
Volume 13, Issues 9–10, November–December 2012, Pages 866–877
Structures and statistics of fluid turbulence/Structures et statistiques de la turbulence des fluides
On the dynamical role of coherent structures in turbulence
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
- Available online 2 November 2012
Abstract
The notion of coherent structures in fluid mechanics – distinguishable regions of the flow field that share common properties and are correlated in space and time – has played a significant role in characterizing and modeling turbulent flows. They have not yet, however, truly become predictive tools, in part because there is no universally accepted way of extracting coherent structures from the flow field. A wide range of types of structures have been suggested, but there has been comparatively little work done to determine their role in the flow dynamics, and therefore to discern which structures are useful for more than flow visualization. Here, I review several common types of coherent structures, both Eulerian and Lagrangian, with a focus on two-dimensional turbulence far from boundaries. I also discuss a framework for pinpointing the dynamical role of coherent structures based on spatial localization of the spectral properties of the flow. Future work on coherent structures should focus on defining structures that play clear roles in the turbulence dynamics.
Résumé
La notion en mécanique des fluides de structures cohérentes, cʼest-à-dire des régions particulières de lʼécoulement corrélées spatialement et temporellement et qui partagent des propriétés similaires, a joué un rôle significatif dans la caractérisation et la modélisation des écoulements turbulents. Pour autant, ces structures ne sont pas considérées comme des outils prédictifs car, notamment, il nʼexiste pas de consensus sur la méthode permettant leur extraction de lʼécoulement. Il a été proposé une gamme étendue de types de structures, mais peu de travail a été fourni visant à caractériser leur rôle dans la dynamique du fluide, cantonnant donc ces structures à une caractérisation visuelle de lʼécoulement. Dans cet article, je me propose de rappeler lʼimportance de quelques unes de ces structures, aussi bien eulériennes que lagrangiennes, avec un intérêt particulier pour la turbulence bidimensionnelle loin des bords. Je discuterai aussi de lʼexistence dʼun cadre permettant de quantifier leur rôle dynamique en me basant sur la localisation spatiale des propriétés spectrales de lʼécoulement. Les études futures des structures cohérentes devront se concentrer à définir les structures qui jouent un rôle clair dans la dynamique de la turbulence.
Keywords
- Coherent structures;
- Turbulence;
- Fluid mechanics
Mots-clés
- Structures cohérentes;
- Turbulence;
- Mécanique des fluides
References
- [1]
Turbulent Flows
Cambridge University Press, Cambridge, England (2000)
- [2]
Pattern formation outside of equilibrium
Rev. Mod. Phys., 65 (1993), pp. 851–1112
- |
- [3]
On density effects and large structure in turbulent mixing layers
J. Fluid Mech., 64 (1974), pp. 775–816
- |
- [4]
Coherent structures and turbulence
J. Fluid Mech., 173 (1986), pp. 303–356
- |
- [5]
Two-dimensional turbulence: a physicist approach
Phys. Rep., 362 (2002), pp. 1–62
- | |
- [6]
Effects of forcing geometry on two-dimensional weak turbulence
Phys. Rev. E, 86 (2012), p. 036306
- [7]
Two-dimensional turbulence
Annu. Rev. Fluid Mech., 44 (2012), pp. 427–451
- [8]
Onset of three-dimensionality in electromagnetically forced thin-layer flows
Phys. Fluids, 23 (2011), p. 045103
- [9]
Uniform resonant chaotic mixing in fluid flows
Nature, 425 (2003), pp. 376–380
- |
- [10]
Two-dimensional Navier–Stokes turbulence in bounded domains
Appl. Mech. Rev., 62 (2009), p. 020802
- [11]
Neutrally buoyant particle dynamics in fluid flows: Comparison of experiments with Lagrangian stochastic models
Phys. Fluids, 23 (2011), p. 093304
- [12]
Transport of finite-sized particles in chaotic flow
Phys. Rev. Lett., 101 (2008), p. 174504
- [13]
The “Cheerios” effect
Am. J. Phys., 73 (2005), pp. 817–825
- |
- [14]
A quantitative study of three-dimensional Lagrangian particle tracking algorithms
Exp. Fluids, 40 (2006), pp. 301–313
- |
- [15]
Experimental Lagrangian probability density function measurement
Physica D, 193 (2004), pp. 245–251
- | |
- [16]
Coherent structures – reality and myth
Phys. Fluids, 26 (1983), pp. 2816–2850
- |
- [17]
- J.C.R. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, Technical Report CTR-S88, Center for Turbulence Research, 1988.
- [18]
An objective definition of a vortex
J. Fluid Mech., 525 (2005), pp. 1–26
- |
- [19]
On the identification of a vortex
J. Fluid Mech., 285 (1995), pp. 69–94
- [20]
Universal distribution of centers and saddles in two-dimensional turbulence
Phys. Rev. Lett., 87 (2001), p. 044501
- |
- [21]
Particle trapping in three-dimensional fully developed turbulence
Phys. Fluids, 17 (2005), p. 021701
- |
- [22]
Effects of vortex filaments on the velocity of tracers and heavy particles in turbulence
Phys. Fluids, 18 (2006), p. 081702
- [23]
Is concentrated vorticity that important?
Eur. J. Mech. B/Fluids, 17 (1998), pp. 421–449
- | |
- [24]
A description of eddying motion and flow patterns using critical-point concepts
Annu. Rev. Fluid Mech., 19 (1987), pp. 125–155
- |
- [25]
Chaos-enhanced transport in cellular flows
Phil. Trans. R. Soc. A, 338 (1992), pp. 519–532
- [26]
Dynamical dimension of defects in spatiotemporal chaos
Phys. Rev. Lett., 81 (1998), pp. 4120–4123
- |
- [27]
A general classification of three-dimensional flow fields
Phys. Fluids A, 2 (1990), pp. 765–777
- |
- [28]
Curvature fields, topology, and the dynamics of spatiotemporal chaos
Phys. Rev. Lett., 99 (2007), p. 194502
- |
- [29]
Dynamic topology in spatiotemporal chaos
Phys. Fluids, 20 (2008), p. 064104
- |
- [30]
Geometry of particle paths in turbulent flows
J. Turbul., 7 (2006), p. 1
- [31]
Curvature of Lagrangian trajectories in turbulence
Phys. Rev. Lett., 98 (2007), p. 050201
- [32]
Surface selections and topological constraint evaluations for flow field analyses
Exp. Fluids, 37 (2004), pp. 883–898
- |
- [33]
Acceleration-based classification and evolution of fluid flow structures in two-dimensional turbulence
Phys. Rev. E, 82 (2010), p. 026312
- [34]
Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence
Phys. Fluids, 18 (2006), p. 115103
- |
- [35]
Lagrangian tetrad dynamics and the phenomenology of turbulence
Phys. Fluids, 11 (1999), pp. 2394–2410
- |
- [36]
Geometry of Lagrangian dispersion in turbulence
Phys. Rev. Lett., 85 (2000), pp. 5324–5327
- |
- [37]
Scalar turbulence
Nature, 405 (2000), pp. 639–646
- [38]
The Lagrangian view of energy transfer in turbulent flow
Europhys. Lett., 56 (2001), pp. 379–385
- |
- [39]
Evolution of geometric structures in intense turbulence
New J. Phys., 10 (2008), p. 013012
- [40]
Multiparticle dispersion in fully developed turbulence
Phys. Fluids, 17 (2005), p. 111701