. Han and

Ž .Lawler 1992 made a considerable effort to solve the curvi-
linear interactions between approaching particles and pro-
vided by far the most comprehensive set of numerical solu-
tions for the three collision mechanisms. They related the
curvilinear � to the well-defined rectilinear � by the re-cur
duction factors, that is

� i , j s e � i , j q e � i , j q e � i , j 15Ž . Ž . Ž . Ž . Ž .cur Br Br Sh Sh DS DS

where e , e , and e are the curvilinear reduction factorsBr Sh DS
for the collision mechanisms indicated. According to Han and

Ž .Lawler 1992 , these factors can be estimated by

e saqb�qc�2qd3 16Ž .Br

8 2 3Žaqb�qc� qd� .e s 10 17Ž .Sh 31q�Ž .

e s10Žaqb�qc�2qd �3. 18Ž .DS

Ž .where � is the size ratio 0� �F1 between the two ap-
proaching particles, and a, b, c, and d are the intermediate
coefficients. Although the same letters are used here, the co-
efficients of a, b, c, and d differ completely in the three
equations. In Han and Lawler’s results, these intermediate
coefficients are written as the functions of l , H , and N forl A g
e , e , and e , respectively, where l is the length of theBr Sh DS l

Ž 3 .larger one of the two particles, H s Ar 18
	 l G and N sA l g
Ž Ž . 4.48 Ar
 g � y � l , and A is the Hamaker constant. Thea l l

Ž .values of a, b, c, and d were given by Han and Lawler 1992
in three tables for the three collision mechanisms. To make
their results more available for use in mathematical simula-
tion, nonlinear regression was performed to transform the
discrete data into analytical formulations. The derivation and
results of the fitting equations for the coefficients of a, b, c,
and d used in computation of the curvilinear reduction fac-

Ž .tors in Eqs. 16�18 can be found in Li and Zhang 2003 .

Modeling and simulation conditions
Mathematical simulations of the particle coagu-

lation�breakage process were performed for a batch floccula-
tion system with a pulse input of monomers into water. The
primary particles were 1 	m in diameter with a density of 1.2
g �cmy3. The initial particle concentrations of Q s5.0�0
10y5, 1.0�10y4, 2.5�10y4, and 5.0�10y4 g �cmy3 were ex-
amined. The whole size range was from 1 	m to approxi-
mately 1 cm for nonfractal particles, which extended further
for fractal particle aggregates. There were 42 contiguous-size
sections with the setting of m s2m for the lower andk ky1
upper bounds of a section as defined earlier. The initial con-
dition of the simulation can be written as

Q ts0 sQŽ .1 0 19Ž .½ Q ts0 s0 ks2, 3, . . . , 42Ž . Ž .k

Continuous stirring was applied to the system to promote both
particle collisions and aggregate breakage. It was assumed
that no particle mass was lost from the solution to sedimenta-
tion. Three degrees of fluid shear, Gs15, 50, and 150 sy1,
were tested in the simulations.

In addition, the following assumptions were made for the
flocculation system: the particles and aggregates had a uni-
form collision efficiency, and all particle aggregates formed
by coagulation had the same fractal dimension throughout
the size distribution. Other coefficients and constants in-
cluded: the temperature Ts25
Cs298 K; liquid density � l
s1.0 g �cmy3; viscosity 	s8.9�10y3 g �cmy1� sy1, Boltz-
mann’s constant k s1.38�10y16 g � cm2 � sy2 � Ky1; the
Hamaker constant As4.0�10y13 g �cm2� sy2 ; and the grav-
itational constant gs981 cm � sy2.
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Experimental study
ŽBatch flocculation experiments using a jar-test device PB-

.700, Phipps & Bird were conducted with standard red-dyed
latex microspheres of 3.0 	m in diameter with a density of

y3 Ž .1.05 g � cm Polysciences . The standard particles were
placed in a 600-mL beaker filled with 500 mL 3.5% NaCl
solution. Two different initial concentrations of the primary
particles, Q s5.0�10y5 and 1.0�10y4 g �cmy3, were used.0

Ž 2.A flat mixing paddle 7.6�2.5 cm was rotated at either 25
or 60 rpm, which resulted in two different shear rates of Gs
15 and 50 sy1 according to the calibration of Li and Logan
Ž . Ž Ž . .1997 . Alum Al SO �18H O was added as the floccu-2 4 3 2
lent at a concentration of either 10 or 30 mgrL, while 0.1 M
NaHCO was used to adjust the solution pH.3

