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Saturn’s rings consist of a huge number of water ice particles, with a
tiny addition of rocky material. They form a flat disk, as the result of
an interplay of angular momentum conservation and the steady loss
of energy in dissipative interparticle collisions. For particles in the
size range from a few centimeters to a few meters, a power-law
distribution of radii, ∼ r−q with q≈3, has been inferred; for larger
sizes, the distribution has a steep cutoff. It has been suggested that
this size distribution may arise from a balance between aggregation
and fragmentation of ring particles, yet neither the power-law de-
pendence nor the upper size cutoff have been established on theo-
retical grounds. Here we propose a model for the particle size
distribution that quantitatively explains the observations. In accor-
dance with data, our model predicts the exponent q to be con-
strained to the interval 2.75≤q≤3.5. Also an exponential cutoff
for larger particle sizes establishes naturally with the cutoff radius
being set by the relative frequency of aggregating and disruptive
collisions. This cutoff is much smaller than the typical scale of mi-
crostructures seen in Saturn’s rings.
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Bombardment of Saturn’s rings by interplanetary meteoroids
(1–3) and the observation of rapid processes in the ring system

(4) indicate that the shape of the particle size distribution is likely
not primordial or a direct result of the ring-creating event. Rather,
ring particles are believed to be involved in active accretion–de-
struction dynamics (5–13) and their sizes vary over a few orders of
magnitude as a power law (14–17), with a sharp cutoff for large
sizes (18–21). Moreover, tidal forces fail to explain the abrupt
decay of the size distribution for house-sized particles (22). One
wishes to understand the following: (i) Can the interplay between
aggregation and fragmentation lead to the observed size distri-
bution? And (ii) is this distribution peculiar for Saturn’s rings, or is
it universal for planetary rings in general? To answer these
questions quantitatively, one needs to elaborate a detailed model
of the kinetic processes in which the ring particles are involved.
Here we develop a theory that quantitatively explains the observed
properties of the particle size distribution and show that these
properties are generic for a steady state, when a balance between
aggregation and fragmentation holds. Our model is based on the
hypothesis that collisions are binary and that they may be classified
as aggregative, restitutive, or disruptive (including collisions with
erosion); which type of collision is realized depends on the relative
speed of colliding particles and their masses. We apply the kinetic
theory of granular gases (23, 24) for the multicomponent system of
ring particles to quantify the collision rate and the type of collision.

Results and Discussion
Model. Ring particles may be treated as aggregates built up of
primary grains (9) of a certain size r1 and mass m1. [Observations
indicate that particles below a certain radius are absent in dense
rings (16).] Denote bymk = km1 the mass of ring particles of “size”
k containing k primary grains and by nk their number density. For
the purpose of a kinetic description we assume that all particles are

spheres; then the radius of an agglomerate containing k monomers
is rk = r1k1=3. (In principle, aggregates can be fractal objects, so that
rk ∼ k1=D, where D≤ 3 is the fractal dimension of aggregates. For
dense planetary rings it is reasonable to assume that aggregates are
compact, so D= 3.) Systems composed of spherical particles may
be described in the framework of the Enskog–Boltzmann theory
(25–27). In this case the rate of binary collisions depends on par-
ticle dimension and relative velocity. The cross-section for the
collision of particles of size i and j can be written as
σ2ij = ðri + rjÞ2 = r21ði1=3 + j1=3Þ2. The relative speed [on the order of
0.01  −   0.1    cm=s (16)] is determined by the velocity dispersions
hv2i i and hv2j i for particles of size i and j. The velocity dispersion
quantifies the root-mean-square deviation of particle velocities
from the orbital speed (∼  20  km=s). These deviations follow a
certain distribution, implying a range of interparticle impact speeds
and, thus, different collisional outcomes. The detailed analysis of
an impact shows that for collisions at small relative velocities, when
the relative kinetic energy is smaller than a certain threshold en-
ergy, Eagg, particles stick together to form a joint aggregate (11, 28,
29). This occurs because adhesive forces acting between ice parti-
cles’ surfaces are strong enough to keep them together. For larger
velocities, particles rebound with a partial loss of their kinetic en-
ergy. For still larger impact speeds, the relative kinetic energy ex-
ceeds the threshold energy for fragmentation, Efrag, and particles
break into pieces (29).
Using kinetic theory of granular gases one can find the colli-

