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AbstractÐThe modelling of the ¯occulation process is reviewed. Recent developments in this area are
discussed with reference to the classical analytical expression of Smoluchowski de®ning collision fre-
quency and originally published in 1917. The constraints imposed by six principal assumptions made
by Smoluchowski are considered individually, with the key models that have been developed to address
speci®c limitations discussed in detail. These assumptions comprise: (1) all particle collisions lead to
attachment, (2) ¯uid motion is limited to laminar shear, (3) particles are monodispersed (i.e. all of them
are the same size), (4) no breakage of ¯ocs occurs, (5) all particles are spherical in shape and remain so
after collision and (6) collisions take place only between two particles. The discussion incorporates an
examination of particle dynamics (i.e. rectilinearity vs curvilinearity), particle surface chemistry (van der
Waals attraction and electrostatic repulsion), mixing parameters (mixing intensity and the Camp num-
ber) and the key ¯oc growth parameter of fractal dimension D. In doing so limitations of modernised
theories are identi®ed. It is concluded that constraints imposed on the interpretation of models based
on microscopic aspects of the system, pertaining mainly to those phenomena presiding at the
particle:solution interface, severely restrict their application in real systems. The more recent micro-
scopic approach based on characterisation of the system through determination of the fractal dimension
as a function of time o�ers the opportunity of a simpler yet more representative modelling, but none-
the-less, currently relies on empirical measurement using fairly sophisticated experimental techniques.
# 1999 Elsevier Science Ltd. All rights reserved
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NOMENCLATURE

a= radius of primary particle, L

D= fractal dimension
di= diameter of particle i, L
k= Boltzmann constant (M L2 Tÿ2 Kÿ1)
G= local root-mean-square velocity gradient

(Tÿ1)
G*= global root-mean-square velocity gradient

(Tÿ1)
ni= concentrations of particles of size i (Lÿ3)
Nt= total concentration of particles at time t

(Lÿ3)
nv(t)= concentration of particles of volume v at

time t (Lÿ3)
T= absolute temperature (K)

v= particle volume (L3)
a= collision e�ciency
b(i,
j)=

rate of collision between particles of size i

and j (L3 Tÿ1)
e= local rate of energy dissipation (L2 Tÿ3)
e*= global rate of energy dissipation (L2 Tÿ3)

f= solid fraction of particles
j= total volume of aggregates (L3)
y= self-similar size distribution function

k= aggregate permeability (L2)
l= Kolmogorov microscale (L)
m= viscosity of water (M Lÿ1 Tÿ1)

INTRODUCTION

The mathematical representation of ¯occulation, i.e.
the process whereby destabilised suspended particles
are aggregated, has conventionally been based on
considering the process as two discrete steps: trans-

port and attachment. The transport step, leading to
the collision of two particles, is achieved by virtue
of local variations in ¯uid/particle velocities arising

through (a) the random thermal ``Brownian''
motion of the particles (perikinetic ¯occulation), (b)
imposed velocity gradients from mixing (orthoki-

netic ¯occulation) and (c) di�erences in the settling
velocities of individual particles (di�erential sedi-
mentation). Attachment is then contingent upon a

number of short range forces largely pertaining to
the nature of the surfaces themselves.
The two precepts are most succinctly expressed

mathematically as a rate of successful collision
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between particles of size i and j:

rate of flocculation � ab�i, j �ninj, �1�
where a is the collision e�ciency, b(i, j) is the col-
lision frequency between particles of size i and j,

and ni, nj are the particle concentrations for par-
ticles of size i and j, respectively.
The collision frequency b is a function of the

mode of ¯occulation, i.e. perikinetic, orthokinetic

or di�erential sedimentation. The collision e�-
ciency, a (taking values from 0 to 1), is a function
of the degree of particle destabilisation: the greater

the degree of destabilisation, the greater the value
of a. Thus, in e�ect, b is a measure of the transport
e�ciency leading to collisions, whilst a represents

the percentage of those collisions leading to attach-
ment.
Nearly all ¯occulation models are based upon

this one fundamental equation. The values of the
parameters a and b are dependent upon a large
number of factors ranging from the nature of the
particles to the method of destabilisation and the

prevailing ¯ow regime during ¯occulation. Much of
the research in ¯occulation modelling has been di-
rected at establishing equations and speci®c values

for these two parameters. It is important, however,
not to forget the importance of the terms ni and nj
in the equation, as the overall rate always increases

with particle concentration.
The interpretation of a and b given above

implies that the two parameters are independent of
one another. However, there is a second interpret-

ation of a and b which makes the distinction
between them less clear cut. One could consider a,
besides allowing for the degree of particle destabili-

sation, to be an experimental correction factor
compensating for weaknesses in the theoretical rep-
resentation of b, such that values for a are no

longer con®ned to be between 0 and 1.

CLASSICAL EXPRESSIONS

The ®rst major attempt at modelling the ¯occula-

tion process was made by Smoluchowski (1917).
Since the equations in Smoluchowski's model have
formed the core of almost all subsequent research

into ¯occulation modelling, subsequent develop-
ments can be considered with speci®c reference to
each of the assumptions made by Smoluchowski.
The basic equation developed by Smoluchowski

is given by

dnk
dt
� 1

2

X
i�j�k

b�i, j �ninj ÿ
X1
i�1

b �i, k�nink: �2�

Subscripts i, j and k represent discrete particle sizes.

The ®rst term on the right hand side de®nes the
increase in particles of size k by ¯occulation of two
particles whose total volume is equal to the volume
of a particle of size k. The second term on the right

hand side describes the loss of particles of size k by

virtue of their aggregation with other particle sizes.

The factor of one half in front of the ®rst term on

the right hand side ensures that over the summation

the same collision is not counted twice. The overall

equation thus de®nes the rate of change in the num-

ber concentration of particles of size k.

By presenting an equation such as equation 2 for

each value of k, Smoluchowski constructed a series

of di�erential equations that described the whole of

the ¯occulation process. These equations are non-

linear and solutions to them are not immediate. To

render the di�erential equations more manageable

Smoluchowski made a number of simplifying

assumptions.

1. The collision e�ciency factor, a, is unity for all

collisions.

2. Fluid motion undergoes laminar shear.

3. The particles are monodispersed (i.e. all of the

same size).