Ž .Following the techniques used by Li and Logan 1997
Ž .and Li and Zhang 2003 , three different cases of flocculation

�slow, normal, and fast� were obtained by adjusting the
operation and water chemistry conditions. For the normal
flocculation case, alum was dosed at 10 mgrL, and the solu-
tion pH was maintained at around 7.5. For the relatively slow
flocculation, the same amount of alum was dosed, and the
solution pH was around 6.0 without any adjustment. For the

Figure 1. Evolution of particle-size distributions in a co-
agulation breakage system as simulated by
( ) ( )a rectilinear model and b Han and Lawler’s
curvilinear model.
Ds 2.5, � s 0.1, Gs 50 sy1, and Q s 5�10y5 g � cmy3.0

fast flocculation case, a higher alum dosage of 30 mgrL was
applied, and the pH was adjusted to around 7.5. During the
fast flocculation, rapid aggregate formation was observed and
the system reached the stationary stage in terms of aggregate
formulation within 1 h at a shear rate of 50 sy1. For the
normal flocculation, the system became stationary within 2 h
or so. For the slow flocculation, aggregates formed at a much
slower rate and the system approached a stationary state af-
ter 8 h. According to previous studies under similar condi-

Žtions Jiang and Logan, 1996; Li and Logan, 1997; Li and
.Zhang, 2003 , the particles that underwent the fast floccula-

tion were likely to be fully destabilized, and the aggregates
formed were expected to be more fractal. Thus, �s1.0 and
Ds2.0 were assumed for this flocculation case. For the nor-
mal flocculation case, particles were partially destabilized and
the aggregates were less fractal. Thus, �s0.8 and Ds2.2
were assumed. Accordingly, �s0.4 and Ds2.5 were as-
sumed for the slow flocculation case. These values were used
in the mathematical simulation of the batch flocculation sys-
tems, and the simulation results were compared to the exper-
imental observations.

For each run of the coagulation�breakage experiments,
samples were gently withdrawn from the particle suspension

Ž .using microbiological counting cells Graticules, London at
various time intervals. Each counting cell has an effective vol-
ume of 1 mL with a dimension of 5�2�0.1 cm3. The sample

Ž .in a cell was placed under a microscope BX60, Olympus
Ž .that was equipped with a digital camera DP10, Olympus

Ž .and a computer-based image-analysis system Scion Image .
Projected images of the particles in the sample under a bright
light were analyzed by the image software for particle sizing
and counting following the procedures that have been de-

Ž .tailed elsewhere Li and Logan, 1995 . Forty fields were
scanned at 200� for each sample to obtain its particle-size
distribution.

Results and Discussion
Particle-size distribution at the dynamic steady state

The dynamics of simultaneous particle coagulation and ag-
gregate breakage were well simulated, as demonstrated by

Ž .the time evolution in particle-size distribution Figure 1 . For
a pulse input of particles in a solution, the batch flocculation
system could reach its dynamic steady state in terms of the
size distribution after a period of simulation. In the early
phase of the process, coagulation was predominant in rela-
tion to breakage, which moved the distribution toward larger
sizes. As coagulation proceeded, aggregates become larger
and more fragile, and breakage that decelerated the continu-
ous growth of particle sizes became increasingly important.
After a period of simulation�about 20,000 s for the rectilin-
ear model and 100,000 s for the curvilinear model�the par-
ticle-size distributions did not show any significant change.
Equilibrium between coagulation and breakage was eventu-
ally achieved in the flocculation system. Further examination
of the differences between the rectilinear and curvilinear col-
lision models is given in the section below. In the dynamic
steady state, the particle-mass-size distribution was unimodal
in shape with a peak concentration. This result is typical of
the simultaneous coagulation and breakage processes and has

Žbeen demonstrated by previous laboratory studies Oles, 1992;
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Figure 2. Comparisons of three fragment-distribution
functions, binary, ternary, and normal distri-
bution for the breakage process in terms of
the simulation result of the dynamic steady-
state size distributions in a flocculation sys-

( ) ( )tem using a rectilinear model and b Han
and Lawler’s curvilinear model.
Ds 2.5, � s 0.1, Gs 50 sy1, and Q s 5�10y5 g � cmy3.0

.Kusters et al., 1993; Chaignon et al., 2002 and the experi-
mental results below.

