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Effect of preferential concentration on turbulent collision rates

Walter C. Reade® and Lance R. Collins®
Department of Chemical Engineering, The Pennsylvania State University, University Park,
Pennsylvania 16802

(Received 31 August 1998; accepted 16 June 2000

The effect of particle inertia on the interparticle collision rates of a turbulent aerosol was
investigated recently by Sundaram and Collit897 using direct numerical simulatio(DNS).

They observed that for values of the particle Stokes nurttiere defined as the ratio of the particle
response time to Kolmogorov time schleear unity, the collision frequency was enhanced by
between one and two orders of magnitude. This enhancement was attributed in part to the local
enrichment of the particle concentration in low-vorticity regions of the flow due to the centrifuge
effect commonly referred to as preferential concentrattéaton and Fessler 19945undaram and
Collins (1997 showed that the correction factor for the collision kernel in a preferentially
concentrated system o), whereg(r) is the particle radial distribution function andis the
collision diameter. This paper uses DNS, in combination with statistical analysis, to study the
dependence of the radial distribution function on the turbulence and particle parameters. A curve fit
of the results over a broad range of the relevant dimensionless parameters enables easy estimation
of g(o). The effect of system Reynolds number over the limited range accessible by DNS is also
presented. In general, the degree of preferential concentration increases with increasing Reynolds
number. © 2000 American Institute of Physid$$1070-663(100)51010-1

I. INTRODUCTION sphere, and even planet formation from protoplanetary
nebula®!® The important features of all of these systems
The dynamical evolution of small particles or droplets resemble the powder process; however, the enormous range
embedded in a turbulent flow field continues to receive atof the Reynolds number in these applications underscores the
tention because of its relevance to a broad range of techngreed for reliable scaling relationships for this parameter.
logical and naturally occurring flows. Here we restrict our  One of the earliest studies of collision in a turbulent
attention to particle sizes that are small as compared to all oerosol was by Saffman and Turlewho considered the
the scales of motion of the fluid and particle volume frac-collision rate of inertialess drops that precisely follow fluid
tions that are sufficiently small that “dilute” conditions pre- streamlines. The collision mechanism they proposed is es-
vail, and turbulence modulatior® may be neglected. An im- sentially the same as the one described by von
portant fundamental question that has yet to be satisfactorilg moluchowski in laminar shear flows. The collision rate is

addressed is how turbulence affects the interparticle COHiSiOBroportional to a nominal turbulent shear rate. which Saff-

r_ate and ultimately the pgrticle size distribL_ltion under condi<jan and Turner took to beelv) 2, wherev is the fluid
tions that favor coagulation or agglomeration.

. ) kinematic viscosity and is the turbulent energy dissipation
An example of a process that is strongly influenced by, o ey ynit mass of fluid. The functional form of the

turbulence-driven coagulation is aerosol production of ﬁneSaffman—Turner formula is generally accepted, although the

powders'® The flow in these systems is usually turbulent toassumptions that went into determining the prefactor have
enhance the mixing of the reactant species. It is generall}seen questionetf-16

accepted that turbulence affects the collision rate between AbrahamsoN considered the other limit, namely the

particles and thereby modifies the resulting particle size dIS(':ollision of particles that have infinite inertia and are com-

tribution. Understanding the mechanism by which turbulence letely uncorrelated with the fluid. The collision kernel, de-

enhances the collision rate and its dependence on the SyStér)Wed from kinetic theory arauments. is valid for particles
parameters is essential for developing the means to predict. y ag ' P

and control these aerosol reactors. Similar questions arise Wth response tnpes that are long as compared to the fluid
other engineering applications such as sprays, emulsifier ime s%ales. Th.'s ana}IyS|s was extended .b.y Reade and
crystallization reactors, and pneumatic devices. Examples Q ollins'® to obtain part_lcle energies and collision rates for
naturally occurring aerosol systems with similar issues inIne case of a coagulating aerosol.

clude cloud dropleté® aerosol transport in the upper atmo- .The collision r'ate of partlclgs i the |.nte'rmed|ate
region—where particle response times and fluid time scales

are comparable—was originally investigated in the thesis of
dCurrent address: International Paper, 6285 Tri-Ridge Blvd., LoveIand,Ba|aChand&|9 using direct numerical simulation. Balachan-
Ohio 45140. . L o .
YAuthor to whom correspondence should be addressed. Telephone: g18lar computed the collision rate of finite-size, noninteracting

