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Using a simple model, we study the transport dynamics of active, swimming parti-
cles advected in a two-dimensional chaotic flow field. We work with self-propelled,
point-like particles that are either spherical or ellipsoidal. Swimming is modeled as
a combination of a fixed intrinsic speed and stochastic terms in both the translational
and rotational equations of motion. We show that the addition of motility to the par-
ticles causes them to feel the dynamical structure of the flow field in a different way
from fluid particles, with macroscopic effects on the particle transport. At low swim-
ming speeds, transport is suppressed due to trapping on transport barriers in the flow;
we show that this effect is enhanced when stochastic terms are added to the swimming
model or when the particles are elongated. At higher speeds, we find that elongated
swimmers tend be attracted to the stable manifolds of hyperbolic fixed points, leading
to increased transport relative to swimming spheres. Our results may have signifi-
cant implications for models of real swimming organisms in finite-Reynolds-number
flows. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754873]

I. INTRODUCTION

For decades, measurements of how material is advected by fluid flows have been central both
to the design of practical, engineering systems and to the understanding and prediction of naturally
occurring flows. Since fluid mechanics has played a central role in the development of nonlinear
dynamics more broadly, transport also plays a key role in dynamical systems theory.

Recent years have seen significant interest in the transport of material that does not exactly follow
the fluid but that instead has additional terms in its equations of motion. Often, these additional terms
arise from purely passive, static effects such as density mismatches between the advected material
and the carrier fluid1, 2 or nontrivial particle shape.3, 4 But in many cases the transported material may
have its own internal dynamics. In this case, it is said to be active.5 The dynamics of active materials
may even feed back on the flow field and modify it, though they need not. Although activity can
be due to chemical6 or mechanical7 effects, it is perhaps most frequently biological:8 that is, the
transported particles are alive and can swim.

Swimming organisms exist on many size scales, and therefore in many flow regimes. Each
regime lends itself to a different set of questions. For single-celled organisms at the micro-scale,
where the Reynolds number is low and flows are well modeled as Stokes flows, researchers have
long studied the ways in which swimmers propel themselves.8–11 Since in this regime hydrodynamic
interactions are long range and strong, studies have also focused on the collective behavior that
arises in suspensions of microorganisms.12–14 For macroscopic organisms such as fish, researchers
also study propulsion with the hope of creating efficient, biomimetic swimming machines.15 Far less
work, however, has focused on the intermediate size regime, where the organisms are large enough
that the flow can have nontrivial dynamics but the swimmers are weak enough that their intrinsic
speed is small compared with the external flow. It is on this regime that we focus.
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The combination of swimming and complex flow fields has been shown to lead to qualitatively
new behavior. For particles that are gyrotactic and can feel non-negligible gravitational torque, for
example, swimming can lead to the accumulation of swimmers onto thin structures16, 17 in shear
flows. Even in steady flows, gyrotaxis and swimming can produce a wide array of patterns.18 In
chaotic flows, it has been shown that swimming particles tend to accumulate in the chaotic regions as
their speed increases.19 We recently showed, however, that swimmers can also become trapped for
very long times near the boundaries between chaotic and regular flow regions, with consequences
for their long-time transport.20

Here, we build on our previous work by taking into account the nontrivial shape of real swimming
organisms.21 We also extend our model to include stochastic motion in addition to deterministic
swimming, in an attempt to model organisms more realistically. We find in all cases that the addition
of intrinsic motility to the particles allows them to interact with structures in the flow field in
ways that simple fluid elements cannot. For spherical particles, this interaction takes the form of
trapping near Kolmogorov-Arnold-Moser (KAM) tori in the background flow field, as we found in
our previous work,20 which leads to a suppression of the long-time transport of swimmers relative to
fluid elements. We find that this hydrodynamic trapping effect is robust to the addition of stochasticity
in the swimming model, and is in fact enhanced by it. When we change the shape of the swimmers
from spheres to ellipsoids, we find more complex behavior. For small swimming speeds, transport
is reduced even more than it is for spheres: the traps near the KAM tori appear to become attractors.
At higher speeds, however, the transport of ellipsoids is enhanced relative to spheres, an effect that
is due to the attraction of the ellipsoids to the stable manifolds of the hyperbolic fixed points in the
flow. Thus, we show that the dynamical structures in the flow field interact with particle motility in
nontrivial ways, and should be considered in models of, for example, organism encounter rates.22