The steady-state particle-size distributions that were simu-
lated from the three distinct breakage distribution functions
�binary, ternary, and normal distribution�compared fairly

Ž .well with one another. For both the rectilinear Figure 2a
Ž .and curvilinear Figure 2b collision models, the size distribu-

tions predicted from the binary and normal breakage func-
tions nearly overlaid each other. The ternary breakage pro-
duced a distribution in smaller sizes within a slightly wider
size range when compared to the cases of the binary and nor-
mal breakages. Considering the physical process of the
breakage of an aggregate in section k, all of the fragments
fell into section k-1 based on the binary breakage function.
For the ternary breakage, however, only half of the fragment
mass moved into section k-1, and the other half moved fur-
ther down to section k-2. For the normal breakage function,
half of the section k aggregate, which was actually within sec-
tion k-1, was used as the mean size of the fragments. With
the narrow standard deviation used in the study, most of the

fragments would concentrate in section k-1, which is similar
to the situation of binary breakage. Therefore, the simula-
tion’s use of the binary and normal breakage functions pro-

Ž .duced rather similar steady-state size distributions Figure 2 .
Although the normal breakage function is considered to be a
more realistic description of the fragment size distribution
ŽCoulaloglou and Tavlarides, 1977; Spicer and Pratsinis, 1996;

.Flesch et al., 1999 , the binary breakage was used in the fol-
lowing simulation studies because of its simplicity.

Coagulation kernels and fractal dimension
The rectilinear and curvilinear models showed patterns that

were comparable with each other in the evolution of
particle-size distributions from the same initial condition.
However, the flocculation system arrived at the dynamic
steady state at a much faster rate when based on the rectilin-

Žear model than when based on the curvilinear model Figure
.1 . In addition, there were many more large particles in the

rectilinear model-based system than in the curvilinear
Ž .model-based system Figure 2 . While the curvilinear model

is more accurate for the collision kinetics, the rectilinear
Žmodel overpredicts the rate of particle coagulation Han and

Lawler, 1992; Veerapaneni and Wiesner, 1996; Li and Logan,
.1997; Thomas et al., 1999 . When the rectilinear model was

used, coagulation could be greatly accelerated, which led to a
shorter time before arrival at the steady state in comparison
to the simulation with the more realistic curvilinear model.
The collision models, on the other hand, did not affect the
description of the breakage kinetics. Thus, as coagulation
proceeded at an unrealistically faster rate with the rectilinear
model, the balance between coagulation and breakage shifted
the steady-state size distribution toward larger sizes. Consid-
ering the remarkable difference between the two collision
models in the simulation results, the curvilinear model, in-
stead of the conventional rectilinear model, should be used
to model the coagulation process in particle flocculation.

Fractal scaling also needs to be incorporated into the mod-
eling procedure for the flocculation simulation. As the fractal
dimension decreased from 3 to 2.2 for the curvilinear model,
the size of peak concentration increased from 3 	m to 10
	m, and the peak concentration decreased from 1.0�10y5

y3 y6 y3 Ž .g �cm to 7.5�10 g �cm Figure 3a . The same ten-
dency occurred in the simulation that used the rectilinear
model. The size of the peak concentration increased from 20
	m to nearly 20 cm as the fractal dimension decreased from
3 to 2.2. The rectilinear model is certainly more sensitive than
the curvilinear model to the magnitude of fractal dimension.
For the same change in the fractal dimension, the peak size
increased four orders of magnitude according to the rectilin-
ear model, in comparison to an increase of about three times
based on the curvilinear model.

The fractal dimension is an essential parameter in the
characterization of the scaling relationship of particle aggre-

Žgates O’Melia and Tiller, 1993; Li and Logan, 1995; Jiang
.and Logan, 1996; Jackson, 1998 . When the fractal nature of

particles is considered, aggregates become more porous and
much larger than the otherwise coalesced particles of the
same mass. Both the coagulation and breakage rates increase
with the size of the particles. However, the coagulation rate
increased exponentially with the particle size, for example, to
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( )Figure 3. a Steady-state size distributions of particles
in a flocculation system simulated by rectilin-
ear and curvilinear models with different frac-

( )tal dimensions; b change of the size of the
peak mass concentration as a function of the
fractal dimension simulated using Han and
Lawler’s curvilinear model.
�s 0.1, Gs 50 sy1, and Q s 5�10y5 g � cmy3.0

a power of 3 for shear coagulation, while the breakup rate
increases only linearly with the particle size. Thus, as the
fractal dimension decreases, with the ever-increasing particle
size, the coagulation rate increases more rapidly than does
the breakage rate. This forced the particle population toward
larger sizes in the size distribution. As the fractal dimension
decreased from 3.0 to 2.5, 2.0, and 1.8, according to the simu-
lation with the curvilinear model, the peak size increased from

