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of Xu and colleagues1 are unlikely to be able 
to provide the distinction, because they probe 
the magnetism at elevated energies, where 
it is conceivable that there is no qualitative 
difference between the two pictures. Some 
researchers believe that it would be possible 
to find a distinction by determining the 
Fermi volume (the momentum-space volume 
enclosed by the Fermi surface), which 
counts the number of effectively mobile 
carriers in the system, in the absence of 
superconductivity or magnetism3,5.

Turning to the question of what this has to 
do with superconductivity, there is a partial 
consensus that antiferromagnetic fluctuations 
are responsible for pairing in copper oxide 
superconductors. Is the hourglass spectrum 

crucial to this explanation? Is the hourglass 
spectrum related to so-called stripes6,7 — that 
is, the tendency of electrons to self-organize 
in rivers of charge that have been observed in 
some of the copper oxide superconductors? 
Stripes might in fact be one way (the phase-
separation way) to reconcile the coexistence 
of local moments and charge carriers. 
However, at present the indications of true 
stripe order in BSCCO are weak, and more 
experiments are called for. Proposals linking 
stripes to the superconducting pairing 
mechanism have been put forward, but none 
has been developed into a testable theory 
of superconductivity.

These questions are central to the 
intriguing puzzle of superconducting copper 

oxides. We still have some way to go to solve 
it, but with key experiments such as the 
present one and state-of-the-art numerical 
simulations, both guiding phenomenological 
work, we are making steady progress. ❐
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Einstein’s son Hans Albert was once asked 
by his father, “How does rain fall?” “In 
drops”, was the young boy’s reply1. “That 

is very important as you will see”, his father 
advised. The discrete nature of rainfall may 
have inspired Einstein to introduce the idea 
of wave–particle duality to explain blackbody 
radiation as a particle noise added to the wave 
noise. Indeed, just as distribution of photon 
wavelengths in a blackbody spectrum follows 
the Planck formula, the size of droplets 
in rain often follows a size distribution 
described by the Marshall–Palmer formula2. 
However, although the microscopic origin 
of thermal radiation is now well known, for 
over 60 years our understanding of rain has 
remained largely empirical. On page 697 of 
this issue3, Villermaux and Bossa breathe new 
life into this old topic by drawing a physical 
link between the observed dependence of the 
average droplet diameter, d0, and the rainfall 
rate, R. They ask not what our appreciation of 
rain can do for physics but what physics can 
do for our appreciation of rain.

The most commonly quoted property 
of rain is its fall rate, R, in millimetres per 
hour (notably in units of speed rather than 
volume). So why should we care about 
raindrop size distribution? There are many 
reasons. The radar echo from a single 
raindrop is proportional to the sixth power of 
its diameter, d, but the rainfall rate at ground 
level depends on both volume (d3) and 
terminal velocity (u(d) ≈ d1/2 under turbulent 
conditions), and so scales approximately in 

proportion to d7/2. Consequently, to correctly 
interpret radar data — the principal means 
of measuring rain remotely — it is essential 
to know something about the size of the 
raindrops from which it was obtained2.

According to the Marshall–Palmer 
formula, the number of raindrops of diameter 
between d and d + dd is n(d) = n0ed/d0, where 
n0 is a constant fitting parameter with units 
of (length)−4 (per volume and per size bin). 
Although Villermaux and Bossa3 provide a 
general argument to derive the rainfall–size 
scaling exponent, it is possible to reach their 
answer by considering raindrops of a single 
size. Rainfall rate (in units of speed) is given 
by the product of raindrop concentration, c, 
volume (d3) and terminal speed (d1/2). The 
concentration is found by integrating n(d) 
over all drop diameters, which for droplets 
of uniform size yields c = n0d0. This leads 
to R ≈ n0d0

9/2, or d0 ≈ (R/n0)2/9, which is in 
remarkably close agreement with observations 
of d ∝ R0.21 for typical rainfall conditions.

Ironically, such agreement raises more 
questions than it answers. For instance, in 
the extreme case of drizzle, in which droplets 
are much smaller than in typical rainfall, 
the terminal velocity scales in proportion 
to d, which gives an average diameter of 
d0 ≈ (R/n0)2/10, slightly changing the scaling 
exponent. The d ∝ R0.20 scaling is also often 
observed2. Perhaps more importantly, it 
remains unclear what physical mechanisms 
determine the value of n0, which has been 
observed to vary by an order of magnitude 

at a given rainfall rate4. This implies that, at 
times, the average size and concentration 
change so as to produce more numerous but 
smaller droplets and to maintain the same 
rainfall rate.