sion frequency for all kinds of collisions and the respective rate
coefficients: Cij for collisions leading to merging and Aij for
disruptive collisions. The coefficients Cij give the number of
aggregates of size ði+ jÞ forming per unit time in a unit volume as
a result of aggregative collisions involving particles of size i and j.
Similarly, Aij quantify disruptive collisions, when particles of size
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i and j collide and break into smaller pieces. These rate co-
efficients depend on masses of particles, velocity dispersions, and
threshold energies, Eagg and Efrag:
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These results follow from the Boltzmann equation, which
describes evolution of a system in terms of the joint size–velocity
distribution function (section below and SI Text). The governing
rate equations for the concentrations of particles of size k read

dnk
dt

=
1
2

X
i+j=k

Cijninj −
X∞
i=1

Ckinink

−
X∞
i=1

Akininkð1− δk1Þ+
Xk
i=1

ni
X∞
j=k+1

AijnjxkðjÞ

+
1
2

X
i, j≥k+1

Aijninj½xkðiÞ+ xkðjÞ�.

[2]

The first term on the right-hand side of Eq. 2 describes the rate at
which aggregates of size k are formed in aggregative collisions of
particles i and j (the factor 1

2 avoids double counting). The second
and third terms give the rates at which the particles of size k disap-
pear in collisions with other particles of any size i, due to aggregation
and fragmentation, respectively. The fourth and fifth terms account
for production of particles of size k due to disruption of larger
particles. Here xkðiÞ is the total number of debris of size k, produced
in the disruption of a projectile of size i. We have analyzed two
models for the distribution of debris xkðiÞ. One is the complete
fragmentation model, xkðiÞ= iδ1k, when both colliding particles dis-
integrate into monomers; another is a power-law fragmentation
model, when the distribution of debris sizes obeys a power law,
xkðiÞ∼BðiÞk−α, in agreement with experimental observations (30,
31); the impact of collisions with erosion is also analyzed.

Decomposition into Monomers. In the case of complete fragmen-
tation, xkðiÞ= iδ1k, the general kinetic equations [2] become

dnk
dt

=
1
2

X
i+j=k

Cijninj −
X
i≥1

ðCik +AikÞnink [3]

dn1
dt

=−n1
X
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C1jnj + n1
X
j≥2

jA1jnj

+
1
2

X
i, j≥2

Aijði+ jÞninj.
[4]

Mathematically similar equations modeling a physically different
setting (e.g., fragmentation was assumed to be spontaneous and
collisional) have been analyzed in the context of rain drop
formation (32).
Constant rate coefficients. The case of constant Cij =C0 and Aij = λC0
can be treated analytically, providing useful insight into the general
structure of solutions of Eqs. 3 and 4, explicitly showing the
emergence of the steady state. The constant λ here characterizes the
relative frequency of disruptive and aggregative collisions. Without

loss of generality we set C0 = 1. Solving the governing equations for
monodisperse initial conditions, nkðt= 0Þ= δk,1, one finds

n1ðtÞ= λ1

"
1+ λ−1

	
λ−12 eλt −

λ−1

2


−λ2=λ1
#
, [5]

where λ1 = λ=ð1+ λÞ and λ2 = 2λ=ð1+ 2λÞ. Using the recursive na-
ture of Eq. 3, one can determine nkðtÞ for k> 1. The system
demonstrates a relaxation behavior: After a relaxation time that
scales as λ−1, the system approaches a steady state with n1 = λ1,
the other concentrations satisfying

0=
1
2

X
i+j=k

ninj − ð1+ λÞnkN. [6]

Here N = λ2 is the steady-state value of the total number density
of aggregates, N =

P
k≥1nk. We solve [6] using the generation

function technique to yield

nk =
Nffiffiffiffiffi
4π

p ð1+ λÞ
�

2n1
ð1+ λÞN

�kΓðk− 1=2Þ
Γðk+ 1Þ . [7]