Ž .4 to 7, 23, and 50 	m Figure 3b . Therefore, consistent with
Žmany previous studies Kuster et al., 1993; Jackson, 1998;

.Adachi et al., 1998 , the present simulations further exhibited
the important role of the fractal dimension in regulating the
flocculation dynamics and steady-state particle-size distribu-

Ž .tion. A recent laboratory study by Flesch et al. 1999 found
that a fractal dimension of Ds2.05 must be incorporated
into the coagulation and breakage model to reconcile the ex-
perimental results of batch flocculation using polystyrene
particles.

Effects of the shear rate, collision efficiency, and initial
concentration

A lower shear rate, higher collision efficiency, and higher
initial particle concentration resulted in a steady-state size

Ž .distribution with more large-particle aggregates Figure 4 . An
increase in the shear rate will increase the rate of particle
coagulation, but it will also increase the rate of aggregate
breakage. When the shear rate increased from 15 to 50 and
150 sy1, the peak size decreased from 200 to 70 and 30 	m
Ž .Figure 4a . Within the range of shear rate examined here,
the fluid shear appeared to play a negative role in the forma-
tion of large aggregates. As anticipated, a higher collision ef-
ficiency between particles increased the coagulation rate, re-
sulting in a distribution with more aggregates of larger sizes.
As the � increased from 0.1 to 0.3 and 1.0, the size of the
peak concentration increased from 60 to 200 and 600 	m
Ž .Figure 4b . An increase in the initial particle input also made
the condition more favorable to aggregate formation. When

Figure 4. Effects of the process variables on the popu-
lation dynamics in a flocculation system.
Ž . y4 y3 Ž .a The shear rate: � s 0.1, Q s 5�10 g � cm ; b the0
collision efficiency between particles: Gs 50 sy1, Q s 5�0y4 y3 Ž .10 g � cm , and c the initial particle concentration: � s
0.1, Gs 50 sy1. The curvilinear model was used in the simu-
lation and Ds 2.5.
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the particle concentration increased from 1.0�10y4 to 2.5�
10y4 and 5.0�10y4�g cmy3, the peak size increased almost

Ž .linearly from 15 to 32 and 60 	m Figure 4c . A higher initial
concentration produced more large aggregates with a higher
peak concentration when the dynamic steady state was
achieved.

For a particle population with a predominant size in a floc-
culation system, the particle mass is driven in opposite direc-
tions by the two processes. Coagulation grows particles into
larger sizes, and breakage divides the particles into small

Ž .fragments. Chung et al. 1998 introduced two dimensionless
groups in shear flocculation to characterize the two tenden-
cies of the mass transfer along the size distribution: � sc
�� Gt for the size growth by coagulation and � s0 b
EG1.6V 1r3 t for the size decrease by breakage, where � is the0
particle concentration in volume fraction and t is the char-0
acteristic time for the flocculation system to reach its steady
state. It can be further predicted that coagulation and break-
age will counterbalance each other when � s� , which willc b
result in a steady-state system with a predominant size class
that no longer changes with time. If the fractal structure of
particle aggregates is not considered, then it can be written
that �s p Q and V 1r3s p d , where Q is the particle mass1 0 2 s 0
concentration, d is the solid equivalent diameter of the par-s
ticle aggregates, and p and p are constants. For a floc-1 2
culation system that is arriving at its steady state, it can
be derived from p � Q Gt s p EG1.6d t that d s1 0 0 2 s 0 s
p � Q rp EG0.6. When the fractal property of the particle1 0 2
aggregates is incorporated, the fractal scaling relationship of
Eq. 4 gives l� d3rD. Thus, we haves

3rD� Q0
ls p 20Ž .0.6ž /EG

where p is an overall constant.
Equation 20 suggests that the operational variables, includ-

ing the collision efficiency, initial concentration, shear rate,
and breakage constant, can be grouped into a single universal
parameter, � Q rEG0.6, which eventually regulates the pre-0
dominant size of the particles in a flocculation system. The
effect of the fractal dimension on the peak size of a distribu-
tion is also included in Eq. 20. By varying the variables of � ,
G, Q , and E, additional numerical simulations were carried0
out and various peak sizes in the particle systems resulted.
Plotting the peak size as a function of � Q rEG0.6 after log-0
log transformation, it can be seen that the peak size increases
linearly with the group parameter to a power of approxi-

Ž .mately 3rD Figure 5 . This correlation obtained from the
simulations is in excellent agreement with the theoretical
prediction of Eq. 20. Therefore, this group parameter pro-
vides a general guideline for the operation and improvement
of particle flocculation systems. When the value of
� Q rEG0.6 increases, which means that the collision effi-0
ciency and initial concentration increase and the shear rate
decreases, the steady-state size distribution will move toward
larger sizes with more large aggregates.