863-7113; Fax: 814-865-7846. Electronic mail: LXC12@psu.edu particles in isotropic turbulence and demonstrated the signifi-
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cance of particle inertia. Although the resolution of the simu-sults from the simulations into a form that allows for easy
lations was limited, he correctly surmised that the enhanceestimation. The result is suggestive of a possible theoretical
ment in the collision rate is due in part to the largeframework that one might use to obtain a more rigorous
fluctuations in the particle concentration fields that occurdescription of the rdf.
with finite-inertia particles. This phenomenon, referred to as  We begin by presenting an overview of the DNS algo-
“preferential concentration” in the literature, results from rithm and the parameter values that were explored in Sec. Il.
local vorticity centrifuging particles out of regions of high Section IlIl then presents simplifications and assumptions
vorticity into regions of high straif® =23 As collision is in-  used in modeling the rdf. Results for the simpler case of
herently a nonlinear function of particle concentration, thesaoncolliding (interpenetrating “ghost” particles are then
fluctuations cause a net increase in the overall collision ratgresented in Sec. IV followed by an analysis of elastically
Similar effects have been observed in channel flé%Ses-  rebounding finite-size particles in Sec. V. Section VI shows
pecially near the center of the channel, where turbulence iseveral sample calculations gfr) andg(o) for different
nearly homogeneous and isotropic. particle systems. Concluding remarks are given in Sec. VII.
The key parameter identified in all of the previous inves-

tigations is the particle Stokes number
Il. DIRECT NUMERICAL SIMULATION

1 2
1—8(@)1 1 2 DNS solves the full time-dependent, three-dimensional
_ =PI _<@) 7 (1)  equations of motion for the fluid and each of the particles.
T, (vle) 18\ p/\n The simulations performed in this study have three facets:

(1) simulation of the fluid phasg?2) simulation of particle
motion; and(3) simulation of particle collision. Each will be
discussed briefly in the following sections, followed by a
ghort qualitative discussion of preferential concentration.

where 7, is the response time of a particle with diameder
and densityp,, in a fluid of densityp, 7,=(v/€)*? is the
Kolmogorov time scale, ang=(v>/€)¥*is the Kolmogorov
length scale. Preferential concentration is usually observe
for particles with St=1. For larger values of the Stokes num- )
ber [i.e., St=\Re, where Re is the turbulent Reynolds A Fluid phase

number based on the Taylor microscale—see(E4). for the The fluid phase is governed by the incompressible
definition], particles become less correlated with the fluidNavier—Stokes equations. Under the assumption of dilute
causing the relative velocity between neighboring particles tgarticle loading, the influence of the particle phase on the
increase, which results in a higher collision frequency. Bothturbulence can be neglectécf. Ref. 1 for a more compre-
effects are captured by the generalized collision relationshipensive discussion of this pojrdnd the equations of motion

developed by Sundaram and Colfifis reduce to
1, ) 0 V-u=0, 3
NC=§n Ao g(a)f —w,P(w,|o)dw;, (2 5 L
Cw u
. o . —+u-Vu=——Vp+uvV2u+F, (4
where N, is the number of collisions per unit volume per ot p

time, n is the number density of particle, is the radial  \hereu(x,t) is the three-dimensional time and space vary-
component of the relative velocity of two particleg(r) is  jng velocity field,p(x,t) is the pressure fielgy andv are the
the radial distribution functiothereafter rdf, andP(w,[r) is  fiuid density and kinematic viscosity respectively, @hib a
the conditional pdfprobability density functionof the rela-  forcing function that continuously adds energy to the largest
tive velocity of particle pairs along the line of centers con-gcgles of motiod® A pseudospectral algorithfihwas used to

ditioned on the separation distanc¢Note, Eq.(2) has been pgate the fluid velocity. Details of the numerical algorithm
modified to relax the assumption of isotropy of the relativecgn pe found in Ref. 26.

velocity vector in accordance with the subsequent study of

Wang et al?” who showed _the assumption to be poor forg. particle motion

small-Stokes-number particlés.Sundaram and Collins ) ) )

showed that the preferential concentration mechanism influ- 1€ full equation of motion for particles that are small as
ences the collision frequency through the gif), whereas Ccompared to the Kolmogorov scale was derived by Maxey

the decorrelation of particle motions manifests in the relative*nd Riley?° For dense particledi.e., py/p>1), linear

velocity pdf P(w,]r). (Stqkes} drag is the _domlnant term, and the equations of
The focus of this paper will be on the rd{r). As will  motion for theith particle become

be shown, collision enhancement due to preferential concen- gy

tration can be as large as 10—100 fold; thus, accurately esti- d—?=v§3'), (5)

matingg(o) in Eq. (2) is essential to accurately predidt,.

In this study, we consider the behavior of the rdf and its dvg) (U(XS))—VS)) 1 i)

dependence on the system parameters using a large number T - + m_E F, (6)

of direct numerical simulationéDNS). We attempt(wher- _ P pI7i

ever possibleto isolate the effect of each parameter. More-wherex!’ andv{) are the position and velocity of the cen-

over, we develop a systematic approach to correlate the reroid of theith particle,u(xg)) is the undisturbed fluid ve-
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TABLE I. Summary of runs. “X” identifies conditions that runs were per- TABLE Il. Turbulence parameters in arbitrary unisith the exception of
formed. A single asterisk designates the conditions at which one additionahe final two parameters which are dimensionjeks is the turbulent en-
finite-volume run was performed at a nondimensional particle diameter okrgy, € is the dissipation ratep is the fluid density,y is the kinematic
o=0.175. A double asterisk designates the conditions at which three addiviscosity,L is the integral length scald, is the integral time scaley is the

