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Effect of preferential concentration on turbulent collision rates
Walter C. Readea) and Lance R. Collinsb)
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~Received 31 August 1998; accepted 16 June 2000!

The effect of particle inertia on the interparticle collision rates of a turbulent aerosol was
investigated recently by Sundaram and Collins~1997! using direct numerical simulation~DNS!.
They observed that for values of the particle Stokes number~here defined as the ratio of the particle
response time to Kolmogorov time scale! near unity, the collision frequency was enhanced by
between one and two orders of magnitude. This enhancement was attributed in part to the local
enrichment of the particle concentration in low-vorticity regions of the flow due to the centrifuge
effect commonly referred to as preferential concentration~Eaton and Fessler 1994!. Sundaram and
Collins ~1997! showed that the correction factor for the collision kernel in a preferentially
concentrated system isg(s), whereg(r ) is the particle radial distribution function ands is the
collision diameter. This paper uses DNS, in combination with statistical analysis, to study the
dependence of the radial distribution function on the turbulence and particle parameters. A curve fit
of the results over a broad range of the relevant dimensionless parameters enables easy estimation
of g(s). The effect of system Reynolds number over the limited range accessible by DNS is also
presented. In general, the degree of preferential concentration increases with increasing Reynolds
number. © 2000 American Institute of Physics.@S1070-6631~00!51010-1#

I. INTRODUCTION

The dynamical evolution of small particles or droplets
embedded in a turbulent flow field continues to receive at-
tention because of its relevance to a broad range of techno-
logical and naturally occurring flows. Here we restrict our
attention to particle sizes that are small as compared to all of
the scales of motion of the fluid and particle volume frac-
tions that are sufficiently small that ‘‘dilute’’ conditions pre-
vail, and turbulence modulation1–3 may be neglected. An im-
portant fundamental question that has yet to be satisfactorily
addressed is how turbulence affects the interparticle collision
rate and ultimately the particle size distribution under condi-
tions that favor coagulation or agglomeration.

An example of a process that is strongly influenced by
turbulence-driven coagulation is aerosol production of fine
powders.4–6 The flow in these systems is usually turbulent to
enhance the mixing of the reactant species. It is generally
accepted that turbulence affects the collision rate between
particles and thereby modifies the resulting particle size dis-
tribution. Understanding the mechanism by which turbulence
enhances the collision rate and its dependence on the system
parameters is essential for developing the means to predict
and control these aerosol reactors. Similar questions arise in
other engineering applications such as sprays, emulsifiers,
crystallization reactors, and pneumatic devices. Examples of
naturally occurring aerosol systems with similar issues in-
clude cloud droplets,7,8 aerosol transport in the upper atmo-

sphere, and even planet formation from protoplanetary
nebula.9,10 The important features of all of these systems
resemble the powder process; however, the enormous range
of the Reynolds number in these applications underscores the
need for reliable scaling relationships for this parameter.

One of the earliest studies of collision in a turbulent
aerosol was by Saffman and Turner11 who considered the
collision rate of inertialess drops that precisely follow fluid
streamlines. The collision mechanism they proposed is es-
sentially the same as the one described by von
Smoluchowski12 in laminar shear flows. The collision rate is
proportional to a nominal turbulent shear rate, which Saff-
man and Turner took to be (e/v)1/2, where v is the fluid
kinematic viscosity ande is the turbulent energy dissipation
rate per unit mass of fluid. The functional form of the
Saffman–Turner formula is generally accepted, although the
assumptions that went into determining the prefactor have
been questioned.13–16

Abrahamson17 considered the other limit, namely the
collision of particles that have infinite inertia and are com-
pletely uncorrelated with the fluid. The collision kernel, de-
rived from kinetic theory arguments, is valid for particles
with response times that are long as compared to the fluid
time scales. This analysis was extended by Reade and
Collins18 to obtain particle energies and collision rates for
the case of a coagulating aerosol.

The collision rate of particles in the intermediate
region—where particle response times and fluid time scales
are comparable—was originally investigated in the thesis of
Balachandar19 using direct numerical simulation. Balachan-
dar computed the collision rate of finite-size, noninteracting
particles in isotropic turbulence and demonstrated the signifi-
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cance of particle inertia. Although the resolution of the simu-
lations was limited, he correctly surmised that the enhance-
ment in the collision rate is due in part to the large
fluctuations in the particle concentration fields that occur
with finite-inertia particles. This phenomenon, referred to as
‘‘preferential concentration’’ in the literature, results from
local vorticity centrifuging particles out of regions of high
vorticity into regions of high strain.20–23 As collision is in-
herently a nonlinear function of particle concentration, these
fluctuations cause a net increase in the overall collision rate.
Similar effects have been observed in channel flows,24,25 es-
pecially near the center of the channel, where turbulence is
nearly homogeneous and isotropic.

