• Go Mobile »
  • Access by Staats- und Universitaetsbibliothek Bremen

Inertial particle collisions in turbulent synthetic flows: Quantifying the sling effect

Phys. Rev. E 80, 066312 – Published 16 December 2009
Lauris Ducasse and Alain Pumir

Abstract

Turbulent motion increases very significantly the collision rate between particles in dilute suspensions. In the case of heavy inertial particles, the collision rate enhancement results both from the intermittent concentration in the flow, and also from the large relative velocity between colliding particles. The latter effect is a consequence of the ejection of particles out of curved streamlines, denoted here as the “sling effect.” Here, we quantitatively study the collision rate between heavy particles in the presence of gravity, with the simplified synthetic model of turbulent flow known as kinematic simulation. Monitoring the velocity of colliding particles and comparing it with the local velocity gradient of the flow of particles allowed us to identify the collision induced by the sling effect and to evaluate their contribution to the total collision rate. Our numerical results are then systematically compared with the estimates based on the properties of particle trajectories in the flow recently proposed by Falkovich and Pumir [G. Falkovich and A. Pumir, J. Atmos. Sci. 64, 4497 (2007)]. At moderate values of the Stokes numbers (St1), we demonstrate that the resulting parametrization describes quantitatively correctly the collision rate, and that the sling effect can be responsible for up to 50% of the total collision rate.

DOI: http://dx.doi.org/10.1103/PhysRevE.80.066312

  • Received 21 August 2009
  • Published 16 December 2009

© 2009 The American Physical Society

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More

Authors & Affiliations

Lauris Ducasse1 and Alain Pumir2

  • 1Institut Non Linéaire de Nice, CNRS, F-06560 Valbonne, France
  • 2Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, F-69007 Lyon, France

References

  1. P. G. Saffman and J. S. Turner, J. Fluid Mech. 1, 16 (1956).
  2. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, Dordrecht, 1997).
  3. S. Sundaram and L. R. Collins, J. Fluid Mech. 335, 75 (1997).
  4. L. P. Wang, A. S. Wexler, and Y. Zhou, Phys. Fluids 10, 2647 (1998).
  5. J. Abrahamson, Chem. Eng. Sci. 30, 1371 (1975).
  6. G. Falkovich, A. Fouxon, and M. G. Stepanov, Nature (London) 419, 151 (2002).
  7. M. Wilkinson, B. Mehlig, and V. Bezuglyy, Phys. Rev. Lett. 97, 048501 (2006).
  8. G. Falkovich and A. Pumir, J. Atmos. Sci. 64, 4497 (2007).
  9. C. N. Franklin, P. A. Vaillancourt, M. K. Yau, and P. Bartello, J. Atmos. Sci. 62, 2451 (2005).
  10. B. Andersson, K. Gustavsson, B. Mehlig, and M. Wilkinson, EPL 80, 69001 (2007).
  11. K. Gustavsson, B. Mehlig, and M. Wilkinson, New J. Phys. 10, 075014 (2008).
  12. J. C. H. Fung et al., J. Fluid Mech. 236, 281 (1992).
  13. J. C. H. Fung and J. C. Vassilicos, Phys. Rev. E 57, 1677 (1998).
  14. M. A. I. Khan and J. C. Vassilicos, Phys. Fluids 16, 216 (2004).
  15. F. Nicolleau, K.-S. Sung and J. C. VassilicosPhys. Rev. E 78, 046306 (2008).
  16. L. Ducasse and A. Pumir, Phys. Rev. E 77, 066304 (2008).
  17. M. R. Maxey and J. J. Riley, Phys. Fluids 26, 883 (1983).
  18. B. Mehlig, V. Uski, and M. Wilkinson, Phys. Fluids 19, 098107 (2007).
  19. K. Gustavsson, B. Mehlig, M. Wilkinson, and V. Uski, Phys. Rev. Lett. 101, 174503 (2008).
  20. L. P. Wang, A. Orlando, S. E. Kasprzak, and W. W. Grabowski, J. Atmos. Sci. 62, 2433 (2005).
  21. P. Vaillancourt, M. Yau, P. Bartello, and W. W. Grabowski, J. Atmos. Sci. 59, 3421 (2002).
  22. L. Chen, S. Goto, and J. C. Vassilicos, J. Fluid Mech. 553, 143 (2006).
  23. M. Wilkinson and B. Mehlig, EPL 71, 186 (2005).
  24. S. Derevyanko, G. Falkovich, K. Turitsyn, and S. Turitsyn, J. Turbul. 8, 16 (2007).
  25. F. J. Dyson, Phys. Rev. 85, 631 (1952).

Authorization Required


×

Download & Share


PDF Export Citing Articles (4)
×

Images

3 of 8
×

Log In

Cancel
×

Search


Article Lookup
Paste a citation or DOI

Enter a citation
×