tional finite-volume runs were performed at=0.0875, 0.175, and 0.35. Kolmogorov length scaler,, is the Kolmogorov time scale is the Taylor
microscale At is the time step, Reis the Reynolds number based on the
St 32 64° 96° 128 Taylor microscale, anét,,,7 is a measure of the resolution of the simula-
0.00 X tion.
0.05 X 32 64° 96’ 128
0.10 X
0.20 X X u’ 0.82 0.84 0.87 0.91
0.30 X X € 0.22 0.20 0.22 0.25
0.40 X* p 1.00 1.00 1.00 1.00
0.50 X X X v 2.2x1072 1.3x10°2 7.8x10°3 6.3x10°3
0.60 X X X L 1.77 1.65 1.54 1.53
0.70 X X** X X T 2.18 1.98 1.77 1.68
0.80 X X* i 8.5x10 2 5.6x 102 3.8x10 2 3.2x10°2
1.00 X XF* X X Ty 0.32 0.25 0.19 0.16
1.20 X A 1.01 0.81 0.63 0.57
1.50 X X X At 3.1x10°® 3.1x10°® 3.1x10°® 3.1x10°®
2.00 X Re, 37.1 54.5 69.7 82.5
2.50 X Kmax?7? 1.36 1.80 1.84 2.03
3.00 X
4.00 X

are then randomly placed within the fluid domain and their
velocities are initialized with the local fluid velocity. For this
i . ) reason, it is necessary to let the fluid—particle system run
Fn rls thenlm;r)\z:;ge dllljiei t?] ?)nt\e;llasa(cteh,_tngorr:ﬁjnilﬁm arnd until statistical equilibrium is reached. For all cases, the sys-
energy conse cotlision betwee ath andjth pa tem is allowed to equilibrate for at least six eddy turnover

ticles. Since particles are not constrained to lie on fluid gridtimes after which the particle positions are recorded at ap-

thlgt& ('jt |anecgt§sary tto mfetr.polam;(p )- Detznls ?r: thi q roximately one eddy-turnover-time intervals for a total of
Ird-order Fermitian interpolation scheme used in this stu eight “measurements” during each simulation. Given that

can be found in Ref. 31. Note that zero-St particles are Simuthere areN(N—1)/2 particle pairs in the DN$more than
lated by assigning the instantanedirterpolated fluid ve- 3. 1410 i thig casg it is impossible to consider all pairs in
locity at the particle center to the particle velocity. ParthIeseach calculation of the rdf. In order to reduce the calculation

obey periodic boundary conditions. time, all particle pairs are used to determine the rdfrioy
=<2.0 only. For values of/# larger than 2.0, 25 million
particle pairs are selected at random to compute the rdf.

locity at the centroid of théh particle,7,=(p,/p) a?l18v is
the particle response timm, is the mass of the particle, and

C. Particle collision

When particles of finite size approach to within their
collision diameter, a hard-sphere collision is enacted. Thé&. lllustration of preferential concentration
detailed algorithm for particle collisions is described in Ref.

31 Note that f the simulati ¢ 4 with Figure 1 shows the dramatic effect that turbulence has
- Note that some of the simulations were periormed withy, ., ¢ particle concentration field. The figure shows gix 2

out checking for collisions. The so-called ghost particles Ar€gjices” of the DNS domain(with a thickness of 1/64 the

free to occupy any space n the system without being Xbox length for runs of various St. These slices are taken at
cluded by other particles. the same instant of the DNS, so the underlying flow field is
the same for each slice. Figuréalshows a completely ho-
mogeneous particle concentration field corresponding to
The bulk of the simulations for this study were per- St=0. Figures 1b)-1(f) show the particle concentration
formed on a 62 fluid grid. Other simulations were per- fields at finite St. Notice that as St increagem approxi-
formed on 33, 96°, and 128 grids for a total of 32 simula- mately 0.2—0.7, corresponding to Figgbjland ¥c)], the
tions. Table | details the simulations performed. The variougparticles increasingly concentrate into low-vorticity regions
parameters and fluid characteristics of the simulations can bef the flow. Beyond St0.7, the particle concentration fields
found in Table II. It should be noted that since the simulationbecome defocused, as the effect fades ay@ygs. 1d)—
is stochastically forced, the instantaneous fluid statistics var{(f)—corresponding to St of 1.0, 2.0, and 4.0, respectijely
with time; hence, although the particle response timg (s The defocusing occurs because particles with too much iner-
fixed in a given simulation, the instantaneous particle Stoketa have difficulty responding to the fluid vorticity fast
number varies slightly throughout the duration of a run, ac-enough to preferentially concentrate appreciably.
cording to Eq.(2). For the 64 simulations, there are approximately 112
Each DNS is initialized with a fluid velocity that had Kolmogorov lengthg#) to the DNS box. A visual inspection
previously reached a statistically stationary state. Particlesf the concentrated particle field&ig. 1, especially Fig.