The key parameter identified in all of the previous inves-
tigations is the particle Stokes number

St[
tp

th
5

1

18S rp

r D s2

v
~v/e!1/2 5

1

18S rp

r D S s

h D 2

, ~1!

wheretp is the response time of a particle with diameters
and densityrp in a fluid of densityr, th[(v/e)1/2 is the
Kolmogorov time scale, andh[(v3/e)1/4 is the Kolmogorov
length scale. Preferential concentration is usually observed
for particles with St'1. For larger values of the Stokes num-
ber @i.e., St'ARel, where Rel is the turbulent Reynolds
number based on the Taylor microscale—see Eq.~14! for the
definition#, particles become less correlated with the fluid
causing the relative velocity between neighboring particles to
increase, which results in a higher collision frequency. Both
effects are captured by the generalized collision relationship
developed by Sundaram and Collins26

Nc5
1

2
n24ps2g~s!E

2`

0

2wr P~wr us!dwr , ~2!

where Nc is the number of collisions per unit volume per
time, n is the number density of particles,wr is the radial
component of the relative velocity of two particles,g(r ) is
the radial distribution function~hereafter rdf!, andP(wr ur ) is
the conditional pdf~probability density function! of the rela-
tive velocity of particle pairs along the line of centers con-
ditioned on the separation distancer. @Note, Eq.~2! has been
modified to relax the assumption of isotropy of the relative
velocity vector in accordance with the subsequent study of
Wang et al.27 who showed the assumption to be poor for
small-Stokes-number particles.# Sundaram and Collins
showed that the preferential concentration mechanism influ-
ences the collision frequency through the rdfg(r ), whereas
the decorrelation of particle motions manifests in the relative
velocity pdf P(wr ur ).

The focus of this paper will be on the rdfg(r ). As will
be shown, collision enhancement due to preferential concen-
tration can be as large as 10–100 fold; thus, accurately esti-
matingg(s) in Eq. ~2! is essential to accurately predictNc .
In this study, we consider the behavior of the rdf and its
dependence on the system parameters using a large number
of direct numerical simulations~DNS!. We attempt~wher-
ever possible! to isolate the effect of each parameter. More-
over, we develop a systematic approach to correlate the re-

sults from the simulations into a form that allows for easy
estimation. The result is suggestive of a possible theoretical
framework that one might use to obtain a more rigorous
description of the rdf.

We begin by presenting an overview of the DNS algo-
rithm and the parameter values that were explored in Sec. II.
Section III then presents simplifications and assumptions
used in modeling the rdf. Results for the simpler case of
noncolliding ~interpenetrating! ‘‘ghost’’ particles are then
presented in Sec. IV followed by an analysis of elastically
rebounding finite-size particles in Sec. V. Section VI shows
several sample calculations ofg(r ) and g(s) for different
particle systems. Concluding remarks are given in Sec. VII.

II. DIRECT NUMERICAL SIMULATION

DNS solves the full time-dependent, three-dimensional
equations of motion for the fluid and each of the particles.
The simulations performed in this study have three facets:
~1! simulation of the fluid phase;~2! simulation of particle
motion; and,~3! simulation of particle collision. Each will be
discussed briefly in the following sections, followed by a
short qualitative discussion of preferential concentration.

A. Fluid phase

The fluid phase is governed by the incompressible
Navier–Stokes equations. Under the assumption of dilute
particle loading, the influence of the particle phase on the
turbulence can be neglected~cf. Ref. 1 for a more compre-
hensive discussion of this point! and the equations of motion
reduce to

¹•u50, ~3!

]u

]t
1u•¹u52

1

r
¹p1v¹2u1F, ~4!

whereu(x,t) is the three-dimensional time and space vary-
ing velocity field,p(x,t) is the pressure field,r andv are the
fluid density and kinematic viscosity respectively, andF is a
forcing function that continuously adds energy to the largest
scales of motion.28 A pseudospectral algorithm29 was used to
update the fluid velocity. Details of the numerical algorithm
can be found in Ref. 26.

B. Particle motion

The full equation of motion for particles that are small as
compared to the Kolmogorov scale was derived by Maxey
and Riley.30 For dense particles~i.e., rp /r@1!, linear
~Stokes! drag is the dominant term, and the equations of
motion for theith particle become

dxp
~ i !

dt
5vp

~ i ! , ~5!

dvp
~ i !

dt
5

~u~xp
~ i !!2vp

~ i !!

tp
1

1

mp
(
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F~ i j !, ~6!

wherexp
( i ) andvp

( i ) are the position and velocity of the cen-
troid of the ith particle,u(xp

( i )) is the undisturbed fluid ve-
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locity at the centroid of theith particle,tp[(rp /r)s2/18v is
the particle response time,mp is the mass of the particle, and
F( i j ) is the impulse due to an elastic~i.e., momentum and
energy conserving! collision between theith and jth par-
ticles. Since particles are not constrained to lie on fluid grid
points, it is necessary to interpolateu(xp

( i )). Details of the
third-order Hermitian interpolation scheme used in this study
can be found in Ref. 31. Note that zero-St particles are simu-
lated by assigning the instantaneous~interpolated! fluid ve-
locity at the particle center to the particle velocity. Particles
obey periodic boundary conditions.