Ž .Chaignon et al. 2002 recently examined the coagulation
and breakage behavior of activated sludge flocs by monitor-
ing the changes of the floc size distribution under various
conditions of fluid agitation and sludge concentration. They
observed that the mean floc size changed from 125 to 75 and

Figure 5. Size of the peak mass concentration in a
steady-state size distribution of particles as a
function of the group parameter of � Q /////EG0.6

0
and the fractal dimension.
The group parameter indicates the roles in particle floccula-
tion of the process variables, including the collision effi-
ciency, initial concentration, fluid shear rate, and breakage
rate constant.

back to 125 	m as the stirring rate changed from 100 to 200
and then to 100 rpm at a sludge concentration of 3.5�10y5 g
cmy3. At a constant shear rate of Gs135 sy1, the mean floc
size increased almost linearly with the activated sludge con-
centration. As the sludge concentration increased from 3.5�
10y5 to 7.0�10y5 and 1.4�10y4 g �cmy3, the mean floc size
grew from 95 to 115 and 135 	m. These experimental obser-
vations are consistent with the theoretical relationship sug-
gested by Eq. 20 and Figure 5. In more general terms, the
simulation results for the effect of operational conditions on
particle flocculation are well in line with common experi-
ences in water supply and treatment processes. For example,
in drinking water treatment, the flocculation of a turbid raw
water influent is usually less difficult than that of a clean rate

Žwater influent with a low turbidity Packham, 1965;
.Amirtharajah and O’Melia, 1990 . For the water of a low tur-

bidity, flocculants often have to be overdosed to form chemi-
cal precipitates that remove particulate impurities from water
by enmeshment. In this practice, flocculants increase the col-
lision efficiency between particles, and the precipitates of
flocculants increase the solid content in water. Both are fa-
vorable factors for particle flocculation according to the pre-
ceding simulation. As another major control variable in water
treatment, the shear rate is usually so designed that it gradu-
ally decreases throughout the flocculation process
ŽAmirtharajah and O’Melia, 1990; American Water Works

.Association, 1998 , for example, from Gs1,000 to 100 and
20 sy1, in consecutive stages. In the early stage, a greater G
will enhance collisions and coagulation between small parti-
cles in water. In the later stage, a lower G will minimize the
breakage of the aggregates formed. All of these operational
measures are utilized to generate larger flocs that can be
readily removed from the water column by the subsequent
sedimentation.
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Figure 6. Steady-state particle-size distributions that
were observed during the normal flocculation

( )experiments: a shear rate changed from G=
-1 -5 -3 ( )50 to 15 s , Q =5�10 g �cm and b ini-0

tial concentration changed from Q =5�10-5
0

to 1�10-4 g �cm-3, G=50 s-1, compared to
numerical simulations using the curvilinear
model with � =0.8 and D=2.2 assumed.
The simulation results from the rectilinear-based models
with and without the fractal scaling relationship are also in-
cluded for additional comparisons.

Comparison between the numerical simulation and the
experimental study

A series of particle flocculation experiments were carried
out to evaluate the predictions of the modeling simulations
concerning the effects of various operation variables on the
steady-state size distribution. In general, the simulations

Žcompared fairly well with the experimental results Figures 6
.and 7 . The effects of the shear rate and initial concentration

on flocculation were examined for the normal flocculation
case with �s0.8 and Ds2.2 assumed for the system. When
the shear rate decreased from 50 to 15 sy1 at an initial con-
centration of 5.0�10y5 g �cmy3, the position of the peak
concentration changed from 70 to 300 	m based on the ex-
perimental observation, in comparison to the change from 80
to 260 	m based on the numerical simulation. The steady-
state size distributions from both the experiment and the

Figure 7. Steady-state particle-size distributions that
were observed during the flocculation experi-
ments at G=50 s�1 with the initial concentra-

( ) �5 � 3 ( )tions of a Q =5�10 g �cm , b Q =10 0
�4 � 3 ( )�10 g �cm , and c during the experi-

ments with Q =5�10�5 g �cm�3 at G=150
s�1, compared to numerical simulations us-
ing the curvilinear model.
�s 0.4 and Ds 2.5 assumed for the slow flocculation case,
�s 0.8 and Ds 2.2 assumed for the normal flocculation
case, and � s1.0 and Ds 2.0 assumed for the fast floccula-
tion case.