D. Organization of simulations
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The two-particle radial distribution function is then defined
aS2:33

N(N—1
9(Xy,Xp) = %P(Z)(Xlxxz), (10

wheren=N/V. For a statistically homogeneous and isotro-
pic volume, particle positions can be expressed in terms of a
relative separation distanae=|x; — x,|, andP®)(x;,x,) re-
duces toP@)(r)/V to give the working definition ofy(r)
used in this study

N(N—1
g(r):(nfv)P(Z)(r). (11)

As the rdf is near unity for a uniformly distributed system, it
is convenient to define a residual r@fdf) as

h(r)=g(r)—1. (12)

A physical interpretation ofj(r) is the number of par-
ticle centers located in a spherical shell betweeand r
+dr about a central particle divided by the expected number
of particles given a uniformly distributed particle field.
Based on the definition of the rdf shown in Eq1) and the
integral relationship given in Eq8), it is easy to show that
the rrdf must satisfy the following integral constratht

nfvh(r)drz—l. (13

B. Parametric dependence

FIG. 1. 2 slices of ghost-particle simulations 48 St=0.0; (b) St=0.2; Isotropic turbulence is characterized by the fluid density,

é‘zrtisct;oc';igz Iit;#'ooris(.e) St=2.0; and, () St=4.0. Dots correspond to -, *\inamatic viscosityw, turbulence intensit})’, and ki-
netic energy dissipation rate, In dimensionless terms, this
reduces to the turbulent Reynolds number, defined here in

terms of the Taylor microscale
1(c)] suggests that the regions with little or no particles are

on the order of 1/10 the box length, making the size of these Re =U"’>2 /E
ve

regions on the order of 1 (14)

For a monodisperse suspension, the particle phase introduces
three additional variables, viz., the particle dengity diam-
IIl. MODELING CONSIDERATIONS eter o, and total numbeN. In terms of dimensionless vari-
A. Radial distribution function ables, these can be expressed as the volumetric loading
=70°N/6V, nondimensional size parametér=o/7 and
particle Stokes number $tee Eq(1)]. This implies that the
most general form of the rdf in isotropic turbulence can be
expressed functionally as

Consider acanonicalensemble of systems, each of vol-
umeV, containingN indistinguishable particles of diameter,
o, and densityp, . For such an ensemble, the joint probabil-
ity that each of theN particles lie within volumesix; cen-

tered atx,, ..., throughdxy centered aky is defined as g(t;Re ,a,0,SY), (15)
PMN(Xq,... xp)dXq...dXy, (7)  wheref =r/ 5 is the dimensionless independent variable and
where the standard normalization applies, i.e., the variables after the semicolon are the dimensionless pa-
rameters.
e (N) e =
fv fvp (Xg - X dxy - dxy=1. ® ¢ Simplifying assumptions

The two-particle distribution function is then obtained by ~ The large parameter space shown in E#5) would
integrating out the dependence on the remaining particles make it difficult to interpret and correlate the results from the
numerical simulations. It is, therefore, advantageous to con-

P(Z)(Xl,xz)EJ f PN(xy,... x)dXg --dXy.  (9) sider the ser_15iti\_/i_ty qf the rdf to each_ of the parameters, and
v Jv search for simplifications where applicable.
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the curves mainly shift upward without changing their func-
D4 e Re=825 . . . .
P Re=69.7 tional shape substantially. This suggests a decomposition of

..... =545
g --- §:=3‘7t.1 the form

h(f:Re, ,a,&,Sh=T(Re)h(F:a,o,SY. (16)

Hoganet al® attempted to model the Reynolds number
dependence of preferential concentration in terms of multi-
fractals. They derived a relationship between the fluctuations
in the local particle concentrations and the multi-fractal di-
mension,f(«). Wanget al3® were able to collapse their nu-
3 NP merical results by assuming a linear proportionality between
r T the rdf and the Reynolds number.

3 4 We choose not to speculate on the functional form of
St I'(Re) at this time. Due to the limited range of Reynolds
number in our DNS, it is not possible to distinguish between
YR = K257 the various models. For example, the proposal of a linear
® R Re=37i dependence suggested by Wanal > is certainly plausible,
100 N but it might also represent the first term in a Taylor series
":"'72:\ expansion, in which higher-order terms are still negligible.
10" R Given that some applications such as atmospheric turbulence
’ and planetary formation have Reynolds numbd@ased on
102 = Yo the Taylor microscalethat are two or more orders of mag-
W nitude larger than the DNS, there is an essential need to
b establish the proper scaling relationship for this parameter.
However, the question of the Reynolds number dependence
10° | e — b will only be answered definitively when DNS or controlled
o1 1 10 100 experiments are capable of reaching much higher values than
are currently accessible.
FIG. 2. Effect of Reynolds number (Reon the radial distribution function The present _Stud_y_focuses on the results foy=Ret.5.
of ghost particles(a) Profiles of g* (f =0.025;Re ,St) as a function of FOr the sake of simplicity, we s¢¥(54.5=1.0 and defer any
Stokes number at the indicated Reynolds numbers. Symbols show individuglrther discussion of this function until a later date. The fo-

results for the eight snapshots taken during each run; lines are ensembjg s of the remainder of the paper will be on obtaining a
averages of the eight snapshdts). Profiles ofh* (f;Re, ,St=1) versusr. ~