We also suggest that the variation from strongly suppressed to strongly enhanced transport we find
for ellipsoidal particles over a small range of swimming speeds may be a factor in the tendency of
real organisms to be aspherical.

We begin below by describing the properties of the advecting flow field and the details of the
swimmer model in Sec. II. In Sec. III, we present our results for spherical particles. We focus sepa-
rately on the cases of deterministic swimming, random motion added to the translational equations
of motion, and random motion added to the rotational equation of motion. Then, in Sec. IV, we
describe our results for the case of elongated, ellipsoidal swimming particles. Finally, we summarize
our results and draw conclusions in Sec. V.

II. MODEL

A. Flow field

We are interested in the behavior of swimming particles suspended in a background flow that has
nontrivial dynamics. If the flow field is too complex, however, we lose the ability to understand the
detailed origin of any effects we observe. Thus, we choose to advect our swimmers in an analytically
specified flow field that has well studied dynamics rather than to simulate, for example, a fully
developed turbulent flow. We use a two-dimensional oscillating cellular flow,23 following previous
work,19, 20 since the dynamics of fluid elements in it are well characterized and understood.2, 23–25

Although this flow is two-dimensional and therefore cannot strictly exist in the real world, many of
the geophysical flows that carry swimming organisms can be modeled as quasi-two-dimensional due
to stratification and rotational effects. Additionally, due to effects such as gyrotaxis, small marine
organisms often self-organize into confined thin layers.17 Thus, our results are likely not wholly
unrelated to real flows.

The flow field is given by the streamfunction

ψ(x, y, t) = U

k
sin[k(x + B sin �t)] sin ky, (1)

where U sets the velocity scale and 1/k is the characteristic length scale. � controls the rate at which
the flow field oscillates, and the oscillation amplitude is given by B. The components of the flow
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FIG. 1. (a) Snapshot of one unit cell of the flow field at zero phase (that is, for t such that sin �t = 0). Arrows show the local
fluid velocity, and the shading shows the vorticity. As time progresses, the flow field oscillates sinusoidally in the horizontal
direction. (b) Poincare section (at zero phase) for a fluid element initially in the chaotic sea, for B = 0.12 and � = 6.28.
Only one quarter of the unit cell is shown (corresponding to the lower-left vortex in (a)); the rest of the unit cell is related by
symmetry. The central empty region is a period-1 elliptic island; the surrounding empty regions are a period-3 island chain.
(c) Finite-time Lyapunov exponent (FTLE) field at zero phase. Again, only one quarter of the unit cell is shown.

velocity are then given by ux = ∂ψ /∂y and uy = −∂ψ /∂x. Thus, the streamfunction ψ plays the
role of a Hamiltonian for the two-dimensional fluid mechanics, with the spatial dimensions x and y
acting as the conjugate position-momentum pair; all the formalism and results of Hamiltonian chaos
are then applicable to this flow.

For the time-independent, autonomous case (B = 0), this system is integrable and the flow mixes
poorly: fluid elements move on periodic, closed orbits within vortical cells. Once time dependence
is introduced, however, the extra degree of freedom admits chaotic particle trajectories.26, 27 In this
regime, the flow field consists of quasi-periodic elliptic islands separated by a chaotic sea. The
boundaries of the elliptic islands are transport barriers (KAM tori) that are impenetrable for fluid
elements. The parameters B and � control the detailed shape and character of the elliptic islands
and chaotic sea.20

Here, we present results for B = 0.12 and � = 6.28. As shown in Fig. 1, this choice of parameters
leads to a large period-1 island in each cell surrounded by a smaller period-3 island chain. Other
choices of B and � lead to dynamics that are different in detail but that are not qualitatively different.20

In Fig. 1, we show the flow field itself, a Poincare section for fluid elements in the chaotic sea, and the
finite-time Lyapunov exponent field for the flow. We calculate the finite-time Lyapunov exponents by
computing the eigenvalues of the Cauchy–Green strain tensor for this flow, as described in Ref. 28.