Ž .simulation were quite close Figure 6a . As the initial concen-
tration increased from 5.0�10y5 g �cmy3 to 1.0�10y4 g �
cmy3, the size of the peak concentration increased from 50
	m to 200 	m during the experiment, while it changed from
70 	m to 160 	m according to the simulation. The peak con-
centration increased from 7.2�10y6 g �cmy3 to 1.5�10y5

g �cmy3 in the experiment, compared to the change from 7.0
y6 y3 y5 y3 Ž�10 g �cm to 1.4�10 g �cm in the simulation Fig-
.ure 6b . The size of the steady-state peak concentration in-

creased with the initial concentration in a manner that was
consistent with those reported by others for activated sludge
Ž . Ž .Chaignon et al., 2002 and clay particles Ducoste, 2002 . The
results of the numerical simulation and the experimental
study are in good agreement for the effects of shear rate and

July 2003 Vol. 49, No. 7AIChE Journal 1879



initial concentration on the coagulation�breakage dynamics,
which suggests the applicability of the mathematical model-
ing system that is established in this study. The breakage rate
constant of Es7.0�10y4 is also proved to be appropriate
for use in modeling the breakage kinetics.

In relation to the experimental results, additional compar-
isons were made between the simulations based on the pre-
sent curvilinear-based model and previous rectilinear-based
models, including the rectilinear�fractal�breakage model
Ž .Serra and Casamitjana, 1998a and the rectilinear�non-

Ž .fractal�breakage model Spicer and Pratsinis, 1996 . As indi-
cated earlier, the rectilinear model neglects hydrodynamic in-
teractions and short-range forces between approaching parti-
cles. The rectilinear-based kinetic models overpredict parti-
cle coagulation rates, resulting in a significant shift of the size
distributions to larger particles compared to the experimental

Ž .observations and the curvilinear-based simulations Figure 6 .
In relative terms, the rectilinear�nonfractal�breakage model
appeared to describe the flocculation system better than does
the rectilinear�fractal�breakage model. The nonfractal as-
sumption ignores the growing pores formed within particle
aggregates, giving smaller areas for particle collisions. While
the rectilinear assumption overestimates the rates of particle
coagulation, the nonfractal assumption underpredicts them.
The opposite effects of these two assumptions, however, may
offset each other to a certain extent for the prediction of
overall coagulation rates. As a result, the flocculation simula-
tion using the rectilinear�nonfractal model could be close to
that using the improved curvilinear�fractal approach. It is
generally accepted that the curvilinear model is more accu-
rate than the rectilinear model, and that fractal mathematics
is better than the Euclidean geometry for the aggregate
structure. However, in modeling the flocculation dynamics,
both modifications should be applied together. If only fractal
scaling is adopted, then the errors in the simulation would be
increased rather than reduced when compared with those us-
ing the conventional rectilinear and nonfractal model.

Changes in the experimental conditions resulted in differ-
ent flocculation rates. Based on the experimental measure-
ment at Gs50 sy1, for the slow flocculation case with �s
0.4 and Ds2.5 assumed, the peak size and concentration
were 25 	m and 8.0�10y6 g �cmy3 at an initial concentra-
tion of 5.0�10y5 g �cmy3, while they changed to 30 	m and
1.6�10y5 g �cmy3 at a higher concentration of 1.0�10y4 g �
cmy3. Based on the numerical simulation, the peak size and
concentration were 20 	m and 8.3�10y6 g �cmy3 for an ini-
tial concentration of 5.0�10y5 g �cmy3, which changed to 30
	m and 1.6�10y5 g �cmy3 for a higher concentration of 1�

y4 y3 Ž .10 g �cm Figure 7 . For the slow flocculation case at
Gs50 sy1, the simulation and experiment agreed well with
each other in terms of the steady-state size distribution. For
the fast flocculation case with �s1.0 and Ds2.0 assumed,
the peak size and concentration were 200 	m and 7.0�10y6

g �cmy3 at an initial concentration of 5.0�10y5 g �cmy3,
while they were 400 	m and 1.6�10y5 g �cmy3 at a concen-
tration of 1.0�10y4 g �cmy3 during the experiment. In com-
parison, based on the simulation, the peak size and concen-
tration were 250 	m and 6.8�10y6 g �cmy3 for the initial
concentration of 5.0�10y5 g �cmy3 and 500 	m and 1.4�
10y5 g �cmy3 for a higher concentration of 1.0�10y4 g �cmy3