The curves shift upwards with increasing Reynolds number. correlation forh(r; a, o, St).

g*(0.025; Re,, St)

1*(#; Rex, St,)
p

3

2. Volume fraction

1. Reynolds number . . . .
4 u Earlier studie$?® have shown the rdf to be virtually in-

We begin by considering the dependence on the Reydependent of in the limit «—0. As we are restricting this
nolds number. Classical scaling arguments, as originally prostudy to the dilute limit, we make the assumption
posed by Kolmogoro¥® suggest that the small scales should — ~ _ . ~
dominate the particle enrichment process since they contain h(r;a<l,0,S)=h(r;o,SY. 17)
most of the fluid vorticity responsible for centrifuging the _
particles. The parametric dependence on the small-scale tud- Diameter
bulence is accounted for by the Stokes number; thus, the The dependence of the rrdf on the particle diameter is

Reynolds number’s role is to introduce the effect ofvge  found by considering several simulations with particles of
scales on the process. Classical scaling arguments suggeffferent diameter but the same Stokes number. This can be
that the large scales should have a vanishingly small role ichieved by simultaneously varying the particle diameter and
the limit Rg —, i.e., O(Re, ?), wherep is positive. density while holding the producp,o? fixed. Figure 3

To test this hypothesis, we performed ghost runs oveghows the result for three values @fand the corresponding
the range: 37.£Re <87.5.(Note, hereafter the supersciipt ghost run(equivalent too=0). Notice that the curves are
designates a ghost run variablBesults for the rdf evaluated essentially identical at largeand only begin to diverge from
atr =0.025 are shown in Fig.(3). Notice that the maximum each other as approachesr. This suggests that the ghost

in the curve shifts upward with increasing Reynolds numbeharticle rrdf provides a good estimate for the hard sphere rrdf
over the range considered in this study. Similar results wergor > 5: however, forf ~& the influence of the collisions

observed in earlier numerical studie® The functional de- causes the two curves to deviate from each other.

pendence on the Reynolds number appears to be separable Thjs motivates the following decomposition

from the dependence on the other variables. This is apparent .n - — Al n

in Fig. 2(b), which shows the rrdf versus at several Rey- F\(F'& St= h*(r:S9+®(0,SYf(r;SY =0
Y -1 <o

nolds numbers. Notice that with increasing Reynolds number . (18



Phys. Fluids, Vol. 12, No. 10, October 2000 Effect of preferential concentration on turbulent collision rates 2535

©
\

— ghost

(@) - = = o/n=0.0875
........ om=0.175
..... o =035

...
5]

R=3

Il

[ N
L1 ¥ X

h*(7; St)

h(#;6,1)

0.001 T TTTT T T T T T T T T T TTTTT

T 1 I
T T
14 16 0.1 1 10
f
ghost FIG. 4. Residual radial distribution function for the ghost runs correspond-
TIIonzem ing to the slices in Fig. Inote the curve corresponding to=81 is not
----- ofm =035 shown since it is essentially zero except for statistical noise

Substituting Eq{(18) and simplifying, we arrive at the fol-
lowing constraint for the correction function:

1 1 (%o ® I
1 Tsf h*(f)fzd?zf (&, SHT (2T
3 o0°Jo 1

9
3
74
6
544
4
34

=d(a,SY, (20

wheref(r) is defined such that

: H zsé;é'gofl ] ! z%'s%x';a;
7
FIG. 3. Residual radial distribution function at=St.0 for ghost particles wf(r_)?sz: 1 (22)
(solid line) and finite-volume particles of size=0.0875, 0.175, and 0.35 in '
(a) semilog andb) logarithmic coordinates. Notice that the curves converge

at largef, however there is a systematic deviation of the finite-volume rrdfs
from the ghost a$ approaches each respective IV. GHOST PARTICLES