C. Particle collision

When particles of finite size approach to within their
collision diameter, a hard-sphere collision is enacted. The
detailed algorithm for particle collisions is described in Ref.
31. Note that some of the simulations were performed with-
out checking for collisions. The so-called ghost particles are
free to occupy any space in the system without being ex-
cluded by other particles.

D. Organization of simulations

The bulk of the simulations for this study were per-
formed on a 643 fluid grid. Other simulations were per-
formed on 323, 963, and 1283 grids for a total of 32 simula-
tions. Table I details the simulations performed. The various
parameters and fluid characteristics of the simulations can be
found in Table II. It should be noted that since the simulation
is stochastically forced, the instantaneous fluid statistics vary
with time; hence, although the particle response time (tp) is
fixed in a given simulation, the instantaneous particle Stokes
number varies slightly throughout the duration of a run, ac-
cording to Eq.~1!.

Each DNS is initialized with a fluid velocity that had
previously reached a statistically stationary state. Particles

are then randomly placed within the fluid domain and their
velocities are initialized with the local fluid velocity. For this
reason, it is necessary to let the fluid–particle system run
until statistical equilibrium is reached. For all cases, the sys-
tem is allowed to equilibrate for at least six eddy turnover
times, after which the particle positions are recorded at ap-
proximately one eddy-turnover-time intervals for a total of
eight ‘‘measurements’’ during each simulation. Given that
there areN(N21)/2 particle pairs in the DNS~more than
331010 in this case! it is impossible to consider all pairs in
each calculation of the rdf. In order to reduce the calculation
time, all particle pairs are used to determine the rdf forr /h
<2.0 only. For values ofr /h larger than 2.0, 25 million
particle pairs are selected at random to compute the rdf.

E. Illustration of preferential concentration

Figure 1 shows the dramatic effect that turbulence has
on the particle concentration field. The figure shows six 2d
‘‘slices’’ of the DNS domain~with a thickness of 1/64 the
box length! for runs of various St. These slices are taken at
the same instant of the DNS, so the underlying flow field is
the same for each slice. Figure 1~a! shows a completely ho-
mogeneous particle concentration field corresponding to
St50. Figures 1~b!–1~f! show the particle concentration
fields at finite St. Notice that as St increases@from approxi-
mately 0.2–0.7, corresponding to Figs. 1~b! and 1~c!#, the
particles increasingly concentrate into low-vorticity regions
of the flow. Beyond St50.7, the particle concentration fields
become defocused, as the effect fades away@Figs. 1~d!–
1~f!—corresponding to St of 1.0, 2.0, and 4.0, respectively#.
The defocusing occurs because particles with too much iner-
tia have difficulty responding to the fluid vorticity fast
enough to preferentially concentrate appreciably.

For the 643 simulations, there are approximately 112
Kolmogorov lengths~h! to the DNS box. A visual inspection
of the concentrated particle fields@Fig. 1, especially Fig.

TABLE I. Summary of runs. ‘‘X’’ identifies conditions that runs were per-
formed. A single asterisk designates the conditions at which one additional
finite-volume run was performed at a nondimensional particle diameter of
ŝ50.175. A double asterisk designates the conditions at which three addi-
tional finite-volume runs were performed atŝ50.0875, 0.175, and 0.35.

St 323 643 963 1283

0.00 X
0.05 X
0.10 X
0.20 X X
0.30 X X
0.40 X*
0.50 X X* X
0.60 X X X
0.70 X X** X X
0.80 X X*
1.00 X X** X X
1.20 X
1.50 X X* X
2.00 X
2.50 X
3.00 X
4.00 X

TABLE II. Turbulence parameters in arbitrary units~with the exception of
the final two parameters which are dimensionless!. U8 is the turbulent en-
ergy, e is the dissipation rate,r is the fluid density,v is the kinematic
viscosity,L is the integral length scale,T is the integral time scale,h is the
Kolmogorov length scale,th is the Kolmogorov time scale,l is the Taylor
microscale,Dt is the time step, Rel is the Reynolds number based on the
Taylor microscale, andkmaxh is a measure of the resolution of the simula-
tion.

323 643 963 1283

U8 0.82 0.84 0.87 0.91
e 0.22 0.20 0.22 0.25
r 1.00 1.00 1.00 1.00
v 2.231022 1.331022 7.831023 6.331023

L 1.77 1.65 1.54 1.53
T 2.18 1.98 1.77 1.68
h 8.531022 5.631022 3.831022 3.231022

th 0.32 0.25 0.19 0.16
l 1.01 0.81 0.63 0.57
Dt 3.131023 3.131023 3.131023 3.131023

Rel 37.1 54.5 69.7 82.5
kmaxh 1.36 1.80 1.84 2.03
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1~c!# suggests that the regions with little or no particles are
on the order of 1/10 the box length, making the size of these
regions on the order of 10h.

III. MODELING CONSIDERATIONS

A. Radial distribution function

Consider acanonicalensemble of systems, each of vol-
umeV, containingN indistinguishable particles of diameter,
s, and density,rp . For such an ensemble, the joint probabil-
ity that each of theN particles lie within volumesdx1 cen-
tered atx1 ,..., throughdxN centered atxN is defined as

P~N!~x1 ,...,xN!dx1 ...dxN , ~7!

where the standard normalization applies, i.e.,

E
V
¯E

V
P~N!~x1 ,...,xN!dx1¯dxN51. ~8!