4. No breakage of ¯ocs occurs.

5. All particles are spherical in shape and remain

so after collision.

6. Collisions involve only two particles.

Based on these assumptions, Smoluchowski

developed the following analytical expressions for

the collision frequency for both perikinetic and

orthokinetic ¯occulation:

bperikinetic � �2kT=3m��1=di � 1=dj ��di � dj �, �3�

borthokinetic � �1=6��du=dy��di � dj �3, �4�
where k is Boltzmann's constant, T is the absolute

temperature of the ¯uid, m is the ¯uid viscosity, and

du/dy is the velocity gradient of the ¯uid.

Smoluchowski produced solutions to the set of

di�erential equations for both perikinetic and

orthokinetic ¯occulation, the solution for orthoki-

netic ¯occulation being

Nt � N0exp�4=p��du=dy�ft, �5�
where, Nt is the total particle count at time t, N0 is

the initial particle count and f is the volume frac-

tion of the particles, which is assumed to be con-

stant and given by (4/3)pa3N0, a being the particle

radius.

Camp and Stein (1943) extended Smoluchowski's

equation for orthokinetic ¯occulation by substitut-

ing the ¯uid shear velocity, du/dy, with the authors'

de®nition of the ¯uid's root-mean-square velocity

gradient, G:

b�i, j � � �G=6��di � dj �3: �6�

The same authors found the collision frequency

for di�erential sedimentation to be given by

b�i, j � � �gp=72m��rp ÿ rl��di � dj �3jdi ÿ djj, �7�
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where g is the gravity constant and rp and rl the
particle and ¯uid densities, respectively.

Whilst the classical approach leads to analytical
expressions to de®ne the coagulation process, their
pertinence to real systems is signi®cantly con-

strained by the assumptions 1±6 above. In the fol-
lowing sections, the validity of each of the
assumptions listed is considered in turn

MODERNISED EXPRESSIONS

The collosion e�ciency factor, a, is unity for all col-
lisions

E�ects of short-range forces. In Smoluchowski's
original paper, it was assumed that all collisions
lead to attachment, thereby ignoring the e�ect of all

short-range forces such as electrostatic repulsion,
van der Waals or hydrodynamic forces. The com-
bined e�ect of electrostatic repulsion and van der

Waals attraction between two particles is described
by the DLVO theory (Deryaguin and Landau,
1941; Verwey and Overbeek, 1948). This theory

assumes that the e�ect of two forces is additive,
and the results can be displayed in the form of a
potential energy diagram shown in Fig. 1.
The main points of interest in Fig. 1 are:

1. the height of the energy barrier and
2. the low potential well at very small distances.

Figure 1 suggests that although it is energetically
favourable for particles to come into close contact,
a large energy barrier must ®rst be overcome. The
role of a coagulant is to lower the energy barrier by

reducing the electrostatic repulsion and hence mak-

ing it easier for the particles to come into close con-
tact with one another. The lower the energy barrier,

the closer to unity a becomes. Fuchs (1934) pub-
lished a method of analysing the potential energy

diagrams to calculate the value a.
A large body of literature devoted to the incor-

poration of surface forces into the coagulation

transport equations has appeared since DLVO the-
ory was ®rst established, and a comprehensive cri-

tique of these papers is beyond the scope of this
review. Readers interested in the current under-

standing of colloidal forces should refer to Kihira
and Matijevic (1992) for a comprehensive review of

recent work in this ®eld.

E�ects of hydrodynamic interactions. Early clas-
sical models are all based on the assumption that

interparticle interactions are negligible until the
point of contact, whereupon adhesion takes place

with 100% e�ciency. However, in reality the hy-
drodynamic forces impact signi®cantly upon col-

liding particles. As particles collide, the ¯uid in
the diminishing space between them is squeezed

out. This motion of the ¯uid causes the particles
to rotate relative to one another, such that they

deviate from the linear path assumed in the clas-

sical approach. Consequently, the classical
approach to ¯occulation modelling is described as

rectilinear. The alternative is known as the curvi-
linear approach, whereby the hydrodynamic force

causes the approaching particles to rotate slightly
around one another. The corrections made to a
through the consideration of hydrodynamic forces
can be more accurately interpreted as modi®-

Fig. 1. Representation of DLVO theory.
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cations to the collision frequency functions and
are discussed below.

The sizes of particles involved in collisions has a
signi®cant a�ect on the values of the various ¯occu-
lation rates. Over di�erent size ranges di�erent ¯oc-

culation mechanisms become dominant. In
wastewater treatment, particle sizes can range from
under 1 mm up 1000 mm, especially if metal hydrox-

ides are precipitated.

Rectilinear Models

The rectilinear approach essentially assumes the

¯uid to have no in¯uence upon the ¯occulation pro-
cess other than bulk drag e�ects. In calculating col-
lision frequencies between two particles Ð one
®xed at 2 mm and the other varying from 1±

1000 mm Ð based upon the rectilinear approach,
Han and Lawler (1992) observed that:

1. perikinetic ¯occulation dominated when the sec-

ondary particle was less than 1 mm,
2. di�erential sedimentation dominated when the

secondary particle was greater than 10 mm,

3. for both orthokinetic ¯occulation and di�eren-
tial sedimentation the collision frequency was
a strong function of particle size, dominated

by the diameter of the larger of the two par-
ticles.

The authors extended the analysis to compare

collision between all pairs of particles with sizes in
the range 1±1000 mm. For a set value of G, the
authors found perikinetic ¯occulation to be the

dominant mechanism only when both particles were
small, whilst di�erential sedimentation was domi-
nant only when one particle was quite large and the
other was signi®cantly smaller. In all other cases

orthokinetic ¯occulation was the dominant mechan-
ism. Hence, according to the rectilinear model of
¯occulation, orthokinetic ¯occulation is of para-

mount importance.