Now we assume that disruptive collisions in rings are consider-
ably less frequent than aggregative ones, so that λ � 1 (this as-
sumption leads to results that are consistent with observations);
moreover, k � 1 for most of the ring particles. Using the steady-
state values n1 = λ1 and N = λ2, one can rewrite Eq. 7 for k � 1 as

nk =
λffiffiffi
π

p e−λ
2k   k−3=2. [8]

Thus, for k< λ−2, the mass distribution exhibits power-law behav-
ior, nk ∼ k−3=2, with an exponential cutoff for larger k.
Size-dependent rate coefficients. For a more realistic description,
one must take into account the dependence of the rate co-
efficients on the aggregate size (Eq. 1). Here we present the
results for two basic limiting cases that reflect the most prom-
inent features of the system:

i) The first case corresponds to energy equipartition, hEki=
ð1=2Þmkhv2ki= const, which implies that the energy of random
motion is equally distributed among all species, like in molec-
ular gases. In systems of dissipatively colliding particles, like
planetary rings, this is usually not fulfilled, the smaller particles
being colder than suggested by equipartition (33, 34). We also
assume that the threshold energies of aggregation and frag-
mentation are constant: Eagg = const and Efrag = const; the lat-
ter quantities may be regarded as effective average values
for all collisions. Then, as follows from Eq. 1, we have
λ=Aij= Cij = const, and the kinetic coefficients read

Cij =C0

�
i1=3 + j1=3

�2�
i−1 + j−1

�1=2
, [9]

where C0 = const, so that the Cij are homogeneous functions of
the masses of colliding particles

Cai,aj = a8Cij. [10]

The specific form [9] implies that the homogeneity degree is
8= 1=6.

ii) The second limiting case corresponds to equal velocity disper-
sion for all species, hv2i i= v20 = const. In planetary rings the smaller
particles do have larger velocity dispersions than the larger
ones but they are by far not as hot as equipartition would
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imply (33). Thus, this limiting case of equal velocity disper-
sions is closer to the situation in the rings. For the depen-
dence of the fragmentation threshold energy Efrag on the
masses of colliding aggregates we use the symmetric function
Efrag =E0ðij=ði+ jÞÞ, which implies that Efrag is proportional to
the reduced mass of the colliding pair, μij =m1ðij=ði+ jÞÞ. This
yields BijEfrag = ð3E0=2m1v20Þ= const and allows a simplified
analysis. We assume that the aggregation threshold energy
Eagg for all colliding pairs is large compared with the average
kinetic energy of the relative motion of colliding pairs,
ð1=2Þμijv20 (our detailed analysis confirms this assumption)
(SI Text). Then expð−BijEaggÞ � 1 and Eq. 1 yields Cij = νij.
Therefore, the ratio Aij=Cij = expð−BijEfragÞ is again constant.
Thus, the relative frequency of disruptive and aggregative
collisions is also characterized by the constant λ=Aij=Cij.
The kinetic coefficients attain now the form

Cij = ~C0

�
i1=3 + j1=3

�2
, [11]

which is again a homogeneous function of i and j but with
different homogeneity degree 8= 2=3.

An important property of the kinetic equations, where the rate
coefficients Cij and Aij = λCij are homogeneous functions of i and
j, is that these equations possess a scaling solution for i, j � 1.
The latter is determined by the homogeneity degree 8 and is
practically insensitive to the detailed form of these coefficients
(35, 36). We use this property and replace the original rate co-
efficients [9] and [11] by the generalized product kernel

Cij = Ĉ0ðijÞμ, Ĉ0 = const. [12]

For this kernel, the homogeneity degree is 8= 2μ. To match it
with the homogeneity degree of [9] and [11] we choose μ= 1=12
for the first limiting case and μ= 1=3 for the second. The advan-
tage of the product kernel [12] is the existence of an analytic
solution for the steady-state distribution. Indeed, with the homo-
geneous coefficients [12] the steady-state version of Eq. 3 reads

0=
1
2

X
i+j=k

lilj − ð1+ λÞlkL, [13]

where we have used the shorthand notations

lk = kμnk, L=
X
k≥1

lk. [14]

With the substitute, nk → lk and N→L, the system of equations
[13] is mathematically identical to the system of equations with a
constant kernel [6], so that the steady-state solution reads

nk =
L

2
ffiffiffi
π

p e−λ
2k   k−3=2−μ, [15]

again a power-law dependence with exponential cutoff.
Our analytical findings are confirmed by simulations. In Fig. 1,

the results of a direct numerical solution of the system of rate Eqs.
3 and 4 are shown for both limiting kernels [9] and [11], together
with their simplified counterparts [12]. The stationary distributions
for the systems with the complete kinetic coefficients [9] and [10]
have exactly the same slope as the systems with the simplified
kernel [12] of the same degree of homogeneity and hence quan-
titatively agree with the theoretical prediction [15]. Moreover, the
numerical solutions demonstrate an exponential cutoff for large
k, in agreement with the theoretical predictions.

