
fine-grained microcrystalline Si3N4 product produced after an
additional short period of spark-discharge milling. Silicon can be
nitrided in ammonia by conventional magneto-ball milling under
low-energy shearing conditions to form an amorphous-like pro-
duct10. The powder can then be hot-pressed to form monolithic
microcrystalline Si3N4. However, the more direct route of hot-
pressing microcrystalline Si3N4 that is produced by discharge
milling may be more attractive because such Si3N4 is less likely to
oxidize during processing and because there is no requirement to
remove hydrogen.

Spark-discharge milling was successfully employed for initiation
of reduction processes. Results obtained for haematite are shown in
Fig. 5. We used pre-milled powder, magneto-milled under conven-
tional impact mode in air. After 20 h, XRD indicated broad peaks
corresponding to nanostructural haematite. This powder was sub-
sequently milled for 30 min in nitrogen under spark milling
conditions, resulting in formation of magnetite or maghaematite.
As indicated by the associated SEMs, the corresponding change in
particle morphology is from clumps of nanocrystalline powder (Fig.
5a) to finer particles containing coarser, submicrometre crystallites
(Fig. 5b).

There are promising applications of this electrical discharge
method for materials and minerals processing. Handling of ultra-
fine ball milled powders with large surface areas is generally difficult
owing to their high susceptibility to structural changes, particularly
oxidation, even in inert atmospheres containing only trace impu-
rities such as water vapour or oxygen. Such problems may poten-
tially be overcome if discharge-assisted milling can be applied for
the direct formation of more stable phases. A general method might
involve conventional milling to produce a reactive ultrafine or
nanostructural product followed by final milling under an electrical
discharge to generate particular heat-induced transformations,
such as recrystallization, grain growth, relaxation of internal stresses
or the direct formation of new phases by solid–solid reaction. Such a
technique may avoid problems associated with handling and
subsequent treatment of highly reactive powders. Areas of minerals
processing which might benefit from scaled-up versions of dis-
charge-assisted milling range from more energy-efficient methods
of ore fracturing to alternative routes of minerals reduction. A
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Vapour condensation in cloud cores produces small droplets that
are close to one another in size. Droplets are believed to grow to
raindrop size by coalescence due to collision1,2. Air turbulence is
thought to be the main cause for collisions of similar-sized
droplets exceeding radii of a few micrometres, and therefore
rain prediction requires a quantitative description of droplet
collision in turbulence1–5. Turbulent vortices act as small centri-
fuges that spin heavy droplets out, creating concentration inho-
mogeneities6–14 and jets of droplets, both of which increase the
mean collision rate. Here we derive a formula for the collision
rate of small heavy particles in a turbulent flow, using a recently
developed formalism for tracing random trajectories15,16. We
describe an enhancement of inertial effects by turbulence inter-
mittency and an interplay between turbulence and gravity that
determines the collision rate. We present a new mechanism, the
‘sling effect’, for collisions due to jets of droplets that become
detached from the air flow. We conclude that air turbulence can
substantially accelerate the appearance of large droplets that
trigger rain.

The local distribution of droplets over sizes, nða; t; rÞ ¼ nðaÞ;
changes with condensation and coalescence according to refs 1, 2
(see Table 1 for definitions of variables):

›nðaÞ

›t
¼2q

›

›a

nðaÞ

a
2

›

›r
vn

þ

ð
da

0 Kða 0 ;a 00 Þnða 0 Þnða 00 Þ

2ða 00=aÞ2
2 Kða

0
;aÞnða

0
ÞnðaÞ

� �
ð1Þ

Here, v(t, r) is the droplet velocity at point r at time t, q is
proportional to the supersaturation and the diffusivity of the
vapour and a 00 ¼ ða3 2 a 0 3 Þ1=3:The collection kernel is proportional
to the collision kernel, which is the product of the target area and the
relative velocity Dv of droplets before the contact: Kða1;a2Þ.
pða1þ a2Þ

2Dv: For droplets larger than couple of micrometres
across, brownian motion can be neglected and the collision kernel
in still air is due to gravitational settling1,2: Kgða1;a2Þ ¼ pða1þ
a2Þ

2Eða1;a2Þjugða1Þ2 ugða2Þj: When the Reynolds number of the
flow around the droplet, Rea ; uga=n; is not too large and concen-
tration is small enough ðna3Re22

a ,, 1Þ the settling velocity is due to
the balance of gravity and friction: ug ¼ gt with the Stokes time
t¼ ð2=9Þðr0=rÞða

2=nÞ: Here r0, r are water and air densities
respectively. Hydrodynamic interaction between approaching dro-
plets is accounted for in Kg by the collision efficiency E, for which
values can be found in refs 1, 17.

Cloud condensation nuclei are typically of micrometre or sub-
micrometre size and the initial stage of droplet growth is solely due
to condensation: nða; tÞ ¼ af ða2 2 2qtÞ with the function f deter-
mined by the initial distribution. An important conclusion is that
while the distribution shifts to larger sizes, it keeps its small width
over a 2 (a few micrometres squared or less). It would take many
hours for condensation to grow millimetre-size raindrops,
especially with the account of vapour depletion. Such growth is
supposed to come from coalescence but because Kg/ja

2
1 2 a2

2j the
gravitational collision rate is strongly suppressed for droplets that
are close in size. With narrow local size distributions in cloud cores,
rain would not start in still air for many hours. There is then the
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long-standing problem of the bottleneck in the transition from
condensation to coalescence stage1–5,8–11,18–20 which we discuss here.