Returning to earlier heuristic ideas2,5 
with modern tools and a fresh perspective, 
Villermaux and Bossa3 provide a compelling 
argument to explain the origin of the 
exponential size distribution of natural rain. 
They use high-speed photography to capture 
the break-up of large water drops in free fall, 
and to show that the entire distribution of 
sizes seen in rain can be reproduced in the 
break-up fragments of a single parent drop. 
This suggests that the size distribution of 
raindrops is caused by simple fragmentation 
that occurs immediately beneath the base 
of a raincloud — in contrast to the more 
conventional expectation that it arises as a 
consequence of more complex interactions 
between descending droplets. This will 
undoubtedly cause many to wonder to 
what extent the conditions leading to 
fragmentation in the authors’ experiments 
are relevant to the real world.

The authors use the Euler equation of 
inviscid hydrodynamics, along with several 
plausible assumptions, to estimate the critical 
Weber number at which a drop becomes 
unstable. This is related to the question of 
why we never see very large raindrops, such 
as the one shown in Fig. 1a. The answer is 
that beyond a certain size, fluid flow around 
a falling drop overwhelms the cohesion 
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Raindrops large and small
Rain hits the ground in drops of different sizes, but the mechanism that produces this distribution is unclear. Could 
it be that all we need to know is contained in the death of a single drop?
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of surface tension (Fig. 1b). This can be 
visualized in terms of a capillary length — 
about 3 mm for the air–water interface. 
The Weber number compares inertia with 
surface cohesion: We = (ρau2d)/σ, where ρa 
and σ are the air density and surface tension, 
respectively. Thus, We can be viewed as 
a squared ratio of drop size and capillary 
length. Villermaux and Bossa3 arrive at a 
critical Weber number of six (Fig. 1b), which 
translates to a critical drop diameter of about 
6 mm, consistent with their observations and 
those of others6.

In this respect, reports of very large 
raindrops of up to 1 cm in diameter in 
Brazilian and Hawaiian clouds are interesting 
and puzzling7. Surfactants, such as those 
produced by forest fires, complicate 
the situation and have been detected in 
raindrops8, but their presence should lower 
the surface tension and therefore the Weber 
number. On the other hand, they are likely 
to promote coalescence of such ‘softer’ 
raindrops on the way down.

Terminal speed is an important parameter 
when applying Villermaux and Bossa’s 
critical Weber numbers to natural rain, 
particularly because speed increases with 
drop size. In that respect, the perspective 
of Villermaux and Bossa is complemented 
by the recent findings that not all raindrops 
fall at their terminal speed9. Some break the 
speed limit by an order of magnitude in the 
immediate aftermath of fragmentation, by 
ejected smaller droplets that momentarily 
maintain the momentum of their parent 
drops. Such ‘superterminal’ drops were 
caught on camera before they had a chance 
to relax to their terminal speed (which takes 
only a fraction of a second), and thereby 
corroborate the break-up mechanism. This 
may allow for further study and testing of 
the Villermaux and Bossa perspective. In 
particular, it could address longstanding 
questions about whether break-up is 

predominantly spontaneous, as they suggest, 
or the result of collisions between drops, 
which is the common view.

Remote sensing has much to contribute 
here. For example, perhaps drop oscillations 
between prolate and oblate asphericity 
(preceding the break-up) are the source 
of the surprising depolarization of radar 
or lidar waves that has been observed at 
vertical incidence10. Also, returning to radar 
meteorology, the d6 dependence of the 
radar echo suggests that the Villermaux and 
Bossa3 vision of progressive refinement of 
the size distribution below the cloud base 
can be tested by studying radar reflectivity 
versus height with high spatial resolution. 
Natural rainfall still has something to teach 
us, so let it rain. ❐
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Figure 1 | Raindrops under stress. a, Giant raindrops such as the one shown here, held by astronaut 
Don Pettit on the space shuttle, are not observed in the atmosphere because of the deformation and 
subsequent instability experienced by a terrestrial raindrop falling through air at its terminal speed, u 
(reached when the gravitational force is balanced by air resistance). b, Deformation of falling drops is 
determined by competition between surface tension and fluid stresses. As a result, asphericity increases 
with drop size. The opposition between aerodynamic stress ρau2 and the surface tension σ is captured 
by the Weber number We = (ρau2d)/σ. The critical We number of six derived by Villermaux and Bossa3, 
above which spontaneous drop break-up occurs, can be motivated by equating the spherical-drop surface 
energy density to inertial energy density as (σπd2)/(πd3/6) = ρau2.
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The electronic applications of 
tomorrow will probably not be direct 
extensions of what we know today, 

but will more likely depend on principles of 
electron organization in matter, which we 

are only beginning to discover. Physicists 
are just starting to appreciate the rich fabric 
of the periodic table and the vast diversity 
of electronic behaviour that can be shown 
by different compounds. Although practical 

applications of emergent phenomena 
such as superconductivity or magnetism 
require materials in which these states 
occur at, or above, room temperature, 
the unusual electronic correlations and 

HEAVY ELECTRONS

The gathering storm of data
The nature of the ‘hidden order’ in URu2Si2 has resisted characterization for the past twenty-five years. Recent 
photoemission results report the observation of a narrow heavy-fermion band that sharpens below the mysterious 
transition and provides new clues about its origins.
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