Ž .Figure 7 . An increase in the initial concentration based on

either the numerical simulation or the experimental observa-
tion generated more large-particle aggregates. For a low shear
intensity of Gs15 sy1, the simulation results also agreed
reasonably well with the experimental measurements in terms

Ž .of the steady-state particle-size distribution Figure 7c .
In natural waters and engineered treatment processes, the

characteristic time for the flocculation system to reach the
steady state is as important as the final steady-state size dis-
tribution. The sooner the flocculation is completed, the more
efficient is the unit operation. The characteristic times deter-
mined from the simulations of the curvilinear�fractal�break-
age model compared well with the experimental observa-
tions. For the tests at Gs50 sy1 and initial Q s5.0�10y5

0
y3 Ž .g �cm Figure 7a , the fast flocculation reached its steady

state after about 1 h and the slow flocculation reached the
steady state after 8 h, in comparison to 1.7 and 8.9 h, respec-
tively, predicted by the new curvilinear-based model. Much
shorter times were given by the rectilinear-based models, with
0.1 and 0.7 h using the rectilinear�fractal�breakage model
and 1.5 and 4.4 h using the rectilinear�nonfractal�breakage
model for the respective fast and slow flocculation cases. For

y4 y3 Žthe tests with a higher initial Q s1.0�10 g �cm Figure0
.7b , the fast and slow flocculation experiments reached the

steady state after about 1 h and 7 h, respectively, while the
related simulations produced stable size distributions after 1.3
and 6.9 h. Using the rectilinear�fractal�breakage model, the
characteristic times were shortened to 0.2 and 0.5 h for the
fast and slow flocculation, respectively, while with the recti-
linear�nonfractal�breakage model the times were 1.4 and 3.3
h. Similar to the preceding discussion on the position of the
steady-state size distribution, the rectilinear model with only
the fractal adjustment actually worsens the prediction of the
characteristic time when compared with the conventional rec-
tilinear�nonfractal model. For the experiments at Gs15 sy1

Ž .Figure 7c , the characteristic times were around 2 and 13 h
for the normal and slow flocculation cases, respectively, which
were somewhat shorter than the values of 6.9 and 19.4 h de-
termined from the curvilinear�fractal model.

In general, the best agreement between the simulation and
the experiment of the particle-size distribution dynamics was
obtained for the slow and normal flocculation cases, followed
by the fast flocculation case. The simulation of particle coag-
ulation was based on the assumption that particle attachment

Žonly resulted from particle�particle collisions O’Melia and
.Tiller, 1993 . This, however, may not be true for the fast floc-

culation process. With the precipitates of overdosed floccu-
Ž .lants 30 mgrL during fast flocculation, other coagulation

mechanisms may play a more important role in aggregate for-
mation. A large number of chemical precipitates would en-
hance coagulation by particle enmeshment or sweep coagula-

Žtion Amirtharajah and O’Melia, 1990; American Water
.Works Association, 1998 rather than by collisions between

particles. Large aggregates formed in flocculation systems are
found to be highly fractal and porous, which may allow fluid

Ž .to flow through the aggregate interior Li and Logan, 1997 .
The interaggregate flow would increase collision frequencies
between the aggregates and suspended small particles, result-
ing in an overall coagulation rate faster than that predicted
by the curvilinear kinetics. In the present study, to reconcile
the simulation of particle-size distribution dynamics with the
fast flocculation experiment, a collision frequency of �s1.0
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had to be employed. Such a high � might not be realistic for
an actual particle system, suggesting the possible mechanism
of particle collisions brought about by the internal flow
through permeable aggregates. This mechanism, however, is
not readily available mathematically for inclusion in the coag-
ulation models for process simulations.

Moreover, the highly porous alum precipitates could be
weaker than the particle aggregates formed by slow and nor-
mal coagulation, and, thus, more vulnerable to breakage
Ž .Spicer and Pratsinis, 1996; Serra and Casamitjana, 1998b . A
higher breakup rate constant would be better applied to the
system of fast flocculation than of normal or slow floccula-
tion. Information on the breakage rate constants for different
types of particle aggregates, however, is largely limited.
Hence, more experimental studies need to be conducted into
the kinetic description of sweep coagulation and the break-
age characteristics of flocculate precipitate-based aggregates.