Curvilinear Models

Curvilinear models have been presented by a

number of authors: Han and Lawler (1991) devel-
oped the equations for di�erential sedimentation,
Han (1989) developed them for perikinetic ¯occula-
tion and Adler (1981b) for orthokinetic ¯occula-

tion.
Adler (1981b) was the ®rst to apply the theory of

hydrodynamic interactions to heterodispersed sys-

tems. The author showed, using equations based on
laminar ¯ow conditions, that in the presence of a
combination of hydrodynamic, electrostatic and van

der Waals forces, collision frequencies were highest
when colliding particles were of the same size. The
author indicated that the hitherto lack of consider-

ation of hydrodynamic interactions had led to an
overestimation of ¯occulation collision frequencies.
Lawler (1993) calculated the collision e�ciencies for
various size ratios of colliding particles taking

account of hydrodynamic forces. The results

showed that the curvilinear model, compared to the

rectilinear model, predicted orders of magnitude of

collisions frequencies around 0.5 less for perikinetic

¯occulation, between 2 and 3 less for di�erential

sedimentation and around 5 less for orthokinetic

¯occulation. More speci®cally, the results showed

that collisions between particles that are greatly

di�erent in size are quite unlikely to occur by

orthokinetic ¯occulation.

Numerical expressions approximating the correc-

tion factors for converting the rectilinear model to

the curvilinear model are presented by Han and

Lawler (1992). The numerical expressions are essen-

tially functions of

1. the size ratio of the colliding particles and

2. the ratio of hydrodynamic shear forces to van

der Waals forces between colliding particles.

Han and Lawler (1992) compared collisions

between all pairs of particles with sizes in the range

1±1000 mm based on a curvilinear rather than a rec-

tilinear approach. Compared to the rectilinear

mode the regions in which perikinetic ¯occulation

and di�erential sedimentation were dominant were

both signi®cantly expanded, whilst the region in

which orthokinetic ¯occulation was dominant was

commensurately reduced. In fact, orthokinetic ¯oc-

culation only dominated for similarly-sized colliding

particles.

Three important conclusions arise from the devel-

opments of curvilinear models:

1. orthokinetic ¯occulation is far less important in

the curvilinear model than in the rectilinear

model,

2. the curvilinear model predicts a much lower col-

lision frequency than the rectilinear model,

although the reduction is less when the particles

are of a similar size, and

3. orthokinetic ¯occulation is no longer seen as

being directly proportional of G, as predicted by

Camp and Stein (1943).

The third of these observations is of particular

interest. Han and Lawler (1992) concluded that

designers could build ¯occulation units with the

minimum G required to keep particles in suspen-

sion.

Current developments in the modelling of the hy-

drodynamic forces between colliding particles are

developing in two areas, both of which pertain to a

more realistic de®nition of aggregate structure

(Section 2.5). The ®rst area is concerned with the

drag upon the aggregates, whilst the second, and re-

lated, area is associated with the paths the aggre-

gates take as they approach one another.

In the ®rst area, Veerapaneni and Wiesner (1996)

calculated the ¯ow and associated drag on a sphere

with nonuniform porosity, whilst Li and Logan

(1997a) modi®ed the permeability expression of

D. N. Thomas et al.1582



Brinkman (1947) to take account of nonuniform
porosity. Wu and Lee (1998) calculated the drag on

a porous ¯oc moving at a Reynolds number greater
than one. The authors discovered that at su�ciently
high porosity values, the drag coe�cient remained

inversely proportional to the Reynolds number up
to Reynolds numbers as high as 40. In other words,
according to Wu and Lee (1998), the Stokes' regime

for the drag upon a porous aggregate extends sub-
stantially further than that for a solid sphere.
In the second area Kusters et al. (1997) used the

results of Adler (1981a) regarding the ¯ow through
porous particles to calculate the collision e�ciency
between uniformly porous aggregate. These results
applied only when the ratio of the radii of the col-

liding particles was less than 0.1. The authors found
that above a critical limit of the dimensionless
radius (de®ned as the R/

���
k
p

, where R is the aggre-

gate radius and k is the aggregate permeability) the
collision e�ciency became zero. Kusters et al.
(1997) also presented values for the collision e�-

ciency between uniformly porous ¯ocs when the
ratio of their radii was close to unity. The authors
approximated the path along which porous particles

approached one another by adopting the results of
Adler (1981b), who calculated the paths for solid
spheres. This approach, when incorporated into the
basic ¯occulation equations by Kusters et al.

(1997), produced a marked improvement in the ac-
curacy of model predictions.

Fluid motion undergoes laminar shear

Laminar ¯ow. The two extremes of ¯ow that can
be considered are laminar and turbulent which, for
the sake of simplicity, can be associated with
ordered and chaotic ¯ow regimes, respectively. A

key property of laminar ¯ow is that knowledge of
the ¯ow at a given point in a ¯uid allows one to
calculate the ¯ow in a small region around that

point. In mathematical terms, if two points in
space, P and P', (see Fig. 2) are separated by a
small vector R, then the di�erence in the ¯ow

between the two points is given as:

dU � U�P 0� ÿU�P � � R � A, �8�
where U represents velocity and A is relative vel-

ocity gradient tensor. In e�ect, for a ®xed line in

space A allows one to calculate how velocity

changes along that line.

It is possible therefore in laminar ¯ow regimes to

calculate the relative velocity between particles. At

®rst sight it might appear that particles collide by

virtue of their relative velocity as characterised by

A. However, this is an oversimpli®cation, because A

incorporates particle rotation. The relative velocity

between two points can be decomposed into two

components: shear and rotation. The rotational el-

ement of the relative velocity does not contribute to

the rate of collisions because during rotation par-

ticles remain at the same distance apart. It is thus

only the shear component that leads to collisions

between particles. The relative shear velocity

between two points is characterised by the strain-

rate tensor, S, de®ned as:

S � 1=2�A� AT�, �9�
where the superscript T stands for the transpose.

Substituting A with S in equation 8 yields the rela-

tive shear velocity between points P and P'.
There are two generic types of strain: pure-shear

strain and pure-normal strain. In pure-normal strain,

the velocity in the direction of one of the principle

coordinates, i.e. x, y or z, is a function of that coor-

dinate only, whereas in pure-shear strain it is a

function of the other two coordinates only.

Smoluchowski (1917) in his original formulation of

the ¯occulation equations assumed that the ¯ow

underwent pure-shear strain, i.e. laminar ¯ow. In

fact, the ¯ow was a simpli®ed two-dimensional

form of pure-shear strain with only one component

of the relative velocity considered. Based on this

simpli®ed ¯ow, Smoluchowski deduced that the rate

of orthokinetic ¯occulation was proportional to the

velocity gradient, du/dy.