B. Swimmers

We model the swimmers as noninteracting, point-like, neutrally buoyant ellipsoids.19, 20 Each
swimmer has an intrinsic velocity vector us with a constant magnitude us that points along the long
axis of the swimmer. Even though the background flow is not fully turbulent, we are well outside
of the Stokes flow regime. Thus, we assume one-way coupling with the flow field u, so that the
swimmer feels the flow but does not modify it (unlike some other types of advected active matter).
Although this approximation would be inappropriate in a Stokes flow, it is valid for neutrally buoyant
point-like particles in a finite-Reynolds-number flow where the fluid inertia is non-negligible. Since
we do not include hydrodynamic interactions or other Stokes-flow effects in our model, we are
assuming that the Reynolds number of our flow is finite.

The swimmer’s overall velocity is given by the vector sum of the background fluid velocity and
its intrinsic swimming vector. The direction of the intrinsic vector us can change via coupling to the
flow vorticity and rate of strain. We emphasize that we include no inertial effects1 or gyrotaxis18 in
our model; our swimmers are very simple.

In addition to these deterministic effects, some of which we studied previously,20 we now also
add stochastic terms to the equations of motion in order to capture the randomness that is often found
in the motion of small swimming organisms.29, 30 We model this stochasticity by adding Gaussian
random noise to the equations of motion for the swimmer. Therefore, the swimmers evolve via the
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stochastic equations

dx =
[
∂ψ

∂y
+ vs cos θ

]
dt + σsdWx ,

dy =
[
−∂ψ

∂x
+ vs sin θ

]
dt + σsdWy, (2)

dθ =
{
α

[
1

2

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
cos 2θ − ∂2ψ

∂x∂y
sin 2θ

]
− 1

2

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)}
dt + σr dWr .

Note that the rotational equation of motion is essentially Jeffery’s equation3 with an additional
stochastic term. Here, we have nondimensionalized all lengths by 1/k, velocities by U, and times
by 1/(Uk), the characteristic flow scales. Thus, the nondimensional swimming velocity is given by
vs = us/U , the nondimensional strength of the lateral Gaussian noise by σ s, and the nondimensional
strength of the rotational Gaussian noise by σ r. Wx , Wy , and Wr are Wiener processes, and θ is the
angle between the direction of the intrinsic swimming vector us and the horizontal axis. α is the
eccentricity of the ellipsoids (given by α = (γ 2 − 1)/(γ 2 + 1), where γ is the aspect ratio); when
α = 0, the swimmers are spherical, and when α = 1, the swimmers have infinite aspect ratio. To
study the swimmer dynamics, we integrate these equations numerically and analyze the resulting
trajectories for many swimmers. We note that we do not impose periodic boundary conditions on
the swimmer trajectories.

III. SPHERICAL PARTICLES

A. Deterministic swimming

Unlike fluid elements, the swimmers do not obey Hamiltonian equations of motion due to their
intrinsic motility. Thus, they are not confined by the same transport barriers as fluid elements are, and
can cross into or out of the elliptic islands in the background flow field. Previously, we considered the
dynamics of deterministic, spherical swimmers,20 with the noise terms in Eq. (2) set to zero. Here,
we briefly summarize the results of our prior work before considering the effects of stochasticity on
spherical swimmers; we consider the effect of aspherical shape in Sec. IV.