The two-particle distribution function is then obtained by
integrating out the dependence on the remaining particles

P~2!~x1 ,x2![E
V
¯E

V
P~N!~x1 ,...,xN!dx3¯dxN . ~9!

The two-particle radial distribution function is then defined
as32,33

g~x1 ,x2!5
N~N21!

n2 P~2!~x1 ,x2!, ~10!

wheren[N/V. For a statistically homogeneous and isotro-
pic volume, particle positions can be expressed in terms of a
relative separation distance,r[ux12x2u, andP(2)(x1 ,x2) re-
duces toP(2)(r )/V to give the working definition ofg(r )
used in this study

g~r !5
N~N21!

n2V
P~2!~r !. ~11!

As the rdf is near unity for a uniformly distributed system, it
is convenient to define a residual rdf~rrdf! as

h~r ![g~r !21. ~12!

A physical interpretation ofg(r ) is the number of par-
ticle centers located in a spherical shell betweenr and r
1dr about a central particle divided by the expected number
of particles given a uniformly distributed particle field.
Based on the definition of the rdf shown in Eq.~11! and the
integral relationship given in Eq.~8!, it is easy to show that
the rrdf must satisfy the following integral constraint34

nE
V
h~r !dr521. ~13!

B. Parametric dependence

Isotropic turbulence is characterized by the fluid density,
r, kinematic viscosity,v, turbulence intensityU8, and ki-
netic energy dissipation rate,e. In dimensionless terms, this
reduces to the turbulent Reynolds number, defined here in
terms of the Taylor microscale

Rel[U82A15

ve
. ~14!

For a monodisperse suspension, the particle phase introduces
three additional variables, viz., the particle densityrp , diam-
eters, and total numberN. In terms of dimensionless vari-
ables, these can be expressed as the volumetric loadinga
[ps3N/6V, nondimensional size parameterŝ[s/h and
particle Stokes number St@see Eq.~1!#. This implies that the
most general form of the rdf in isotropic turbulence can be
expressed functionally as

g~ r̂ ;Rel ,a,ŝ,St!, ~15!

wherer̂[r /h is the dimensionless independent variable and
the variables after the semicolon are the dimensionless pa-
rameters.

C. Simplifying assumptions

The large parameter space shown in Eq.~15! would
make it difficult to interpret and correlate the results from the
numerical simulations. It is, therefore, advantageous to con-
sider the sensitivity of the rdf to each of the parameters, and
search for simplifications where applicable.

FIG. 1. 2d slices of ghost-particle simulations at:~a! St50.0; ~b! St50.2;
~c! St50.7; ~d! St51.0; ~e! St52.0; and,~f! St54.0. Dots correspond to
particle center locations.
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1. Reynolds number

We begin by considering the dependence on the Rey-
nolds number. Classical scaling arguments, as originally pro-
posed by Kolmogorov,35 suggest that the small scales should
dominate the particle enrichment process since they contain
most of the fluid vorticity responsible for centrifuging the
particles. The parametric dependence on the small-scale tur-
bulence is accounted for by the Stokes number; thus, the
Reynolds number’s role is to introduce the effect of thelarge
scales on the process. Classical scaling arguments suggest
that the large scales should have a vanishingly small role in
the limit Rel→`, i.e., O(Rel

2p), wherep is positive.
To test this hypothesis, we performed ghost runs over

the range: 37.1<Rel<87.5.~Note, hereafter the superscript*
designates a ghost run variable.! Results for the rdf evaluated
at r̂ 50.025 are shown in Fig. 2~a!. Notice that the maximum
in the curve shifts upward with increasing Reynolds number
over the range considered in this study. Similar results were
observed in earlier numerical studies.9,36 The functional de-
pendence on the Reynolds number appears to be separable
from the dependence on the other variables. This is apparent
in Fig. 2~b!, which shows the rrdf versusr̂ at several Rey-
nolds numbers. Notice that with increasing Reynolds number

the curves mainly shift upward without changing their func-
tional shape substantially. This suggests a decomposition of
the form

h~ r̂ ;Rel ,a,ŝ,St!5G~Rel!h̃~ r̂ ;a,ŝ,St!. ~16!

Hoganet al.9 attempted to model the Reynolds number
dependence of preferential concentration in terms of multi-
fractals. They derived a relationship between the fluctuations
in the local particle concentrations and the multi-fractal di-
mension,f (a). Wanget al.36 were able to collapse their nu-
merical results by assuming a linear proportionality between
the rdf and the Reynolds number.