Camp and Stein (1943) attempted to further

develop Smoluchowski's approach so that three-

dimensional ¯uid motion could be taken into con-

sideration. They de®ned a term G, the local root-

mean-square velocity gradient for a small local el-

ement of ¯uid undergoing strain, and linked G with

the local rate of energy dissipation, e:

G � �e=��1=2, �10�
where n is the kinematic viscosity of water. In ad-

dition, the authors moved from the local scale to

the global scale by de®ning G*, the global root-

mean-square velocity gradient for a ¯occulating sys-

tem:

G* � �e*=��1=2, �11�
where e* is the average energy dissipation for the

Fig. 2. Calculation of relative velocity between points P
and P'.
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whole ¯occulating system. Camp and Stein assumed

that Smoluchowski's du/dy could be replaced by G

for linear ¯ow regimes and by G* in turbulent ¯ow

regimes.

Kramer and Clark (1997) identi®ed two errors in

Camp and Stein's work. Firstly, the method by

which Camp and Stein moved from 2-D to 3-D

¯ow ignored the contribution made by the pure-

normal strain component of the rate-strain tensor,

and consequently they incorrectly associated G with

e. In practice, this error has little serious e�ect,

since few real-life ¯occulation units operate with

laminar ¯ow. The second error however has more

immediate consequences regarding ¯occulation

modelling. This error involved assuming that G*

was a representative measure of the ¯uid dynamics

within a ¯occulator. Kramer and Clark (1997)

argued that the variations in the local root-mean-

square velocity gradients within the tank meant that

Camp and Stein had overestimated their global

root-mean-square velocity gradient. In fact, the

greater the local variations, i.e. the more turbulent

the ¯ow, greater the magnitude of the error.

Kramer and Clark attempted to extend the 2-D

¯ow used by Smoluchowski to 3-D ¯ow avoiding

the error made by Camp and Stein. Assuming that

the ¯ow for a small ¯uid element could be described

in laminar terms, the authors diagonalised S and

deduced the rate of ¯occulation was proportional to

amax, the maximum magnitude of the elements of

the diagonalised tensor. The physical signi®cance of

diagonalising the strain-rate tensor is that for any

small element of ¯uid experiencing shear, the axes

can be con®gured in such away that the element

undergoes pure-normal strain only. By focusing on

relative strain rates rather than relative velocity gra-

dients as carried out by Camp and Stein, Kramer

and Clark (1997) gave a rigorous analysis of the

rate of collision in laminar ¯ow. The ideas of

Kramer and Clark have not been extended from

laminar to turbulent ¯ow.

Turbulent ¯ow. In overall terms, turbulence is still

a poorly understood phenomenon. However, one

model of turbulence that has been successfully

adopted in ¯occulation modelling is the isotropic

model. This model describes turbulence as a cascade

of eddies of diminishing size. Energy applied to a

¯uid during mixing is primarily used for the for-

mation of large eddies. These large eddies accom-

plish most of the momentum transport but only a

small amount of energy dissipation. Energy is trans-

ferred via a series of eddies of decreasing size until

a certain size of eddy is reached where all the

energy is dissipated by viscous forces. The length

scale of the eddy where energy dissipation by vis-

cous forces dominates is called the Kolmogorov

microscale, de®ned as

l � ��3=e�1=4, �12�

where l is the Kolmogorov microscale, n is viscosity
and e is the rate of energy dissipation.

Based on the cascade model, Casson and Lawler
(1990) put forward a proposal that in turbulent
conditions, collisions between particles are pro-

moted by eddies of a size similar to those of the
colliding particles. They developed the orthokinetic
collision frequency function by applying di�erent

values for G to di�erent pairs of colliding particles.
The developed model was in good agreement with
experimental data. The authors concluded that the

smaller particles were far more likely to collide with
one another than with larger particles. This is iden-
tical to the conclusions from the curvilinear
approach discussed above. The authors also stated

that energy expended during mixing in the creation
of large eddies could be ine�ectual.
A similar conclusion was reached by Han and

Lawler (1992) on studying the e�ect of hydrodyn-
amic retardation upon the collision constants in the
Smoluchowski equations. The authors concluded

that because the hydrodynamic retardation e�ect
was so pronounced for orthokinetic collisions, the
actual contribution of orthokinetic ¯occulation to

the overall ¯occulation process was minimal. As
such, mixing simply provided a means of suspend-
ing the particles to keep the particle number count
high enough for collisions to occur.

Kramer and Clark (1997) highlighted the fact
that the local root-mean-square velocity gradient
varies from one point to another within a tank.

Consequently, as an aggregate is swept around a
tank the root-mean-square velocity gradient to
which it is exposed will vary. Kusters et al. (1991)

determined experimentally that the time averaged
value of the root-mean-squared velocity gradient to
which an aggregate is exposed does not di�er sig-
ni®cantly from the de®nition of Camp and Stein

(1943) of the global root-mean-square velocity gra-
dient, G*. However, it is important to note that an
aggregate can be exposed, if only for an instance, to

an signi®cantly higher value of G than the global
root-mean-square velocity gradient. In a ¯occulator
stirred with an impeller these high values of G will

occur close to the tip of the impeller. It is probable
that breakage occurs in these regions of high shear
intensity rather than in the more quiescent areas

way from the impeller.

The particles are monodispersed

Parameters derived from classical theory. Because
of the complex nature of the ¯occulation equations
and di�culties encountered in their rigorous sol-

ution the assumption originally made by Smolu-
chowski (1917) of a monodispersed suspension has
persisted. The incorporation of mixing intensity G

and collision e�ciency a into equation 5 yields:
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Nt � N0expfÿ�4=p�Gtafg: �13�

Based on this equation and assuming a and f to
be constant for a given system, some authors have
concluded that the dimensionless quantity Gt,

known as the Camp number, should be a prime de-
sign parameter for ¯occulation units in water treat-
ment. Tambo (1965) and his various coworkers

(Tambo and Ogasawara, 1970; Tambo and
Watanabe, 1979; Tambo, 1991) proposed that it is
the nondimensional product Gtf that determines
the progress of ¯occulation, rather than Gt.