Since the swimmers can pass through the KAM tori bounding the elliptic islands, they may
explore more of the flow domain than fluid elements can. How far the swimmers penetrate into the
elliptic islands, however, is a function of their intrinsic speed vs . Previously, we observed that, as
one would expect, very fast swimmers (those with vs > 0.065 for these flow parameters) can explore
the whole flow domain with equal probability: when the swimmers are fast enough, the effects
of the background flow are relatively weak. Slower swimmers, however, behave differently. Although
they can pass through the outer boundaries of the elliptic islands, they do not have enough motility
to penetrate into the cores of the islands, and they enter the islands with low probability. But because
entering and leaving the islands are symmetric processes, once they are in the islands they leave
them only with low probability. These dynamics lead to the formation of “traps” in the flow field
for swimmers.20 These traps form just inside the elliptic islands of the background flow, and can
confine swimmers for long times (thousands or tens of thousands of flow cycles) while they move
on nearly bounded orbits.

The effect of these dynamical traps is clearly seen in the transport statistics of the swimmers.
One might expect that adding motility to the particles should increase the rate at which they explore
the flow domain. Due to the traps, however, we found that the particle transport can actually be
decreased by adding motility, at least for small speeds. To quantify this effect, we studied the mean-
squared displacement statistics for particles initially in the chaotic sea. At long times, fluid elements
in this flow move diffusively;23 that is, 〈r2〉 = 4Dt, where r is the distance from the initial position, D
is a (chaotic) diffusion coefficient, and 〈 · 〉 signifies an average taken over an ensemble of swimmers
initially placed randomly in the chaotic sea. To measure D, we compute the displacement of this
ensemble of swimmers from their initial positions as they evolve according to Eq. (2), and then fit
the results to a linear power law. As shown in Fig. 2, the diffusion coefficients are suppressed relative
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FIG. 2. Chaotic diffusion coefficient D normalized by D0, the diffusion coefficient for fluid elements, as a function of the
swimming speed vs , for spherical swimmers with σ s = σ r = 0. Error bars are computed from the statistical fluctuations
between many sets of simulations. Two distinct regions of suppressed long-time transport are seen, corresponding to trapping
by the period-3 islands and by the period-1 islands.20

to D0, the diffusion coefficient for fluid elements, for swimmers with small but finite swimming
speeds. The effect is non-monotonic in vs : as we showed previously, each type of elliptic island in the
background flow has its own signature in the transport statistics.20 The first local minimum in Fig. 2
corresponds to trapping in the period-3 islands, while the second (at higher vs) is due to trapping in
the larger period-1 islands. We note that despite this trapping behavior, we do not observe sub- or
super-diffusive transients in the mean-squared displacement data.

B. Translational stochasticity

Having understood the effects of deterministic swimming in this system, we now introduce
stochasticity. In order to separate the various possible effects, we first consider only translational
stochasticity; that is, we choose σ s �= 0 in Eq. (2), but fix σ r = 0 and α = 0.

In Fig. 3, we show the chaotic diffusion coefficients for particles with vs = 0 but with σ s

�= 0. In addition to modeling randomly swimming organisms, this case captures the behavior of
colloidal or other simple Brownian particles in the presence of a background advecting flow (though
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0.7

0.8

0.9

1

1.1

σ
s

D
 / 

D
0

FIG. 3. Chaotic diffusion coefficient D normalized by D0 as a function of σ s, for vs = 0, σ r = 0, and α = 0. When compared
with Fig. 2, transport is more strongly suppressed, but the distinct signatures of each type of elliptic island are no longer
present.
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outside of the Stokes regime). Several features of the curve in Fig. 3 are noteworthy. First, strong
stochasticity (σ s � 1) leads to enhanced transport coefficients. The physics of this result is clear:
when the random motion along the particle trajectories is comparable in strength to the advective
forcing, the particles must move more rapidly. But the suppressed chaotic diffusion coefficients seen
in Fig. 2 are still present for σ s < 0.8, and in fact are suppressed more strongly than they are for
deterministic swimming. Additionally, the multiple local minima in the diffusivity curve in Fig. 2
that corresponded to the two types of elliptic islands in the background flow are now no longer
present; rather, only a single minimum occurs in Fig. 3.