Kernels [9] and [11] with homogeneity degree 8= 1=6 and
8= 2=3 correspond to two limiting cases of the size dependence of

the average kinetic energy hEki= ð1=2Þmkhv2ki∼ kβ. Namely, β= 0
corresponds to 8= 1=6 and β= 1 to 8= 2=3. Physically, we expect
that β is constrained within the interval 0≤ β≤ 1. Indeed, negative
β would imply vanishing velocity dispersion for very large particles,
which is possible only for the unrealistic condition of the collision-
free motion. The condition β> 1 is unrealistic as well. We con-
clude that β must be limited within the interval ½0,1�, and therefore
μ= 8=2 varies in the interval 1=12≤ μ≤ 1=3.

Power-Law Collisional Decomposition and Erosion.Next we consider
more realistic models, where collisions with some size distribu-
tion of debris and erosion take place.
Power-law decomposition. Experiments (30, 31) show that the number
of debris particles of size k produced in the fragmentation of a par-
ticle of size i scales as xkðiÞ∼BðiÞ=kα. If the distribution xkðiÞ of the
debris size is steep enough, the emerging steady-state particle distri-
bution should be close to that for complete fragmentation into
monomers. A scaling analysis, outlined below, confirms this expec-
tation, provided that α> 2; moreover, in this case BðiÞ= i (SI Text).
Substituting the debris size distribution xkðiÞ∼ i=kα into the basic

kinetic equations [2], we note that the equation for the monomer
production rate coincides with Eq. 4, up to a factor in the co-
efficientsAij. At the same time, the general equations [2] for nk have
the same terms as Eq. 3 for complete decomposition, but with two
extra terms—the fourth and fifth terms in Eq. 2. These terms de-
scribe an additional gain of particles of size k due to decomposition
of larger aggregates. Assuming that the steady-state distribution has
the same form as for monomer decomposition, nk ∼ k−γe−νk, one
can estimate (up to a factor) these extra terms for the homogeneous
kinetic coefficients, Aij = λCij ∼ ðijÞμ (Eq. 12). One gets

Fig. 1. Particle size distribution in the case of complete decomposition into
monomers. (A) The limiting case of energy equipartition hEki= const for all
species. The solid black line corresponds to the system with complete kinetic
coefficients [9], and the solid green line corresponds to the simplified co-
efficients [12] with the same degree of homogeneity, 2μ= 1=6. The dashed
line has slope nk ∝ k−19=12, predicted by the theory. (B) The limiting case of
equal velocity dispersion for all species, hv2ki= const. The solid black line re-
fers to the system with the complete kinetic coefficients [11], and the solid
green line corresponds to the simplified coefficients [12] with the same
degree of homogeneity, 2μ= 2=3. The dashed line shows the theoretical
dependence, nk ∝k−11=6. In all cases the power-law distribution turns into an
exponential decay for large sizes.
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Xk
i=1

X∞
j=k+1

AijninjBðjÞk−α ∼ k−α [16]

X
i, j≥k

Aijninj½BðiÞ+BðjÞ�k−α ∼ kμ−γ+1−α. [17]

Here we also require that νk � 1, which is the region where the
size distribution exhibits a power-law behavior. The above terms
are compared with the other three terms in Eq. 2 or Eq. 3, which
are the same for monomer and power-law decomposition:X

i+j=k

Cijninj ∼
X
i≥1

Ciknink ∼
X
i≥1

Aiknink ∼ kμ−γ . [18]