O'Melia (1972) suggested that for wastewater treat-
ment, the dimensionless product Gtfa could be
considered as a design parameter, adding that for

successful ¯occulation it would probably be of the
order 0.1.
The lack of progress in dealing with the ¯occula-

tion equations for heterodispersed systems has kept
attention focused upon parameters such as Gt, Gtf
and Gtfa. These parameters are essentially associ-

ated with a very simpli®ed form of the ¯occulation
equations which would explain the lack of consen-
sus in the literature regarding their true in¯uence in
¯occulation. For example, Harris et al. (1966)

observed the extent of the aggregation and ¯oc for-
mation to be a function of both Gtf and size distri-
bution. As not all of these parameters are within

the control of plant operators they are of limited
use in plant design.
Gregory (1981) modelled the ¯occulation of a

destabilised, monodispersed colloid in laminar tube
¯ow. The local variations in G and t experienced by
particles entering the tube at di�erent radial pos-
itions were accounted for, and predicted ¯occula-

tion rates agreed well with experimental results.
However, ¯occulation models based on the series of
monodispersed assumptions, as applied by the

author, are only applicable during the initial stages
of ¯occulation before larger aggregates become
involved in the collisions.

E�ects in heterodispersed systems

Arithmetic and Geometric Series
A distribution of particle sizes in a heterodisper-

sity can be described mathematically by either a dis-

crete or continuous function. With a discrete size
distribution, successive particle sizes are de®ned so
as to ®t some form of mathematical series, typically

an arithmetic series, e.g. {1, 2, 3, 4, . . .}. Using
arithmetic series becomes increasingly ine�cient in
terms of ®nding numerical solutions to the ¯occula-

tion equations as the range of particle sizes under
investigation increases. To overcome this problem
Stratton et al. (1994) de®ned particle class sizes so

that they formed a geometric series, namely {1, 2, 4,
8, 16, . . .}. This geometric series provided less
detailed information than the arithmetic series {1,
2, 3, 4, . . .}. However, by calculating the change in

concentrations for classes of particle size, i.e. {1±2,
2±4, 4±8, . . .}, rather than for each individual par-

ticle size, the authors were able to reduce the num-
ber of di�erential equations required to characterise
the ¯occulation kinetics over a given range of par-

ticle sizes. In the study of breakage kinetics carried
out by Calabrese et al. (1992), the lack of detail
o�ered by geometric series meant that they could

not adequately de®ne particle sizes. Instead, the
authors used a number of interlaced Fibonacci
series, in which the value of any term is the sum of

the two previous terms.

Continuous Functions and Self Similarity

An alternative way to describe size distributions

is in the form of continuous mathematical func-
tions. For example, the exponential size distribution
is de®ned as

n�x� � A exp�ÿBx� �14�
where A and B are constants, x is the particles size
and n(x) is the particle concentration. Based on a

continuous size distribution, the ¯occulation
equations become partial integro-di�erential rather
than pure di�erential.

The usual way of representing a size distribution
curve is to plot nv(t) against v. For a system of
aggregating particles, the shape of this graph will

change with time (assuming an equilibrium was not
established). However, Schumann (1940) observed
that the plot of nv(t)j/Nt against vN/j did not
change shape or develop with time once a su�cient

period of time had elapsed since the onset of ¯occu-
lation. This was an example of self-similarity. A
¯occulating system is said to be self similar if some

normalised form of its size distribution becomes
independent of time once a su�cient period of time
since the onset of ¯occulation has elapsed. Where a

system displays self-similarity the complexities as-
sociated with individual collisions lead to predict-
able and repeatable patterns for the overall size
distribution.

The fundamental assumption made by Swift and
Friedlander (1964) in their investigation of self-simi-
larity was that the particle size distribution took the

form

nv�t� � N 2
t

j
c
�
Ntv

j

�
, �15�

where c is the self-similar size distribution. This
equation reveals that whilst n changes with both

size and time, c does not change with time. The
main advantage of being able to represent the size
distribution in terms of an equation such as

equation 15, is that it reduces the number of vari-
ables required to describe the size distribution. It
also makes it easier to make comparisons between
di�erent size distributions.
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For a given ¯occulating system, regardless of

whether the size distribution can be put in the form

of equation 15, whether it is then a solution to the

actual ¯occulation equations depends entirely upon

the mathematical form of the collision frequencies.

Pulvermacher and Ruckenstein (1974) calculated

some of the necessary conditions that the collision

frequencies would have to satisfy for equation 15 to

represent a solution to the ¯occulation equations.

Swift and Friedlander (1964) proved that

equation 15 was indeed a particular solution to the

¯occulation equations for both perikinetic and

orthokinetic ¯occulation.

In the situations where equation 15 is a solution,

two hypotheses have been put forward.

1. The solution represents the long-term, or asymp-

totic, behaviour of the system.

2. The form of the self-similar size distribution is

independent of the initial size distribution.

Although neither hypothesis has been proved

mathematically, they are supported by a body of

experimental work (Swift and Friedlander, 1964;

Hidy and Lilly, 1965; Lai et al., 1972). Some math-

ematical support was presented by Rosen (1984),

who investigated the subject of ¯occulation from a

statistical point of view. The author was able to

provide good approximations of the self-similar size

distributions for perikinetic ¯occulation without

having to assume a particular form for the initial

particle size distribution.

The more recent work on self-similarity has

focused on systems with both fragmentation and

¯occulation (Family et al., 1986; Sorensen et al.,

1987; Meakin and Ernst, 1988; Elminyawi et al.,

1991). Although complex in nature, the general

results of the work can be summarised as:

1. Two di�erent self-similarity distributions apply

during aggregation: one at the start when ¯occu-

lation dominates and another later on as the

system approaches equilibrium. However, the

size of the error incurred by assuming just one

form of the self-similar size distribution (similar

to equation 15) is small enough to be of no

major concern.

2. At equilibrium, the value of the average particle

size is a function of the collision frequencies and

the breakage frequencies.