To understand this behavior, we consider again the mechanism leading to the transport sup-
pression in the deterministic swimming case. As their intrinsic speed increases, the swimmers can
begin to cross the KAM tori surrounding the elliptic islands. Since vs remains small, however, they
still move approximately as fluid elements. They, therefore, move on nearly bounded orbits inside
the islands, and remain trapped there for long times. As vs increases, the swimmers can penetrate
further and further into the islands, and small islands confine them only weakly. This effect is
the origin of the distinct signature of each type of elliptic island. For the parameters considered
here, for example, swimmers with small vs can penetrate into the (weaker) period-3 islands but not
into the period-1 islands. They can therefore be trapped only by the period-3 islands. For higher vs ,
the weak period-3 islands no longer influence their dynamics, but the period-1 islands play a much
larger role since the swimmers can move deeper into them. Once vs is high enough, the period-1
islands are also not strong enough to influence their dynamics, and the transport is enhanced.

When we introduce random motion for the swimmers rather than deterministic swimming,
the picture changes. The swimmers can now wander deep into the strong period-1 islands even
for relatively small values of σ s, leading to a stronger, single feature in the transport statistics.
To illustrate this effect, we show in Fig. 4 the average time to cross a flow cell boundary for the
global minima in Figs. 2 and 3, namely a deterministic swimmer with vs = 0.004 and a stochastic
swimmer with σ s = 0.15. More intense regions in Fig. 4 correspond to stronger traps: the more
strongly confined a swimmer is, the longer it will take it to wander between flow cells. The cases of
deterministic and stochastic swimming are clearly quite different. Even though the largest average
trapping times are similar, the spatial distribution varies significantly. In the deterministic case
(Fig. 4(a)), the swimmers can enter only a small region of the period-1 elliptic island around its
periphery; when it does, however, it tends to remain there for a long time. The stochastic swimmer,
on the other hand, can explore the entire flow domain, but its transport is strongly suppressed while
it is inside the period-1 island. For values of vs high enough for a deterministic swimmer to reach
the centers of the period-1 islands (for vs � 0.025), the dynamics of the swimmers are different
enough from those of fluid elements that the trapping is fairly weak, as can be seen in Fig. 2. Thus,
the phenomenon of trapping is not only robust to noise along the swimmer trajectories but is in

(a) (b)

 

 

0 500 1000 1500

FIG. 4. Average time for a swimmer to cross a cell boundary as a function of its spatial location for (a) vs = 0.004 and σ s

= σ r = 0 and (b) σ s = 0.15 and vs = σr = 0. Only one quarter of the flow domain is shown. The shade/color bar gives the
cell-crossing time in flow cycles. For the deterministic swimmer in (a), trapping is strong in the period-3 islands and on a
small ring just inside the period-1 island. The purely stochastic swimmer can wander into the core of the period-1 island,
where trapping is strongest.
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FIG. 5. Chaotic diffusion coefficients D in the two-dimensional parameter space spanned by vs and σ s for σ r = 0. The
shade/color bar shows D relative to D0. The black line separates the regions of suppressed transport (D/D0 < 1) from those
of enhanced transport (D/D0 > 1).

fact enhanced by it. Similar results have been found previously for chaotic scattering systems, and
a similar mechanism was proposed.31

In order to better model real organisms, we now consider the case of both vs �= 0 and σ s �= 0:
swimmers that combine deterministic and stochastic motion. In Fig. 5, we show the relative diffusion
coefficient for such swimmers in the two-dimensional space spanned by vs and σ s. The basic features
seen in Fig. 5 are similar to the two limiting cases we have already considered. There is a large region
of parameter space in which transport is suppressed, although it will be enhanced if either vs or σ s

is large enough. Additionally as the stochasticity in the system increases, the detailed dependence
of transport suppression on the flow topology (with a separate signature for each elliptic island)
disappears. This result suggests that the basic phenomenology of trapping and reduced transport
that we observe in our idealized system is likely robust even in more realistic situations that include
randomness.