We choose not to speculate on the functional form of
G(Rel) at this time. Due to the limited range of Reynolds
number in our DNS, it is not possible to distinguish between
the various models. For example, the proposal of a linear
dependence suggested by Wanget al.36 is certainly plausible,
but it might also represent the first term in a Taylor series
expansion, in which higher-order terms are still negligible.
Given that some applications such as atmospheric turbulence
and planetary formation have Reynolds numbers~based on
the Taylor microscale! that are two or more orders of mag-
nitude larger than the DNS, there is an essential need to
establish the proper scaling relationship for this parameter.
However, the question of the Reynolds number dependence
will only be answered definitively when DNS or controlled
experiments are capable of reaching much higher values than
are currently accessible.

The present study focuses on the results for Rel554.5.
For the sake of simplicity, we setG~54.5!51.0 and defer any
further discussion of this function until a later date. The fo-
cus of the remainder of the paper will be on obtaining a
correlation forh̃( r̂ ;a,ŝ,St).

2. Volume fraction

Earlier studies1,26 have shown the rdf to be virtually in-
dependent ofa in the limit a→0. As we are restricting this
study to the dilute limit, we make the assumption

h̃~ r̂ ;a!1,ŝ,St!5h̃~ r̂ ;ŝ,St!. ~17!

3. Diameter

The dependence of the rrdf on the particle diameter is
found by considering several simulations with particles of
different diameter but the same Stokes number. This can be
achieved by simultaneously varying the particle diameter and
density while holding the productrps2 fixed. Figure 3
shows the result for three values ofŝ and the corresponding
ghost run~equivalent toŝ50!. Notice that the curves are
essentially identical at larger̂ and only begin to diverge from
each other asr̂ approachesŝ. This suggests that the ghost
particle rrdf provides a good estimate for the hard sphere rrdf
for r̂ @ŝ; however, forr̂'ŝ the influence of the collisions
causes the two curves to deviate from each other.

This motivates the following decomposition

h̃~ r̂ ;ŝ,St!5H h* ~ r̂ ;St!1F~ŝ,St! f ~ r̄ ;St! r̂>ŝ

21 r̂ ,ŝ
, ~18!

FIG. 2. Effect of Reynolds number (Rel) on the radial distribution function
of ghost particles.~a! Profiles of g* ( r̂ 50.025;Rel ,St) as a function of
Stokes number at the indicated Reynolds numbers. Symbols show individual
results for the eight snapshots taken during each run; lines are ensemble
averages of the eight snapshots.~b! Profiles ofh* ( r̂ ;Rel ,St51) versusr̂ .
The curves shift upwards with increasing Reynolds number.
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whereh* ( r̂ ;St) is the ghost particle rrdf,F(ŝ,St) is a nor-
malization factor@see Eq.~20! for its definition#, f ( r̄ ;ŝ,St)
is a normalized correction function that accounts for finite-
size effects@see Eq. ~21! for the normalization#, and r̄
[r /s. The decomposition is useful since it allows for a
separation of the turbulence–particle interaction—captured
by the ghost correlation—from the ‘‘microphysics’’ associ-
ated with particle collisions—captured by the correction
function f ( r̄ ;ŝ,St). It is expected that the turbulence–
particle interaction is generic, whereas the microphysical
contribution is sensitive to the specific treatment of the col-
lisions. For example, simulations that allow for inelastic col-
lisions, coagulation, or incorporate hydrodynamic, molecular
or electrostatic interactions between the particles are likely to
yield similar ghost statistics but the correction functions may
differ. The present study will consider in some detail the
correction function for hard-sphere elastic collisions. Al-
though the result is specific to that case, the general approach
can be easily adapted to other circumstances.

As both the ghost and finite-volume rrdf must satisfy the
integral constraint expressed in Eq.~13!,32–34 it follows that:

E
V
h~r !dr5E

V
h* ~r !dr . ~19!

Substituting Eq.~18! and simplifying, we arrive at the fol-
lowing constraint for the correction function:

1

3
1

1

ŝ3 E
0

ŝ
h* ~ r̂ ! r̂ 2dr̂5E

1

`

F~ŝ,St! f ~ r̄ ! r̄ 2dr̄

5F~ŝ,St!, ~20!

where f ( r̄ ) is defined such that

E
1

`

f ~ r̄ ! r̄ 2dr̄51. ~21!

IV. GHOST PARTICLES

Ghost particle simulations were performed on a 643 lat-
tice over the range: 0,St,4. Figure 4 showsh* ( r̂ ) for the
particle fields corresponding to the slices shown in Fig. 1
~the curve for St50 has been omitted since it is zero to
within statistical error!. Notice that all of the curves have a
similar shape—in all cases a nearly linear~in log–log coor-
dinates! section for smallr̂ followed by a more rapidly de-
creasing section at larger̂ .