To predict the actual shape of a self-similarity

size distribution demands detailed knowledge of

both collision and breakage frequencies. Such in-

formation is not always readily available in real-

life applications, such as wastewater treatment,

but such systems may none-the-less display self-

similarity. For example, Delichatsios and

Probstein (1974) used the phenomenon of self-

similarity to assist in the calculation of collision

e�ciencies for the ¯occulation of latex particles in

turbulent ¯ow. Koh et al. (1986) observed self-

similarity in the upper range of the particle size
distribution during orthokinetic ¯occulation of

scheelite (an important ore of tungsten). Spicer
and Pratsinis (1996a) reported self-similarity, with
respect to mixing intensity, for polystyrene par-

ticles destabilised by aluminium sulphate. The
authors analysed the self-similar size distributions
and were able to make inferences about the

strength of the polystyrene ¯ocs. Spicer and
Pratsinis (1996b) attributed the nature of this self-
similarity to the particular breakage mechanism

that occurred during mixing.

No breakage of ¯ocs occurs

The importance of break-up phenomena. One of
the assumptions of the original Smoluchowski
model is that ¯ocs do not break once formed. How-

ever, as demonstrated by Spicer and Pratsinis
(1996b), it is the balance of the opposing phenom-
ena of aggregation and break-up that determine the

¯oc size and mass distributions. Early computer
simulations by Fair and Gemmell (1964) identi®ed
the importance of breakage in modelling ¯occula-
tion and the large e�ect di�erent break-up assump-

tions can have on the predictions of ¯occulation
models. Costas et al. (1995) simulated particle aggre-
gation and fragmentation based on a series of simpli-

®ed kernels (the mathematical term for kinetic rate
constants in the Smoluchowski equations). In all
simulations the initial particle distribution was

monodispersed. Results illustrated the signi®cant
e�ects di�erent assumptions about break-up mech-
anisms can have both on initial rates of reaction and

eventual steady-state concentrations.
There is very little fundamental understanding of

the factors a�ecting the strength of aggregates or
their mode of breakage under stress, and most

work has been of an empirical nature. It is generally
accepted (MuÈ hle, 1993) that the breakage mechan-
ism in turbulent ¯ow depends upon a ¯oc's size

relative to the Kolmogorov microscale. For ¯ocs
smaller than the Kolmogorov microscale, viscous
forces predominate and erode the surface of the

¯oc. On the other hand, for ¯ocs larger than the
Kolmogorov microscale, deformation or fracture
may occur as a result of ¯uctuating dynamic press-
ure. These ideas imply that ¯oc strength is pro-

portional to ¯oc size. However, recent experimental
work by Yeung and Pelton (1996) has suggested
that rather than strength being related to ¯oc size,

it is related to ¯oc compactness. The authors found
that more compact ¯ocs were more likely to
undergo erosions whereas less compact ¯ocs were

more likely to undergo fracture.
Relationship with G. Ritchie (1955) ®rst pointed

out a connection between break-up phenomena and

the value of G. The author found an empirical re-
lationship between applied G and maximum ¯oc
size and indicated the existence of a critical value of
G for a particular system, above which ¯occulation
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performance would be reduced. A similar e�ect was

observed by Tambo and Hozumi (1979), who pro-

posed the following relationship between maximum

¯oc size and mixing intensity:

max: floc size � C�G�ÿx, �16�
where C and x are constants. Parker et al. (1972)

calculated theoretical values for C and x for di�er-

ent break-up mechanisms (erosion and fracture) for

particles larger or smaller than the Kolmogorov

microscale. By assuming that erosion of a given

particle to be caused by eddies similar in size that

particle, the authors also developed a rate equation

for particle erosion. It was proposed that particle

erosion was proportional to G2 for the viscous sub-

range and G4 for the inertial subrange (i.e. smaller

or larger than the Kolmogorov microscale).

MuÈ hle and Domasch (1990) developed

equation 16 to take account of ¯oc strength and

primary particle size as well as mixing intensity.

These variables were assigned di�erent exponents

depending upon the ratio of ¯oc size to the

Kolmogorov microscale. As a result, the equation

allowed for both ¯oc erosion and ¯oc fracture.

Peng and Williams (1993) proposed a breakage

model setting the rate of breakage proportional to

¯oc size. The rate constants associated with this

model were found to be increasing functions of G.

Similarly, Spicer and Pratsinis (1996b) proposed a

breakage model where the rate terms this time were

explicitly assumed to be functions of both ¯oc size

and G. Over a range of G values (25±150 sÿ1 ) ex-

perimental results revealed that the rate of breakage

was proportional to G1.6.

A quantitative treatment of ¯oc break-up rate as

part of the overall kinetic model of ¯occulation in

turbulent mixing was developed by Argaman and

Kaufman (1970), and resulted in a working ex-

pression for ¯occulation in continuous ¯ow stirred

tank reactors. The model is shown below for ``m''

CSTRs in series:

N0

Nt
�

ÿ
KFGt

�m
1� KBG 2t

Xmÿ1
i�0

ÿ
1� KFGt

�i , �17�

where KB and KF are the ¯oc break-up and ¯oc for-

mation constants, respectively. One of the immedi-

ate conclusions of this equation is that the Camp

number, Gt, is not su�cient in itself to categorise

the ¯occulation process because it does not take

into account the ¯oc break-up phenomenon.

In some ¯occulation modelling, breakage is

accounted for by setting an upper limit on ¯oc size

(Wiesner, 1992; Dharmappa et al., 1994). This

approach leads to a maximum in the computed ¯oc

size distribution, the value of which depends on the

assumed mode of breakage.

All particles are spherical in shape and remain so
after collision

Smoluchowski (1917) assumed that solid, spheri-

cal particles coalesce to reform perfectly spherical
and solid particles. Early veri®cations of
Smoluchowski's equations were based upon ®ne

vapour dispersions where this assumption was per-
fectly valid. In reality however, particles in the ma-

jority of ¯occulating systems do not coalesce on
contact. This is particularly true for water and
wastewater systems where ¯ocs are di�cult to

characterise because of their highly irregular and
disordered nature. In a search for a convenient
method of characterising water and wastewater

aggregates, Li and Ganczarczyk (1989) recognised
that they were fractal objects. One of the most im-

portant properties of fractal aggregates is that their
porosity is a function of aggregate size; porosity
increases with increasing ¯oc size. Mathematically,

this statement is written as

e � 1ÿ S*RDÿ3, �18�
where e is the ¯oc porosity, D its fractal dimension

and S a system-speci®c constant. The fractal dimen-
sion, which de®nes the relationship between particle

size and density, takes values between 1 and 3. In
general, the lower the fractal dimension then the
more ``open'' the aggregate structure. If D= 3,

then the porosity is constant and consequently den-
sity is independent of size. In e�ect,
Smoluchowski's equations contain the implicit

assumption that the fractal dimension is 3.
However, for the majority of ¯ocs in natural sys-

tems D is less than 3. When this is the case density
will decrease with increasing particle size.