Ghost particle simulations were performed on & B4-

tice over the range: ©St<4. Figure 4 show$* (r) for the
whereh* (;St) is the ghost particle rrdfp (o, St) is a nor-  particle fields corresponding to the slices shown in Fig. 1
malization factof{see Eq.(20) for its definitior], f(r;o, St) (the curve for S£0 has been omitted since it is zero to
is a normalized correction function that accounts for finite-within statistical error. Notice that all of the curves have a
size effects[see Eq.(21) for the normalizatioh and r  similar shape—in all cases a nearly lindar log—log coor-
=r/o. The decomposition is useful since it allows for a dinate$ section for smalf followed by a more rapidly de-
separation of the turbulence—particle interaction—capturedreasing section at large
by the ghost correlation—from the “microphysics” associ- This suggests the following functional form fof (; St)
ated with particle collisions—captured by the correction o " A
function f(r;o,St). It is expected that the turbulence— h*(r;Sh=cor ~*tex —c,r], (22)
particle interaction is generic, whereas the microphysicalvherec,, ¢;, andc, are (in principle) all functions of St.
contribution is sensitive to the specific treatment of the col-These coefficients—extracted by a least-squares fit of each
lisions. For example, simulations that allow for inelastic col-h* (1;St) curve—are plotted in Fig. 5 as a function of St. The
lisions, coagulation, or incorporate hydrodynamic, moleculawvalues ofc, show a strong St dependeri¢ég. 5a)], starting
or electrostatic interactions between the particles are likely tmear zero at small St, rising to a maximum a#8t9, and
yield similar ghost statistics but the correction functions maythen decaying as St is increased further. The coeffiggnt
differ. The present study will consider in some detail thehas a similar St dependence, although in this case the peak
correction function for hard-sphere elastic collisions. Al-occurs at St0.5 [see Fig. ®)]. An empirical fit of these
though the result is specific to that case, the general approaciefficients is given in Table Ill. Even though has a simi-

can be easily adapted to other circumstances. lar dependence on St ag andc,, we have elected to ne-

As both the ghost and finite-volume rrdf must satisfy theglect this in the curve fiti.e., we sett,=0.25 for all Stokes
integral constraint expressed in Hg3),%734it follows that:  number$. There are two reasons that drive this decision.
First, there is considerably more scatter in this coefficient.

f h(r)dr=f h* (r)dr. (19) Set_:on_d, this coeffici_ent _only affects_th_e curve at large
% % which is of less practical interest. Assigning a constant value
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FIG. 5. Coefficienty, c,, andc, [see Eq(22)]—obtained from a curve

fit of the DNS results—as a function of Stokes number. The solid line is a . . . S . .
curve fit of the coefficients as shown in Table III. FIG. 6. Comparison of the residual radial distribution function obtained

from the DNS with the proposed curve fit at the Stokes numbers indicated
on the graphs.

to ¢, does slightly alter the values of the remaining coeffi-

cients, but the shape of the rrdf is largely unaffected. o vary with St, but since it is the small valuesfothat are of
Figure 6 shows a comparison of the curve fit for greatest interest, the present fit is considered to be sufficient.

h* (r;St) (solid line) with DNS (open circle at St of 0.5,

1.0, and 2.0. The curve fit approximates the function well to

aboutr = 10; after this point, the fit decays more rapidly than V. CORRECTION FUNCTION

the DNS. Of course, this could be improved by allowing
The correction to the ghost particle correlation involves

two functions,® (o, St) andf(r;St). ®(o,St) can be evalu-
TABLE Ill. Coefficients for the correlation of the ghost particle rrdf, ateq analytlca_lly from_ Eq(20) by SUb_SUtUtmg Eq(22) for
h* (;St), given in Eq.(22). The empirical coefficients were obtained by a h* (r;St) and integrating. The result is

least-squares minimization of the DNS. (c1-3)
-~ COCZ ! ~
X Stu Xy Ste CID(St,a'):§+ o3 ¥(3—C¢1,C50), (23
Co=g,+ 5te G174, 7566 c,=0.25
where y(a,b) is the incomplete Gamma function defined
Xo=7.92 x3=0.61 as’
x,=1.80 x,=0.88
X,=3.29 x5=2.38

b
dy=0.58 d;=0.33 y(a,b)zf z@ Ve 7dz,
0
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5 TABLE IV. Coefficients for the curve fit fof (r;St) given in Eq.(25). The
154 @ T o = 00875 empirical coefficients were obtained from a least-squares minimization of
o om=017s the DNS.
IS O om=035
o b 56,7 St¥¥(1-0.957 St
. 0 T 119 5
. bl 8%74 St
& 05 b, 2 st58
£ bo(2+2b,+b2) b (15+ 12b,+4b2)
b3 1- b3 8b7/2
2 2
ansins . o
A A T T X o - and the coefficientby, by, b,, andb; are defined in Table
- - IV. The final term on the right-hand sidehs) of Eq. (25) is
S added to ensure that the integral constraint given in(Z%).
00 (1) is satisfied. Note that the constraint is satisfieddlrfinite
. mg&%‘;?w values of8; thus, the effect of this term over any specified
“ﬁg w0+ range ofr can be made arbitrarily small by decreasing the
02 o v value of § accordingly. For the sake of simplicity, all plots of
N %«;‘W Eq. (25 suppress this term under the assumption tha
] g%é’* sufficiently small that its contribution tb(r; St) is negligible
E0aqf T b over the range of shown.
NN The quality of the curve fit is demonstrated in Fig. 8,
omoogé’cpm P which shows the fits for particles of size=0.175 and
0.6 %:; o O oM=035 Stokes numbers at the two extren{€$=0.4 and S£4.0). It
is difficult to achieve the precision observed with the simpler
— T T T T T : ghost curves; however, E5) fits all of the runs to within
1.0 1. 20 2. 3.0 3. 4.

a maximum relative tolerance of 50%. Individual fits vary
_ and most of the errors are much smaller than this maximum
FIG. 7. Correction functionf(r;St), at(a) St=0.7 and(b) St=1.0. Note tolerance.

that by definition:f$f(r)r2dr=1.