This suggests the following functional form forh* ( r̂ ;St)

h* ~ r̂ ;St!5c0r̂ 2c1 exp@2c2r̂ #, ~22!

wherec0 , c1 , andc2 are ~in principle! all functions of St.
These coefficients—extracted by a least-squares fit of each
h* ( r̂ ;St) curve—are plotted in Fig. 5 as a function of St. The
values ofc0 show a strong St dependence@Fig. 5~a!#, starting
near zero at small St, rising to a maximum at St'0.9, and
then decaying as St is increased further. The coefficientc1

has a similar St dependence, although in this case the peak
occurs at St'0.5 @see Fig. 5~b!#. An empirical fit of these
coefficients is given in Table III. Even thoughc2 has a simi-
lar dependence on St asc0 and c1 , we have elected to ne-
glect this in the curve fit~i.e., we setc250.25 for all Stokes
numbers!. There are two reasons that drive this decision.
First, there is considerably more scatter in this coefficient.
Second, this coefficient only affects the curve at larger̂ ,
which is of less practical interest. Assigning a constant value

FIG. 3. Residual radial distribution function at St51.0 for ghost particles
~solid line! and finite-volume particles of sizeŝ50.0875, 0.175, and 0.35 in
~a! semilog and~b! logarithmic coordinates. Notice that the curves converge
at larger̂ , however there is a systematic deviation of the finite-volume rrdfs
from the ghost asr̂ approaches each respectiveŝ.

FIG. 4. Residual radial distribution function for the ghost runs correspond-
ing to the slices in Fig. 1~note the curve corresponding to St50 is not
shown since it is essentially zero except for statistical noise!.
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to c2 does slightly alter the values of the remaining coeffi-
cients, but the shape of the rrdf is largely unaffected.

Figure 6 shows a comparison of the curve fit for
h* ( r̂ ;St) ~solid line! with DNS ~open circles! at St of 0.5,
1.0, and 2.0. The curve fit approximates the function well to
aboutr̂ 510; after this point, the fit decays more rapidly than
the DNS. Of course, this could be improved by allowingc2

to vary with St, but since it is the small values ofr̂ that are of
greatest interest, the present fit is considered to be sufficient.

V. CORRECTION FUNCTION

The correction to the ghost particle correlation involves
two functions,F(ŝ,St) andf ( r̄ ;St). F(ŝ,St) can be evalu-
ated analytically from Eq.~20! by substituting Eq.~22! for
h* ( r̂ ;St) and integrating. The result is

F~St,ŝ !5
1

3
1

c0c2
~c123!

ŝ3 g~32c1 ,c2ŝ !, ~23!

where g(a,b) is the incomplete Gamma function defined
as37

g~a,b![E
0

b

z~a21!e2zdz.

FIG. 5. Coefficientsc0 , c1 , andc2 @see Eq.~22!#—obtained from a curve
fit of the DNS results—as a function of Stokes number. The solid line is a
curve fit of the coefficients as shown in Table III.

TABLE III. Coefficients for the correlation of the ghost particle rrdf,
h* ( r̂ ;St), given in Eq.~22!. The empirical coefficients were obtained by a
least-squares minimization of the DNS.

c05
x0 Stx1

d01Stx2
c15

x3 Stx4

d11Stx5 c250.25

x057.92 x350.61
x151.80 x450.88
x253.29 x552.38
d050.58 d150.33

FIG. 6. Comparison of the residual radial distribution function obtained
from the DNS with the proposed curve fit at the Stokes numbers indicated
on the graphs.
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Recall that the coefficientsc0 , c1 , andc2 are functions of
Stokes number~see Table III! and soF depends explicitly
on the particle size parameter,ŝ, and implicitly on the
Stokes number.

f ( r̄ ;St) can be extracted from DNS results for finite-
volume particles by evaluating

f ~ r̄ ;St!5
h̃~ r̂ ;ŝ,St!2h* ~ r̂ ;St!

F~ŝ,St)
. ~24!

Figure 7 showsf ( r̄ ;St) for Stokes numbers of 0.7 and 1.0.
The results from different particle diameters appear to col-
lapse onto a single curve in this coordinate, suggesting that
the proposed decomposition is reasonable. Notice also that
the results for the two Stokes numbers are quantitatively very
different.

A. Curve fit

Based on considerations of functional form and
asymptotic behavior at small and large Stokes numbers and
r̄ , the following general expression was chosen:

f ~ r̄ !5~b02b1y!e2b2y2
1

b3d

r̄ 31d , ~25!

where

y[Ar̄ 21, ~26!

and the coefficientsb0 , b1 , b2 , andb3 are defined in Table
IV. The final term on the right-hand side~rhs! of Eq. ~25! is
added to ensure that the integral constraint given in Eq.~21!
is satisfied. Note that the constraint is satisfied forall finite
values ofd; thus, the effect of this term over any specified
range of r̄ can be made arbitrarily small by decreasing the
value ofd accordingly. For the sake of simplicity, all plots of
Eq. ~25! suppress this term under the assumption thatd is
sufficiently small that its contribution tof ( r̄ ;St) is negligible
over the range ofr̄ shown.

The quality of the curve fit is demonstrated in Fig. 8,
which shows the fits for particles of sizeŝ50.175 and
Stokes numbers at the two extremes~St50.4 and St54.0!. It
is difficult to achieve the precision observed with the simpler
ghost curves; however, Eq.~25! fits all of the runs to within
a maximum relative tolerance of 50%. Individual fits vary
and most of the errors are much smaller than this maximum
tolerance.