C. Rotational stochasticity

Adding rotational rather than translational noise to the swimmers (that is, setting σ s = 0 but
σ r �= 0) changes the picture dramatically. Now the stochasticity in the system only reorients the
spherical swimmer without changing its position. For this reason, setting σ r �= 0 and vs = 0 is
identical to the case of a fluid element: reorienting a passive sphere changes nothing about its
motion. When vs is finite, however, rotational diffusion can change its motion significantly. Figure 6
shows the relative chaotic diffusion coefficients for the (σr , vs) parameter space. In comparison with
translational diffusion (Fig. 5), rotational diffusion suppresses transport for a much larger fraction of
parameter space, and the strongest suppression occurs for high values of σ r rather than low values,
in contrast to σ s.

This result is straightforward to understand. All that finite rotational noise can do is reorient the
swimmer; as long as vs remains small, the swimmer will still take small steps (relative to the imposed
fluid advection). With large σ r, however, these steps will be in essentially random directions. This
limit is thus similar to the moderate-σ s, low-vs regime in Fig. 5. Physically, the transport suppression
results from the ability of the rotationally diffusing swimmers to wander into the cores of the elliptic
islands even for small vs . To illustrate this effect, we show in Fig. 7 the average times to cross flow
cell boundaries for vs = 0.004 (the same case as shown in Fig. 4(a)) and four different values of σ r.
As σ r increases, the swimmers wander deeper into the elliptic islands, and are trapped there for very
long times.

Downloaded 26 Aug 2013 to 134.106.81.21. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



091902-8 N. Khurana and N. T. Ouellette Phys. Fluids 24, 091902 (2012)

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

v
s

σ r

 

 

D
 / 

D
0

0.8

0.9

1

1.1

1.2

1.3

FIG. 6. Chaotic diffusion coefficients D in the two-dimensional parameter space spanned by vs and σ r for σ s = 0. The
shade/color bar shows D relative to D0. The black line separates the regions of suppressed transport (D/D0 < 1) from those of
enhanced transport (D/D0 > 1). Transport is suppressed in larger region of parameter space than it was for purely translational
stochasticity case in Fig. 5.

IV. ELLIPSOIDAL PARTICLES

We have shown above that adding noise to the motion of the swimmers changes the details
of the trapping but does not fundamentally alter their behavior. Changing their shape, however, is
qualitatively different. We varied the shape of the swimmers by changing their eccentricity α from α

= 0 (spheres) to α = 1 (infinite-aspect-ratio ellipsoids). As can be seen by studying Eq. (2), allowing
α to be nonzero changes the nature of the problem. In addition to coupling the swimmer to the rate
of strain in the flow field instead of just the vorticity, nonzero α also allows true attractors into the
system, since the trace of the Jacobian J of the dynamical system is given by

Tr(J ) = −α

[(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
sin 2θ + 2

∂2ψ

∂x∂y
cos 2θ

]
. (3)

Thus, for α �= 0, Liouville’s theorem no longer applies to the system and the swimmers can aggregate.
This modification of the dynamical system leads to significant changes in the behavior of the

swimmers. In general, we find that particle elongation enhances all of the interactions between the
flow and the swimming: if the transport of a swimming sphere is suppressed relative to a fluid
element, the transport of an ellipsoid will be suppressed more, while if the transport of a sphere is
enhanced, the transport of an ellipsoid will be enhanced more. Thus, elongation tends to increase
the sensitivity and response of the swimmer to its dynamical environment.