Conclusions
The sectional modeling approach has been advanced to

simulate a particle flocculation system that accounts for both
the coagulation and breakage processes. The major improve-
ment includes the use of a continuous-size density function
instead of a characteristic size for each size section, the ap-
plications of a comprehensive curvilinear model developed by

Ž .Han and Lawler 1992 for the coagulation kinetics, and the
fractal scaling relationship for particle aggregates. With the
modified modeling methodology, the time evolution in parti-
cle-size distribution was well simulated for a pulsed input into
a batch flocculator. As indicated by a stationary particle-size
distribution with a unique peak mass concentration, the floc-
culation system could arrive at a dynamic steady state after a
period of simulation when coagulation and breakage achieved
equilibrium. The simulation results demonstrate that the
curvilinear�fractal�breakage approach overcomes the defi-
ciencies of the conventional rectilinear�nonfractal approach.
Three distinct breakage distribution functions�binary,
ternary, and normal distribution�differ only slightly in the
simulation results of the steady-state size distributions. A
higher collision efficiency and initial particle concentration
and a lower shear rate and breakage rate constant produce a
larger population of large-particle aggregates in a floccula-
tion system. A universal parameter for these process vari-
ables, � Q rEG0.6, which regulates the performance of the0
flocculation process, has been defined. The simulation results
indicate that the peak size of the particle-size distribution
after flocculation varies with this group parameter to a power
of approximately 3rD. The numerical simulations in terms of
the steady-state particle-size distribution and the characteris-
tic time for the system to reach its steady state compared
fairly well with the observations of the jar-test flocculation
experiments using latex particles. The agreement between the
simulation and experimental results suggests that the model-
ing system can be readily applied in the process simulation of
the flocculation units used in water and wastewater treat-
ment.
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Notation
Ž y1 3 2 y2 .AsHamaker’s constant 4.0�10 g �cm � s

a, b, c, dsintermediate coefficients used for the calculation of
curvilinear reduction factors in Eqs. 16�18

Bssectional coagulation coefficient as defined in Table 1
Ž .bsbreakage rate constant used in Eq. 6 bs1.6

csconstant used in Eq. 4
Dsfractal dimension

Ž .d ssolid equivalent diameter of a particle cms
E, E�sbreakage constants used in Eqs. 6 and 7, respectively

e , e , e scurvilinear reduction factors related to the rectilinearB r Sh D S
collision kernels of Brownian motion, fluid shear, and
differential sedimentation, respectively

Gsshear rate, sy1

Ž y2 .gsgravitational constant 981 cm � s
H , N sdimensionless numbers used for the calculation of eA g sh

and e , respectivelyD S
i, j, k, ssparticle-size sections

Ž y1 6 2 y2 y1.ksBoltzmann’s constant 1.38�10 g �cm � s �K
lslength of a particle, cm

l slength of the larger particle, cml
Mscumulative particle mass distribution, g �cmy3

m, m�, m�smass of a particle, g
m smean mass of the normal size distribution of frag-f

ments
m , m slower and upper bound mass values of section k, gky1 k

m , m smasses of a pair of particles forming a doublet asx y
shown in Table 1

m smass of a broken particle that is larger than the parti-z
cles in section k, g

Ž . Ž . Ž y3 y1.n m sparticle size mass density function � �cm �g
p , p , psintermediate constants related to Eq. 201 2

Q smass concentration in section k, g �cmy3
k

Q sinitial particle-mass concentration in a flocculation0
system, g �cmy3

ssbreakage rate coefficient
Sssectional breakage coefficient as defined in Table 1
Tsabsolute temperature, K
tstime, s

Ussettling velocity as predicted by Stokes’ law, cm � sy1

Vsvolume of an aggregate, cm3

Greek letters
�scollision efficiency between colliding particles
�scollision frequency function as predicted by a rectilin-

ear model, cm3� sy1

� , � , � scollision frequency functions induced by BrownianB r Sh D S
motion, fluid shear, and differential sedimentation,
respectively, cm3� sy1

� scollision frequency function as predicted by a curvi-cu r
linear model, cm3� sy1

� sfragment-size distribution function
Ž .�ssize ratio of two approaching particles �F1

� , � , � sdensities of a primary particle, aggregate, and liquid,p a l
respectively, g �cmy3

	sdynamic fluid viscosity of water, g �cmy1 � sy1

� sstandard deviation of the fragment size distributionf
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