VI. IMPACT OF PREFERENTIAL CONCENTRATION
ON COLLISION

The complete rdf can now be generated from the follow-
ing simple expression:

g~ r̂ ;Rel554.5,a!1,ŝ,St!

5H 11h* ~ r̂ ;St!1F~St,ŝ ! f ~ r̄ ;St! r̄>1

0 r̄ ,1
, ~27!

FIG. 7. Correction function,f ( r̄ ;St), at ~a! St50.7 and~b! St51.0. Note
that by definition:*1

` f ( r̄ ) r̄ 2dr̄[1.

TABLE IV. Coefficients for the curve fit forf ( r̄ ;St) given in Eq.~25!. The
empirical coefficients were obtained from a least-squares minimization of
the DNS.

b0 56.73
St4/3~120.957 St!

~1119 St10/3)
b1 80e24 St

b2 2 St25/3

b3 12
b0~212b21b2

2!

b2
3 1

Apb1~15112b214b2
2!

8b2
7/2

FIG. 8. Comparison of fitted correction function@see Eq.~25!# with DNS at
Stokes numbers 0.4 and 4.0 and particle diameterŝ50.175.
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whereh* , F, and f are given in Eqs.~22!, ~23!, and ~25!,
respectively. Figure 9~a! shows plots ofg( r̂ ;0.175,St)~note
that we omit the arguments Rel and a for the sake of sim-
plicity! at several values of the Stokes number. Figures 9~b!
and 9~c! show similar plots at St50.7 and St51.0, respec-
tively, and three values ofŝ. Notice again that the curve fits
are good, except at the smallest value of the particle size.
There the fit appears to systematically underpredict the value
of g. It is believed that the majority of the error arises from
the factorF.

The goal of this study is to quantify the impact that
preferential concentration has on the rate of collisions. Recall
that the enhancement factor for the collision kernel is given
by the rdf at contact@see Eq.~2!#. According to Eq.~27!, this
becomes

g~ ŝ,St!511h* ~ ŝ;St!1F~St,ŝ !b0~St!. ~28!

Notice that this factor depends on the particle Stokes number
and the dimensionless particle size parameter,ŝ. Figure
10~a! illustrates the dependence of the enhancement factor on

the particle Stokes number with the parameterŝ varied be-
tween 0.01 and 0.1. As preferential concentration vanishes in
the limits St→0 and St→`, the enhancement factor ap-
proaches unity in both limits. The peak in the factor occurs at
approximately St50.5 for all values ofŝ. Notice that en-
hancement factors greater than 100 can be reached under
some conditions, highlighting the very strong effect that
preferential concentration has on collision frequencies. A
less-expected result is that the magnitude of the enhancement
factor increaseswith decreasingparticle size, for fixed
Stokes number. The origin of this effect can be traced to the
shape of the rdf. To demonstrate this point, it is useful to
consider the behavior of Eq.~28! in the limit ŝ!1 ~for fixed
Stokes number!

lim
ŝ→0

g~ ŝ,St!5F11
b0~St!

~32c1~St!)Gc0~St!ŝ2c1~St!. ~29!

We see that for a fixed Stokes number,g(ŝ,St)}ŝ2c1(St),
which explains why the collision enhancement factor grows
as ŝ decreases. Physically, particles are able to pack into a
smaller volume as their size decreases. Asg(ŝ,St) is the
ratio of the number of neighboring pairs divided by the ex-
pected number, its value grows because the expected number
vanishes asŝ→0. Notice that the divergence does not scale

FIG. 9. Comparison of complete curve fit forg( r̂ ;ŝ,St) with DNS. ~a!
Dependence on Stokes number~as indicated! at ŝ50.175.~b! Dependence
on diameter~as indicated! at St50.7. ~c! Dependence on diameter~as indi-
cated! at St51.0.

FIG. 10. Collision enhancement factor@i.e.,g(ŝ,St)# based on the curve fit.
~a! Dependence on Stokes number at particle size parameters:ŝ
50.01,0.02,...,0.1. Curves corresponding to the extreme values ofŝ, 0.01
and 0.1, are labeled on the graph.~b! Dependence on particle size parameter
at a fixed particle-to-fluid density ratio as indicated on the graph.
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like ŝ23, but is slower~i.e., c1,3!, suggesting that the nu-
merator is also vanishing, but not fast enough to prevent the
divergence ofg(ŝ,St). We conclude that denser~smaller!
particles are able to concentrate more, at a given Stokes
number, than less dense particles.

A clear illustration of this result is given in Fig. 10~b!.
The enhancement factor is shown as a function of particle
size for density ratios of 10, 100, and 1000. Notice that the
peak in the enhancement factor increases and shifts to
smaller sizes with increasing particle density. Many aerosol
systems have density ratios that are 1000 or greater. In these
systems, preferential concentration is likely to play a signifi-
cant role, even at smaller values of the Stokes number. For
example, for particles with a density ratio of 1000, the en-
hancement factor exceeds 10 atŝ50.013, corresponding to a
Stokes number of only 0.17.