If the additional terms [16] and [17] were negligible, compared with
the terms [18] that arise for both models, the emergent steady-state
size distributions would be the same. For k � 1, one can neglect
[16] and [17] compared with [18] if α> γ − μ and α> 1. Taking into
account that the equations for the monomers for the two models
coincide when α> 2, we arrive at the following criterion for uni-
versality of the steady-state distribution: α>maxfγ − μ, 2g. In the
case of complete decomposition into monomers we have γ = μ+
3=2 ([15]). Hence the above criterion becomes α> 2. In other
words, if α> 2, the model of complete decomposition into mono-
mers yields the same steady-state size distribution as the model
with any power-law distribution of debris.
Collisions with erosion. In collisions with erosion only a small frac-
tion of a particle mass is chipped off (31, 37, 38). Here we consider
a simplified model of such collisions: It takes place when the
relative kinetic energy exceeds the threshold energy Eeros, which is
smaller than the fragmentation energy Efrag. Also, we assume that
the chipped-off piece always contains l monomers. Following the
same steps as before one can derive rate equations that describe
both disruptive and erosive collision. For instance, for complete
decomposition into monomers the equation for nk with k≥ l+ 2
acquires two additional terms,

λe
X∞
i=1

Cik+lnink+l − λe
X∞
i=1

Ciknink,

with similar additional terms for l+ 2> k> 1 and for the monomer
equation. Here λe gives the ratio of the frequencies of aggregative
and erosive collisions, which may be expressed in terms of Eeros (SI
Text). We assume that λe is small and is of the same order of
magnitude as λ. We also assume that λe is constant and that
lλe � 1. Then we can show that for k � 1 the size distribution
of aggregates nk has exactly the same form, Eq. 15, as for the case
of purely disruptive collisions (SI Text).
Universality of the steady-state distribution. The steady-state size dis-
tribution of aggregates [15] is generally universal: It is the same for
all size distributions of debris, with a strong dominance of small
fragments, independently of its functional form. Moreover, it may
be shown analytically (SI Text) that the form [15] of the distribu-
tion persists when collisions with erosion are involved. We
checked this conclusion numerically, solving the kinetic equations
[2] with a power-law, exponential size distribution of debris and
for collisions with an erosion (Fig. 2). We find that the particle size
distribution [15] is indeed universal for steep distributions of de-
bris size. Fig. 2 also confirms the condition of universality of the
distribution [15], if α> 2 for power-law debris size distributions.
A steep distribution of debris size, with strong domination of

small fragments, appears plausible since the aggregates are rela-
tively loose objects, with a low average coordination number.

Size Distribution of the Ring Particles. The distribution of the ring
particles’ radii, FðRÞ, is constrained by space- and earth-bound

observations (16). To extract FðRÞwe use the relation R3 = r3k = kr31
(for spherical particles) in conjunction with nkdk=FðRÞdR. We
find that nk ∼ k−3=2−μ expð−λ2kÞ implies

FðRÞ∼R−qe−ðR=RcÞ3 , q=
5
2
+ 3μ [19]

Rc =
r1
λ2=3

. [20]

Thus, for R � Rc the distribution is algebraic with exponent
q= 5=2+ 3μ, and the crossover to exponential behavior occurs
at R∼Rc.
We have shown that the exponent μ can vary within the interval

1=12≤ μ≤ 1=3, and hence the exponent q for the size distribution
varies in the range 2.75≤ q≤ 3.5. This is in excellent agreement with
observations, where values for q in the range from 2.70 to 3.11 were
reported (15, 17). Fitting the theory to the particle size distribution
of Saturn’s A ring inferred from data obtained by the Voyager Radio
Science Subsystem (RSS) during a radio occultation of the space-
craft by Saturn’s A ring (15), we find Rc = 5.5m (Fig. 3). For r1 in the
plausible range from 1 cm to 10 cm (16) we get (Eq. 20) λ on the
order of 10−4–10−3, which is the ratio of the frequencies of disruptive
and coagulating collisions. It is also possible to estimate character-
istic energies and the strength of the aggregates. Using the plausible
range for random velocity, v0 = 0.01− 0.1  cm=s (16), we obtain
values that agree with the laboratory measurements (SI Text).