There are two important consequences for ¯occu-
lation modelling when the fractal dimension is less
than 3. Firstly, although mass is conserved when

two particles collide, since density is no longer con-
stant volume is not conserved; the volume of the
resultant ¯oc is greater than the combined volume

of the two colliding particles. This in turn has im-
plications for the rates of particle collision, since

collision frequencies and collision e�ciencies are
functions of particle size. Expressed mathematically,
when two particles of radius ai and aj collide then

ai,j, the radius the resultant ¯oc, is de®ned as

aDi,j � aDi � aDj : �19�

When D is equal to three, equation 19 is equival-
ent to a statement of volume conservation. Wiesner
(1992) published a mathematical model based on

equation 19. This model showed that systems with
a lower fractal dimension display a more rapid

increase in ¯oc size during ¯occulation.
Secondly, ¯ocs with a low fractal dimension

allow ¯uid to ¯ow though them. This phenomenon

is known as advection. The degree of advection is
characterised by Z, the ¯uid collection e�ciency,
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de®ned as the ratio of volume of ¯uid ¯owing
through a ¯oc to the volume of ¯uid approaching a

¯oc. Z thus takes values between 0 for a totally
impermeable ¯oc and 1 for a totally porous ¯oc. In
e�ect, the rectilinear approach assumes ¯ocs are

totally porous whereas the curvilinear approach
assumes ¯ocs are totally impermeable. Neither of
these two cases is strictly true for fractal ¯ocs,

which have a ¯uid collection e�ciency factor lying
between 0 and 1. Consequently, particles approach
one another along semicurved paths; a compromise

between the straight paths assumed in rectilinear
modelling and the curved paths assumed in curvi-
linear modelling. Chellam and Wiesner (1993)
demonstrated theoretically that Z was correlated to

fractal dimension and that the degree of advection
became signi®cant when the fractal dimension was
less than 2. Where advection is signi®cant, the recti-

linear approach overpredicts the rate of collision,
whilst the curvilinear approach underpredicts the
rate of collision. This e�ect has been demonstrated

for di�erential sedimentation ¯occulation (Li and
Logan, 1997a) and orthokinetic ¯occulation in tur-
bulent conditions (Li and Logan, 1997b).

Although it is known that for fractal ¯ocs the
rate of collision lies somewhere between the two
extremes predicted by curvilinear and rectilinear
modelling there is currently no theoretical basis to

predict what the value should be. Veerapaneni and
Wiesner (1996) proposed incorporating the ¯uid
collection e�ciency into collision frequency func-

tions to approximate for the e�ect of advection. For
orthokinetic ¯occulation, the authors proposed

b�i, j � � �G=6��di ����
Zi
p � dj

���
Z
p

j �3: �20�

Li and Logan (1997b) identi®ed a correlation

between fractal dimension and collision frequency
for ¯occulation in turbulent ¯ow conditions

b0G�1ÿD=3�: �21�

The factors that a�ect the magnitude of the ¯oc
fractal dimension are complex and not dealt within

this review. However, it can be generally observed
that, all other things being equal, systems with a
higher collision e�ciency will tend to form ¯ocs

with a lower fractal dimension, leading to domi-
nance of rectilinearity over curvilinearity.

Collisions involve only two particles

The conventional kinetic approach to ¯occulation
modelling discussed so far essentially relies upon
the calculation of collision frequencies and collision

e�ciencies based on the knowledge of particle vel-
ocities and surface potentials. The validity of this
approach is questionable when systems become con-

centrated such that collisions between more than
two particles are likely.
An alternative approach to modelling ¯occulation

is the thermodynamic theory of coagulation. In this

approach, coagulation is seen as a ``phase-separ-
ation'' process: the stabilised colloid represents the

dispersed phase and the destabilised/aggregated col-
loid represents the solid phase. This approach gives
insight into ¯oc structure but does not provide any

information on the rate of coagulation.
Rajagopalan (1993) applied thermodynamic theory
to a colloidal dispersion represented by an idealised

potential±separation graph, typical of van der
Waals attraction between two neutral spheres.
Interestingly, the phase diagrams attained for col-

loids modelled as adhesive hard spheres (i.e. zero
attraction at all separation distances but in®nite
attraction once touching) were extremely close to
the phase diagrams for the colloids modelled with

short range attractive forces. Analysis of the con-
structed phase diagrams allows one to calculate the
required degree of destabilisation to promote ¯oc-

culation.

Summary

The collision e�ciency term cannot be expected
to provide a comprehensive account of the interpar-
ticle forces involved in ¯occulation. Substantial

developments have been made in de®ning the in¯u-
ence of van der Waals attraction and hydrodynamic
forces. In particular, the inclusion of hydrodynamic

forces had lead to a marked reduction in both the
expected rates of ¯occulation and the signi®cance of
mixing intensity.

Although substantial theoretical errors have been
identi®ed in the work of Camp and Stein (1943),
their root-mean-square velocity gradient, G, has

remained a key design factor in terms of ¯occula-
tion modelling. The complexities of turbulent ¯ow
have hindered any major improvements upon the
work of Camp and Stein, although it is generally

accepted that previous work has overestimated the
importance of G.
It is not feasible to construct and solve ¯occula-

tion equations for each individual particle size if the
range of interest covers more than two orders of
magnitude. Instead particles can be grouped into

classes to expedite solution of the ¯occulation
equations. For ¯occulating systems under certain
circumstances the particle size distribution displays
predictable patterns that are independent of time

and initial particle size distribution. This phenom-
enon is called self-similarity.
Uncertainty still exists as to the general nature of

¯oc break-up, although it is accepted that the mech-
anism plays a major role in determining the overall
size distribution during ¯occulation.