A qualitative understanding of the effect that preferential
concentration has on the particle size distribution in acoagu-
lating aerosol also can be obtained from Fig. 10~b!. An illus-
tration of this point is shown for the density ratio of 10 case.
An initially monodisperse system of particles of sizeŝ
50.02 ~say! will collide and coagulate to produce dimers,
trimers, etc. with time. The points on the chart indicate sev-
eral generations of particles. Notice that each new generation
of particles coagulates faster than the parents’ generation.
Such a trend tends to broaden the particle size distribution at
least until the peak in the enhancement factor is reached at
ŝ50.2. This suggests an important mechanism by which
preferential concentration can broaden the particle size dis-
tribution of a coagulating aerosol, and may explain the ap-
pearance of broad particle size distributions in certain appli-
cations~e.g., see Ref. 8 for a detailed discussion of broad
droplet spectra in clouds and Ref. 38 for a recent numerical
study of coagulating aerosols!.

VII. CONCLUDING REMARKS

The influence of preferential concentration on particle
collisions has been investigated using direct numerical simu-
lations. Due to the quadratic dependence of the collision fre-
quency on particle concentration, the net effect of preferen-
tial concentration is to increase the collision rate above that
of a uniform distribution of particles. From the collision for-
mula of Sundaram and Collins,26 it is known that the en-
hancement factor for the collision rate is given byg(s),
whereg(r ) is the particle radial distribution function~rdf!.
Under dilute conditions and in the absence of preferential
concentration, this factor is expected to be approximately
unity. For strongly concentrated systems, it can reach values
that exceed 100.

A systematic analysis of the rdf has been undertaken in
order to understand its dependence on the system parameters.
It is argued that under dilute conditions, its dependence on
the system loading may be neglected. The dependence of the
rdf on the Reynolds number was separated from its depen-
dence on the other parameters, allowing us to define a single
factor G(Rel) that accounts for the Reynolds number. How-
ever, we do not speculate on the functional form ofG(Rel)
due to the limited range of the Reynolds number achieved in

the present DNS. We anticipate that a complete understand-
ing of this parameter requires a combination of higher-
resolution DNS, high-Reynolds-number experiments and
modern scaling laws that take into account turbulence
intermittency.39

The dependence of the rdf on the Stokes number and
diameter was explored. A decomposition of the rdf into a
turbulence-dependent function@the ghost rdf,h* ( r̂ ;St)# and
a microphysical correction@F(ŝ,St)f ( r̄ ;St)# was proposed
to facilitate the modeling. The ghost rrdf—found by elimi-
nating particle collisions in the DNS—depends on the Stokes
number, but not the particle diameter. At smallr̂ , the ghost
rdf has a power-law dependence of the formr̂ 2c1, where
integrability requires thatc1,3. At larger r̂ the power-law
gives way to an exponential tail, suggesting that the ghost
rrdf function takes the general form h* ( r̂ ;St)
5c0r̂ 2c1e2 r̂ /4, where the coefficientsc0 andc1 are given in
Table III.

The correction function for elastically rebounding hard
spheres in the absence of hydrodynamic interactions takes
the form F(ŝ,St)f ( r̄ ;St). The integral constraint given in
Eq. ~21! allowed us to obtain a closed form expression for

F(ŝ,St). The model for f ( r̄ ;St) is (b02b1y)e2b2y2

1b3d/ r̄ 31d, wherey5Ar̄ 21 and the coefficientsb0 , b1 ,
b2 , andb3 are given in Table IV. It is important to empha-
size that the correction function depends on the microphys-
ics; thus, changes in the treatment of the near-contact motion
of particles such as the inclusion of hydrodynamic and/or
molecular interactions, inelastic collisions, coagulation, etc.
may change the correction function. Nevertheless, the ap-
proach outlined here can be easily extended to these other
circumstances.

The combination of the ghost and correction rdfs enables
an easy estimation of ‘‘enhancement factors’’ for the colli-
sion kernel. The factors are strong functions of the particle
Stokes numberand the size parameter,ŝ. The latter depen-
dence can be thought of, alternatively, as a dependence on
the particle-to-fluid density ratio. More dense particles~at a
given Stokes number! are able to concentrate more strongly
and thus achieve higher enhancement factors. Physically,
smaller particles are able to pack more tightly into the con-
centrated regions, thus allowing for greater super-
populations at small separations. The sensitive dependence
of preferential concentration on the particle Stokes number
has been reported in several earlier studies; however, the
importance of the size parameter is only now coming to
light. The reason is that most earlier work focused on point-
mass particles20–23,40or particles of fixed size36 and so they
did not fully explore this parameter. Its role in aerosols with
density ratios that exceed 1000 may be significant.

Finally, a qualitative picture of how preferential concen-
tration influences the particle size distribution of a coagulat-
ing aerosol has been discussed. For small particles, it is an-
ticipated that the degree of preferential concentration will
increase with each subsequent generation~dimer, trimer,
etc.!, implying there is effectively a higher-order dependence
of the collision kernel on the diameter. Such a dependence
tends to broaden the particle size distribution. Indeed, the
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present results appear to qualitatively explain tails in the par-
ticle size distribution that we observed numerically in a sepa-
rate study of coagulating particles.38
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