Conclusion and Outlook
We have developed a kinetic model for the particle size distri-
bution in a dense planetary ring and showed that the steady-state
distribution emerges from the dynamic balance between aggre-
gation and fragmentation processes. The model quantitatively
explains properties of the particle size distribution of Saturn’s
rings inferred from observations. It naturally leads to a power-
law size distribution with an exponential cutoff (Eq. 19). In-
terestingly, the exponent q= 2.5+ 3μ is universal, for a specific
class of models we have investigated in detail. That is, q does not
depend on details of the collisional fragmentation mechanism,
provided the size distribution of debris, emerging in an impact, is
steep enough; collisions with erosion do not alter q as well. The
exponent q is a sum of two parts: The main part, 2.5, corresponds
to the “basic” case when the collision frequency does not depend
on particle size (μ= 0); such slope is generic for a steady size
distribution, stemming from the aggregation–fragmentation bal-
ance in binary collisions. The additional part, 3μ, varying in the
interval 0.25≤ 3μ≤ 1, characterizes size dependence of the colli-
sion frequency. The latter is determined by the particles’ di-
ameters and the mean square velocities hv2ki of their random
motion. We have obtained analytical solutions for the limiting
cases of energy equipartition, ð1=2Þmkhv2ki= const, (3μ= 0.25) and
of equal velocity dispersion for all species hv2ki= const, (3μ= 1).
These give the limiting slopes of q= 2.75 and q= 3.5. Physically,
we expect that an intermediate dependence between these two
limiting cases may follow from a better understanding of the be-
haviors of threshold energies. This would imply a power-law size
distribution with an exponent in the range 2.75≤ q≤ 3.5.
Observed variations of spectral properties of ring particles (39,

40) may indicate differences in the surface properties and, thus,
in their elasticity and sticking efficiency. This implies differences
in the velocity dispersion hv2ki and its dependence on k, resulting in
different values of the exponent q. Moreover, variations in particle
sizes among different parts of Saturn’s ring system have been
inferred from Cassini data (16, 41). For our model, a different av-
erage particle size, or monomer size, implies different values of Efrag
and Eagg as well as different values of the upper cutoff radius Rc.
Our results essentially depend on three basic assumptions:

(i) Ring particles are aggregates composed from primary grains
that are kept together by adhesive (or gravitational) forces; (ii)
the aggregate sizes change due to binary collisions, which are
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aggregative, bouncing, or disruptive (including collisions with ero-
sion); and (iii) the collision rates and type of impacts are determined
by sizes and velocities of colliding particles. We stress that the power-
law distribution with a cutoff is a direct mathematical consequence
of the above assumptions only; that is, there is no need to suppose a
power-law distribution and search for an additional mechanism for a
cutoff as in previous semiquantitative approaches (9).
The agreement between observations and predictions of our

model for the size distribution indicates that dense planetary rings
are indeed mainly composed of aggregates similar to the dynamic
ephemeral bodies suggested three decades ago (6, 7). This means
that the (ice) aggregates constituting the cosmic disks permanently
change their mass due to collision-caused aggregation and frag-
mentation, whereas their distribution of sizes remains stationary.
Thus, our results provide another (quantitative) proof that the
particle size distribution of Saturn’s rings is not primordial. The
same size distributions are expected for other collision-dominated
rings, such as the rings of Uranus (42, 43), Chariklo (44, 45), and
Chiron (46, 47) and possibly around extrasolar objects (48–50).
The predictive power of the kinetic model further emphasizes

the role of adhesive contact forces between constituents that
dominate for aggregate sizes up to the observed cutoff radius of
Rc ∼ 5− 10 m. The model does not describe the largest constituents
in the rings, with sizes beyond Rc. These are the propeller moonlets
in the A and B rings of Saturn, which may be remnants of a cata-
strophic disruption (12, 20). We also do not discuss the nature of
the smallest constituents, that is, of the primary grains. These par-
ticles are probably themselves composed of still smaller entities and
correspond to the least-size free particles observed in the rings (13).
Recently, cohesion was studied for dense planetary rings in

terms of N-body simulations (51, 52). This model is similar to ours
in that the authors use critical velocities for merging and frag-
mentation whereas we use threshold energies Eagg and Efrag; both
criteria are based on the cohesion model. In these simulations a
power-law distribution for the aggregates size FðRÞ∼R−q was
obtained with slopes 2.75≤ q≤ 3 for reasonable values of the co-
hesive parameter, consistent with our theoretical result. Moreover,
the critical velocities for merging and fragmentation differ in most
of the simulations by a factor of 2, which is in reasonable agree-
ment with our model, where we estimated Efrag to be roughly twice
Eagg (SI Text).