Particles are now recognised as fractal rather
than solid objects. Consequently their density
decreases with increasing size. This has lead to a

reassessment of the validity of both the curvilinear
and rectilinear models of ¯occulation. It is now
accepted that the real situation lies somewhere
between these two models.
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There have been a number of attempts by
researchers to model actual ¯occulation systems,

each of which address some of the identi®ed con-
straints in the original Smoluchowski equations,
with varying degrees of success. Table 1 summarises

some of these models and the assumptions con-
tained within them.

APPLICATION TO REAL SYSTEMS

Microscopic approach

A number of shortcomings of the modi®ed co-

agulation theory can be identi®ed when applied to
real systems.

1. The chemical nature of the surface of natural

water-borne particles a�ects processes such as
precipitation, destabilisation and surface adsorp-
tion. However, surface chemical e�ects are either
ignored or dealt with in a simplistic manner in

the ¯occulation models. Consequently, the corre-
lation between the chemical nature of primary
sewage particles, for example, and the interparti-

cle colloidal forces becomes complex and
obscure. The situation is further complicated by
the presence of a matrix of soluble chemicals in

primary sewage, such as alkalinity, hardness,
phosphate and humic compounds. The inter-
actions between these chemicals, the coagulant

and the primary sewage particles are poorly
understood.

2. Neither the rectilinear or curvilinear approach is
entirely applicable to the ¯occulation of ¯ocs.

Ignoring the hydrodynamic a�ects, as in the rec-
tilinear approach, is clearly incorrect. On the
other hand, the assumption made in the curvi-

linear approach that ¯uid only ¯ows around
rather than through a ¯oc is also an oversimpli®-
cation. In reality, because ¯ocs are porous, as

water squeezes out of the gap in between
approaching particles some water will escape by
¯owing through the particles. The actual situ-
ation for wastewater particles thus lies some-

where between the two extremes.
3. One of the underlying assumptions of the ¯occu-

lation equations is that only binary collisions

take place. This assumption may be true in dilute
systems encountered in drinking water treatment,
but in concentrated wastewaters such as primary

sewage there is an increased likelihood of multi-
bodied collisions.

Two important conclusions can be drawn from

these considerations. Firstly, experimental results
based on idealised particle suspensions are unlikely
to be representative of the behaviour of real sys-

tems. Secondly, focusing on the microscopic beha-
viour of real particles in an attempt to deduce
correlations between process parameters (e.g. mix-
ing intensity, coagulant dosage) and ¯occulation

kinetics (i.e. collision e�ciencies) would be extre-
mely di�cult.

Macroscopic approach

Rather than either concentrating on microscopic

phenomena such as individual collisions or relying
entirely on empirical measurements, a compromise
approach would be to focus on macroscopic

measures of ¯occulation. One such macroscopic
measure is the fractal dimension, D, of the ¯ocs
formed during the ¯occulation process. For ¯ocs

with a fractal dimension D and of length L, the
mass of the ¯oc is proportional to LD. The value of
the fractal dimension has a number of important
consequences regarding ¯occulation. Since the frac-

tal dimension partly de®nes the relationship
between mass, porosity and size it a�ects the fol-
lowing:

1. the degree of advection through a ¯oc,
2. the proportion of water contained within a ¯oc,
3. the settling velocity of a ¯oc,

4. the rate of collision of a ¯oc and
5. the strength of a ¯oc.

From the above list it is clear that knowledge of

the fractal dimension is required to make a success-
ful attempt at modelling ¯occulation. The par-
ameter has important consequences in terms of

water and wastewater treatment. Flocs with lower
fractal dimension, besides settling more slowly, also
contain a larger proportion of water. This leads to
sludges that are both bulky and expensive to de-

water. The balance between improving ¯occulation
kinetics and producing ¯ocs with high fractal
dimension requires further investigation. It is im-

portant to optimise wastewater treatment with
respect to both solids removal and sludge treatment
costs. The ultimate success of using fractal dimen-

sions to characterise the ¯occulation process will
depend on whether or not relationships found
between the fractal dimensions and operating par-

ameters for one sewage for one source apply to gen-
eric water types from di�erent sources.

CONCLUSION AND FUTURE DEVELOPMENTS

Considering the signi®cant developments that

have occurred since the publication of the original
paper of Smoluchowski (1917), ¯occulation model-
ling could be described as an established ®eld of

research. The vast majority of papers published in
this area consider the microscopic aspects of the
system, namely surface chemistry and the particle

interations which result from this. However, suc-
cessful application of these models is largely limited
to idealised, arti®cial systems Ð such as suspen-

sions of uniform latex spheres Ð due to constraints
imposed by the requirement for surface homogen-
eity. In real systems, which are invariably both phy-
sically and chemically heterogenious, the correlation
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between simulated to experimental data has been
poor.

More recent research has been directed at
macroscopic parameters pertaining to ¯oc growth,
and in particular the transient fractal dimension.

Whilst less rigorous that the microscopic
approach, the modelling of the particle fractal
dimension ultimately permits the characterisation

of the behaviour of any system with reference to
a single parameter. On the other hand, this par-
ameter can at present only be determined empiri-

cally through fairly sophisticated modern
techniques for particle characterisation. The appli-
cation of ¯occulation modelling to complex
matrices such as municipal wastewater thus

requires a renewed e�ort in experimental work,
based on techniques such as on-line particle size
analysis and image analysis technology, to provide

the opportunity to look in detail at both particle
structure and ¯occulation kinetics. Having said
this, experimental developments in this area have

thus far tended to be focused on model systems
(Jiang and Logan, 1996; Smoczynski and
Wardzynska, 1996). The current level of under-

standing of the factors a�ecting fractal dimension
in real life ¯occulating systems is thus low,
though the area is developing rapidly.
Future methods for taking account of the hydro-

dynamic forces between approaching aggregates
must account for (a) nonuniformity of their poros-
ity, (b) nonsphericity and (c) Reynolds number

greater than one. Moreover, the interaction between
colloidal forces, e.g. van der Waals attraction, and
hydrodynamic forces must also be taken into con-

sideration. Although all of these aspects have
already been dealt with within the literature, this
has been carried out in isolation from one another.
As yet, no single model has comprehensibly tackled

all the issues associated with the collisions between
fractal aggregates.
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