To illustrate these effects and to demonstrate the mechanisms that lead to the enhanced sensitiv-
ity, we show in Fig. 8 results for ellipsoidal swimmers at a low swimming speed of vs = 0.002. At
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FIG. 7. Spatially resolved maps of the average time to cross a cell boundary for vs = 0.004, and σ r = (a) 0.1, (b) 1.0,
(c) 3.0, and (d) 6.0. σ s = 0 for all panels. The shade/color bar gives the cell-crossing times in flow cycles. The times are
much longer than the comparable vs = 0.004, σ r = 0 case shown in Fig. 4(a).
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FIG. 8. (a) Chaotic diffusion coefficient D normalized by D0 as a function of eccentricity α for deterministic swimmers with
vs = 0.002. Transport is much more strongly suppressed for ellipsoids of intermediate eccentricities than it is for spheres.
(b)–(d) Probability density functions of swimmer position for (b) α = 0, (c) α = 0.5, and (d) α = 1. The strong suppression
of transport for ellipsoidal particles is due to the formation of attractors.

this value of vs , spherical swimmers are primarily influenced by the period-3 islands in the flow, and
their transport is suppressed relative to fluid elements. In Fig. 8(a), we show the chaotic diffusion
coefficients for swimmers with vs = 0.002 as a function of their eccentricity α. As α increases, the
behavior changes wildly, and the chaotic diffusion coefficient can drop to less than 20% of the value
for fluid elements. The maximum suppression of the transport occurs for α ≈ 0.55, correspond-
ing to an aspect ratio of about 1.85. For larger eccentricities, the transport becomes faster again,
approaching the value for fluid elements at α = 1 (infinite aspect ratio).

To understand the mechanism behind this behavior, we show in Figs. 8(b)–8(d) the probability
density functions (PDFs) of swimmer position (essentially the likelihood of finding a swimmer in
a given location) for α = 0, 0.5, and 1. We consider only swimmers with initial positions in the
chaotic sea. As discussed above, spherical swimmers (Fig. 8(b)) tend to be in the chaotic sea, which
they explore uniformly, but can also enter the periphery of the period-3 and period-1 islands. If they
enter these islands, they remain stuck for long times, but the probability of entering the islands is low
at this value of vs . The situation is markedly different for α = 0.5 (Fig. 8(c)). Now, the swimmers
are highly likely to be found just inside the period-1 island. In fact, it appears that this region is
an attractor for these ellipsoids: once a swimmer enters this region, it does not escape. The highly
suppressed transport we see for this value of α is thus due to the formation of this attractor. For
higher values of α, however, the attractor disappears, and the transport of highly elongated ellipsoids
is similar to that of spheres. Nevertheless, as shown in Fig. 8(d), their spatial distribution is quite
different. High-α ellipsoids do not enter the period-1 island at all (compare with the Poincare section
for fluid elements show in Fig. 1(b)), and do not explore the chaotic sea uniformly. Instead, as
described further below, these highly elongated particles interact strongly with the Lagrangian strain
field, which is itself nonuniform.

In Fig. 9, we show the same quantities plotted in Fig. 8 but for a high speed of vs = 0.08. At this
speed, we expect the transport of the swimmers to be enhanced relative to fluid elements, and indeed,
as shown in Fig. 9(a), the chaotic diffusion coefficient for spherical swimmers with vs = 0.08 is
more than 2.5 times higher than it is for fluid elements. But here again we find a strong dependence
on swimmer shape: for ellipsoidal swimmers with α � 0.3, the chaotic diffusion coefficient is nearly
4 times higher than it is for fluid elements.
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FIG. 9. (a) Chaotic diffusion coefficient D normalized by D0 as a function of eccentricity α for deterministic swimmers
with vs = 0.08. For this speed, transport of ellipsoidal particles is strongly enhanced relative to spheres. (b)–(d) Probability
density functions of swimmer position for (b) α = 0, (c) α = 0.5, and (d) α = 1. The strong enhancement of transport is due
to the clustering of ellipsoids on the stable manifolds of the hyperbolic fixed points.