Materials and Methods
Boltzmann Equation. The general equations [2] for the concentrations nk have
been derived from the Boltzmann kinetic equation. Here we consider a
simplified case of a force-free and spatially uniform system. It is possible to
take into account the effects of nonhomogeneity, as it is observed in self-
gravity wakes, and gravitational interactions between particles. These,
however, do not alter the form of resulting rate equations [2], which may be
then formulated for the space-averaged values (SI Text).

Let fi ≡ fðmi ,vi , tÞ be the mass-velocity distribution function that gives the
number density of particles of mass mi with the velocity vi at time t. In
the homogeneous setting, the distribution function evolves according to
the Boltzmann equation,

∂
∂t

fkðvk , tÞ= Ibk + Iheatk + Iaggk + Ifragk   , [21]

where the right-hand side accounts for particle collisions. The first term Ibk
accounts for bouncing collisions of particles (24); the second term Iheatk de-
scribes the viscous heating caused by the Keplerian shear (53); and the terms
Iaggk and Ifragk account, respectively, for the aggregative and disruptive
impacts (explicit expressions for these terms are given in SI Text). To derive
the rate equations [2] for the concentrations of the species, nkðtÞ=

R
dvkfkðvk , tÞ,

one needs to integrate Eq. 21 over vk. Assuming that all species have a Maxwell
velocity distribution function with average velocity Ævkæ= 0 and velocity
dispersion Æv2kæ, we obtain the rate equations [2] and the rate coefficients [1]
(details in SI Text).

Generating Function Techniques. To solve Eq. 6 we use the generating func-
tion NðzÞ=P

k≥1nk   zk, which allows us to convert these equations into the
single algebraic equation

NðzÞ2 − 2ð1+ λÞNNðzÞ+ 2ð1+ λÞNn1z= 0. [22]

Its solution reads

NðzÞ= ð1+ λÞN
"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2n1

ð1+ λÞN   z

s #
. [23]

Expanding NðzÞ, we arrive at the distribution [7].

Efficient Numerical Algorithm. The numerical solution of Smoluchowski-type
equations [2] is challenging as one has to solve infinitely many coupled
nonlinear equations. We developed an efficient and fast numerical algo-
rithm dealing with a large number of such equations. The application of our
algorithm requires that the condition

Fig. 2. Particle size distribution in the case of power-law decomposition. The
black solid line depicts the particle size distribution for the case of complete
decomposition. The other solid lines show the emergent steady-state distri-
butions for the following size distributions of debris: the power-law distribu-
tion, xkðiÞ∼ k−α, with α= 1 (gray), α= 1.5 (red), α= 2 (blue), α= 3 (green),
exponential distribution xkðiÞ∼ expð−kÞ (yellow), and collisions with an ero-
sion, λe = 0.05, l= 3 (violet). The dashed lines indicate the corresponding fit
nk ∼ k−γ. Note that for steep size distributions of debris (power law with α>2,
exponential distribution) all slopes coincide with the one for the case of
complete decomposition into monomers. All curves correspond to the case of
constant kinetic coefficients with λ=Cij=Aij = 0.01.

Fig. 3. Particle size distribution for Saturn’s A ring. The dashed line repre-
sents the particle size distribution of Saturn’s A ring inferred from data
obtained by the Voyager Radio Science Subsystem (RSS) during a radio oc-
cultation of the spacecraft by the rings (15). A fit of the theoretical curve,
Eq. 19, is shown as a solid line, giving a cutoff radius of Rc = 5.5 m.
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Xk
i=1

Ci,k+1ni �
XN
i=k+1

Ci,k+1ni [24]

is obeyed for k � 1 and N � 1, where ni are the steady-state concentrations. For
the case of interest this condition is fulfilled. Our algorithm first solves a relatively
small set (∼ 100) of equations using the standard technique and then obtains other
concentrations of amuch larger set (∼10,000), using an iterative procedure (SI Text).
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