~1

VI. IMPACT OF PREFERENTIAL CONCENTRATION
Recall that the coefficients,, c;, andc, are functions of ON COLLISION
Stokes numbefsee Table I} and so® depends explicitly
on the particle size parametes;, and implicitly on the
Stokes number.
f(r;St) can be extracted from DNS results for finite- g(f;Re, =54.5a4<1,0,St)

volume particles by evaluatin A n— —
particies by g 1+h*(F;SY+d(Sta)f(risy =1
h(F;,SY—h*(7;SY 24 =10 T=1 , (27)
®(0,St)

Figure 7 showd (r;St) for Stokes numbers of 0.7 and 1.0.
The results from different particle diameters appear to col-
lapse onto a single curve in this coordinate, suggesting thalt 25 —_—
the proposed decomposition is reasonable. Notice also tha

the results for the two Stokes numbers are quantitatively very
different. 15

The complete rdf can now be generated from the follow-
ing simple expression:

f(r;St=

A. Curve fit .

Based on considerations of functional form and o34
asymptotic behavior at small and large Stokes numbers anc
r, the following general expression was chosen:

0
) —boy2 b35 0.5 — ;120.0.0”.0.03594
f(r)=(bg—byy)e ¥ +?3+§: (25 T T T T T T T

1.0 15 20 25 3.0 35 4.0
T

0 [
‘Zo-ol) o 20002 L 0002 00gz e n gt b g
3

¢o
A—Qg%‘g"b
00

where
FIG. 8. Comparison of fitted correction functipsee Eq(25)] with DNS at

y=yr—1, (26) Stokes numbers 0.4 and 4.0 and particle diaméte0.175.
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and 0.1, are labeled on the grajh). Dependence on particle size parameter
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7

FIG. 9. Comparison of complete curve fit fo(T;o,St) with DNS. (a)
Dependence on Stokes numlias indicateflat c=0.175.(b) Dependence
on diametei(as indicateflat S=0.7. (c) Dependence on diameté&s indi-
cated at St=1.0.

the particle Stokes number with the parametevaried be-
tween 0.01 and 0.1. As preferential concentration vanishes in
the limits St=0 and Stso, the enhancement factor ap-
proaches unity in both limits. The peak in the factor occurs at
approximately St0.5 for all values ofos. Notice that en-
hancement factors greater than 100 can be reached under
some conditions, highlighting the very strong effect that
preferential concentration has on collision frequencies. A
less-expected result is that the magnitude of the enhancement
factor increaseswith decreasingparticle size, for fixed

whereh*, ®, andf are given in Eqs(22), (23), and (25),
respectively. Figure @) shows plots ofy(r;0.175,St)(note
that we omit the arguments Rand « for the sake of sim-
plicity) at several values of the Stokes number. Figur@s 9
and 9c) show similar plots at St0.7 and St1.0, respec-

tively, and three values af. Notice again that the curve fits Stokes number. The origin of this effect can be traced to the

are good, except at the smallest value of the particle Sizeshape of the rdf. To demonstrate this point, it is useful to

There the fit appears to systematically underpredict the Valu@onsider the behavior of EG8) in the limit &< 1 (for fixed
of g. It is believed that the majority of the error arises from Stokes number

the factor®.

The goal of this study is to quantify the impact that
preferential concentration has on the rate of collisions. Recall
that the enhancement factor for the collision kernel is given
by the rdf at contadisee Eq(2)]. According to Eq(27), this ~ We see that for a fixed Stokes numbg(g, St)e o~ °1(SY,
becomes which explains why the collision enhancement factor grows

- - - as o decreases. Physically, particles are able to pack into a
9(7,59=1+h"(o:S9+P(St.o)bo(SY. @8 smaller volume as their size decreases. &, St) is the
Notice that this factor depends on the particle Stokes numbeatio of the number of neighboring pairs divided by the ex-
and the dimensionless particle size parameter, Figure pected number, its value grows because the expected number
10(a) illustrates the dependence of the enhancement factor oranishes agr— 0. Notice that the divergence does not scale

bo(SH -
1+ (S_C]-(SDJCO( Sto (S, (29

limg(o,St=
0
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like o3, but is slower(i.e., c;<3), suggesting that the nu- the present DNS. We anticipate that a complete understand-
merator is also vanishing, but not fast enough to prevent thing of this parameter requires a combination of higher-
divergence ofg(o,St). We conclude that densésmalle)  resolution DNS, high-Reynolds-number experiments and
particles are able to concentrate more, at a given Stokesodern scaling laws that take into account turbulence
number, than less dense particles. intermittency*®