To understand this result, we turn again to PDFs of the swimmer positions, shown in Fig. 9 for
α = 0, 0.5, and 1. At vs = 0.08, spherical particles explore the entire flow domain with roughly equal
probability, as shown in Fig. 9(b). But the situation is very different for higher eccentricities. For
α � 0.3, the PDFs of swimmer position begin to develop detailed spatial structure, which becomes
very strong as α → 1. Comparing Fig. 9(d) with Fig. 1(c), we see that the structures picked out by
elongated swimmers coincide with regions where the Lyapunov exponent is large, which themselves
map out the stable manifolds of the hyperbolic points in the flow.32 This behavior is somewhat
reminiscent of passive ellipsoids in chaotic flows, which show alignment with the manifolds;4 here,
however, the swimmers not only align with the manifolds but also aggregate on them. The attraction
of elongated swimmers to the stable manifolds also explains why their transport is enhanced relative
to spherical particles even though the spheres explore more of the flow domain, since the stable
manifolds are some of the fastest-moving regions in the flow.

The existence of attractors in the dynamics for ellipsoidal particles has strong implications for
the rate at which swimmers encounter one another. To demonstrate this effect, we fix the number
density of swimmers in our system (we use a population of 1000 swimmers in each quarter of the
flow domain) and consider the average distance δNN between a swimmer and its nearest neighbor.
In Fig. 10, we show δNN, scaled by the value for passive particles at the same number density, as a
function of α for vs = 0.002 and 0.08. The attractor seen in Fig. 8(c) is clearly evident in Fig. 10(a),
and leads to swimmers that are much more likely to encounter each other. But Fig. 10(b) shows that
encounter rates are also enhanced for elongated swimmers at high vs even though their transport
is also enhanced. Thus, more rapid transport of the swimmers does not necessarily lead to lower
encounter rates, since the elongated swimmers still tend to accumulate on dynamical flow structures.

As a final note, we also considered the effects of adding stochastic terms to the equations
of motion for the ellipsoids. The results are similar to those we found for spherical swimmers.
Adding stochasticity to the rotational equation of motion does not change the swimmer behavior
qualitatively. Translational stochasticity allows the swimmers to wander into the center of the elliptic
islands even for small swimming speeds. It smooths out some of the more detailed signatures of the
flow structures, and appears to shrink the basins of attraction for the attractors. The essence of the
behavior we observe for the ellipsoids, however, remains the same.
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FIG. 10. Mean nearest neighbor distance δNN scaled by the value for passive particles δ0 as a function of eccentricity for
(a) vs = 0.002 and (b) vs = 0.08. High aspect ratio swimmers tend to be closer to each than spherical swimmers are, leading
to enhanced encounter rates.

V. SUMMARY AND CONCLUSIONS

We have studied the dynamics of model swimming particles in a chaotic advecting flow field. By
explicitly adding stochastic terms to the equations of motion for the swimmer, we have shown that
not only are our previous results showing a suppression of long-time transport for small swimming
speeds20 robust to noise, but that they are in fact enhanced by it. We showed that both with and
without stochasticity this suppression of transport is due to the interaction of the swimmers with
dynamical structures (in this case transport barriers and non-mixing islands) in the flow field.

We also found that changing the shape of the swimmers leads to richer behavior and enhancement
of the effects of the particle motility: when spherical swimmers show reduced transport, the transport
of ellipsoidal swimmers is more strongly reduced, and when spherical swimmers move faster than
passive particles, ellipsoidal swimmers move yet faster. Thus, for the same range of accessible
swimming speeds, an elongated body shape allows a swimmer to respond more strongly to the flow
field. Additionally, we showed that elongated swimmers tend to lie closer to their neighbors than
spherical swimmers do due to their tendency to cluster on the dynamical flow structures. These effects
may be a factor in explaining the observation that most real swimming organisms (zooplankton, for
example) are not spherical.
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