A clear illustration of this result is given in Fig. (). The dependence of the rdf on the Stokes number and
The enhancement factor is shown as a function of particlegliameter was explored. A decomposition of the rdf into a
size for density ratios of 10, 100, and 1000. Notice that theurbulence-dependent functigthe ghost rdfh* (f;St)] and
peak in the enhancement factor increases and shifts t@ microphysical correctiofd (o, St)f(r;St)] was proposed
smaller sizes with increasing particle density. Many aerosolo facilitate the modeling. The ghost rrdf—found by elimi-
systems have density ratios that are 1000 or greater. In theggting particle collisions in the DNS—depends on the Stokes
systems, preferential concentration is likely to play a signifi-number, but not the particle diameter. At smiglithe ghost
cant role, even at smaller values of the Stokes number. FQgf has a power-law dependence of the formf:, where
example, for particles with a density ratio of 1000, the en-integrability requires that,<3. At largerf the power-law
hancement factor exceeds 1(at 0.013, corresponding to @ gives way to an exponential tail, suggesting that the ghost

Stokes number of only 0.17. ~rrdf  function takes the general formh*(r;St)
A qualitative understanding of the effect that preferenualzcof—cle—fm where the coefficients, andc; are given in

concentration has on the particle size distribution @oagu-  1t4pje 111
lating aerosol also can be obtained from Fig(H0An illus-
tration of this point is shown for the density ratio of 10 case.

An initially monodisperse system of particles of size o o, ® (o, St)f(r;St). The integral constraint given in

:.0'02 (say W'." C(.)Hlde and cqagulate o prodL_Jce_ dimers, Eq. (21) allowed us to obtain a closed form expression for
trimers, etc. with time. The points on the chart indicate sev-_ . st Th del for f(rst) i b “byy?
eral generations of particles. Notice that each new generatiocﬁéas/_%;ﬁ eh mo _e\/_o_rl (r,d )h IS (bf?_ _ 1y;e )
of particles coagulates faster than the parents’ generatiof 3olf™ 7, Wherey = r— : and t € coe iclents,, l’h
Such a trend tends to broaden the particle size distribution &2+ @ndbs are given in Table IV. It is important to empha-
least until the peak in the enhancement factor is reached &2€ that the correction function depends on the microphys-
&=0.2. This suggests an important mechanism by whicHCS: thus, changes in the treatment of the near-contact motion
preferential concentration can broaden the particle size di€f particles such as the inclusion of hydrodynamic and/or
tribution of a coagulating aerosol, and may explain the ap_molecular interactions, inelastic collisions, coagulation, etc.
pearance of broad particle size distributions in certain appliM@y change the correction function. Nevertheless, the ap-

cations(e.g., see Ref. 8 for a detailed discussion of broadProach outlined here can be easily extended to these other

droplet spectra in clouds and Ref. 38 for a recent numericafircumstances. _
study of coagulating aerosols The combination of the ghost and correction rdfs enables

an easy estimation of “enhancement factors” for the colli-
sion kernel. The factors are strong functions of the particle
VIl. CONCLUDING REMARKS Stokes numbeandthe size parametet;. The latter depen-

The influence of preferential concentration on particledence can be thought of, alternatively, as a dependence on
collisions has been investigated using direct numerical simuthe particle-to-fluid density ratio. More dense particlasa
lations. Due to the quadratic dependence of the collision frediven Stokes numbgiare able to concentrate more strongly
guency on particle concentration, the net effect of preferenand thus achieve higher enhancement factors. Physically,
tial concentration is to increase the collision rate above thagmaller particles are able to pack more tightly into the con-
of a uniform distribution of particles. From the collision for- centrated regions, thus allowing for greater super-
mula of Sundaram and Collirf§,it is known that the en- populations at small separations. The sensitive dependence
hancement factor for the collision rate is given gfo), of preferential concentration on the particle Stokes number
whereg(r) is the particle radial distribution functiofrdf). ~ has been reported in several earlier studies; however, the
Under dilute conditions and in the absence of preferentialmportance of the size parameter is only now coming to
concentration, this factor is expected to be approximatelyight. The reason is that most earlier work focused on point-
unity. For strongly concentrated systems, it can reach valuegass particléd=2>4%0r particles of fixed siz€ and so they
that exceed 100. did not fully explore this parameter. Its role in aerosols with

A systematic analysis of the rdf has been undertaken imlensity ratios that exceed 1000 may be significant.
order to understand its dependence on the system parameters. Finally, a qualitative picture of how preferential concen-

It is argued that under dilute conditions, its dependence otration influences the particle size distribution of a coagulat-
the system loading may be neglected. The dependence of tlireg aerosol has been discussed. For small particles, it is an-
rdf on the Reynolds number was separated from its deperiicipated that the degree of preferential concentration will
dence on the other parameters, allowing us to define a singlacrease with each subsequent generati¢dimer, trimer,
factor I'(Re,) that accounts for the Reynolds number. How- etc), implying there is effectively a higher-order dependence
ever, we do not speculate on the functional forml¢Re,)  of the collision kernel on the diameter. Such a dependence
due to the limited range of the Reynolds number achieved itends to broaden the particle size distribution. Indeed, the

The correction function for elastically rebounding hard
spheres in the absence of hydrodynamic interactions takes
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