In some cases, droplets with substantially different sizes may
appear, owing to the existence of ultra-giant nuclei18,19. Another
possibility that we consider here is that turbulence-induced
collisions8–11,20 may occur. Both velocity and concentration of
droplets fluctuate in a random flow. To provide meteorology with
an effective computational tool, theoretical physics is expected to
produce the condensation–coagulation equation (1) averaged over
space. Here we derive analytically the averaged equation—that is, we
obtain the effective collision kernel �K¼ kKða1;a2Þn1n2l=kn1lkn2l�—
and solve it numerically to demonstrate the changes in the average
distribution n(a, t) brought about by turbulence.

For the basic discussion of cloud turbulence see the reviews in refs
3–5 and the references therein. Turbulence intensity can be charac-
terized by the energy input rate 1 which determines the root-mean-
square (r.m.s.) velocity gradient: l . ð1=nÞ1=2: We consider small
droplets with the Stokes number St ¼ lt (which characterizes mean
droplet inertia) smaller than unity. If inertia is neglected, droplets
follow the incompressible air flow and their concentration is
uniform. Droplet motion in the air flow gradient s then provides
Dv . sða1þ a2Þ and gives the mean collision kernel20 kK tl . lða1þ
a2Þ

3: Inertia deviates droplets from the air flow, adding a contri-
bution to Dv proportional to ts the mean value of which is St, that is,
small20. Hence Saffman and Turner20 concluded that only extremely
energetic turbulence with 1 . 2;000 cm2 s23 would produce a
noticeable collision kernel. We note, however, that it is �K rather
than kKl that determines the mean collision rate. Inertial deviation
of droplets from the air flow leads to fluctuations in droplet
concentration, characterized by the factor k12 ¼ kn1n2l=kn1lkn2l .
1; which may be large. Concentration fluctuations have been
observed in experiments and numerical simulations5–12 and
described analytically for same-size droplets in low Reynolds flow
without gravity13,14: kða;aÞ ¼ kn2l=knl2 . ðh=aÞSt2

, where h <
ðn3=1Þ1=4 is the mean correlation scale of velocity gradients.

The Reynolds number of cloud turbulence is Re ¼ uL/n, where u
is air velocity and L is the outer scale comparable to the cloud size. In
the atmosphere, Re is large (106–108), that is, turbulence is inter-
mittent and the statistics is very non-gaussian, with a substantial
probability of gradients far exceeding l. The role of gravity can be
characterized by the ratio of the small-scale turbulent velocity to the
settling velocity12,21 e ; ð1nÞ1=4=ug; this parameter can be both
larger and smaller than unity for a¼ 1–100mm and l¼ 1–20 s21:

Here we derive the factor k12 for droplets under gravity in high-Re
flow. We show that contribution of large gradients can significantly
increase k12 compared with the low-Re case and that gravity
provides for a sharp maximum of k12 at a1 ¼ a2. We also describe
a new inertial mechanism of collisions due to rare events with large
gradients ðs . t21 .. lÞ that produce jets of droplets initially
accelerated by the air flow and then detached from it. That gives
an additive contribution Ki into �K. We call this the ‘sling effect’ and
show that turbulence intermittency can make Ki substantial even at
small St. No realistic direct numerical simulations are possible for

droplets in high-Re turbulence, so analytical derivations are indis-
pensable. We derive �Kðe;St;ReÞ and show that the turbulence-
induced collision rate can be substantial even for small droplets in
moderate turbulence when St is small.

The field v(r, t) giving the velocity of a droplet located at r at time
t satisfies the equation6,22 ›tvþ ðv7Þv ¼ ðu 2 vÞ=tþ gz, where z is a
unit vector pointing downwards. The gradients j ¼ 7v and s ¼ 7u
taken at a droplet’s trajectory are related as follows: _jþ j2 ¼
ðs 2 jÞ=t: When jjj,, t21; it has a smooth evolution determined
by jðtÞ ¼

Ð t
dt 0 exp½ðt 0 2 tÞ=t�sðt 0 Þ=t: If, however, jjj. t21 then

the inertial term j 2 dominates and may lead to an explosive
evolution jðtÞ/ ðt0 2 tÞ21 that produces shock in v(r) and singu-
larities in n(r).

The probability P of an explosive event is that of large and
persistent gradients s. The correlation time tc(s) of the air flow
gradient is given by the minimum between the turnover time jsj21

and the time l(s)/ug needed for droplets to cross the region lðsÞ.ffiffiffiffiffiffiffiffiffi
n=jsj

p
over which s is correlated. The gradient s that leads to jjj.

t21 must either exceed the threshold described by the extrapolation
formula sb ¼ ½t

22þ l2e24�1=2 or be larger than 1/t and occupy the
region in space l(sb)sb/s. Because the only available data are on the
single-point probability density function (PDF) P(s) we estimate
the probability of explosion from below: P ;

Ð1

1=tPðjjjÞdjjj.
tsb

Ð
sb
PðjsjÞdjsj; where the prefactor tsb appears because s . sb

can occur at any moment within the interval t. Once a fluctuation
with a negative eigenvalue ji , 2t21 occurs, the inertial term j2

exceeds the driving term si /t and the friction term 2 ji /t, which
corresponds to a free motion of droplets along the direction of ji on
a timescale of order t. A negative velocity gradient means that faster
droplets catch up with slower ones, creating a cubic singularity23 in
the relation between the current coordinate x(t) and the initial one
y: x¼ y3=3l2 2 yt=t:Here l ¼ l(sb) is the correlation length of jjj ¼
1=t and t is counted from the moment of singularity. Using nðx; tÞ ¼
nðyÞj›y=›xj and jjj ¼ jð›v=›yÞð›y=›xÞj. t21j›y=›xj we find the
contribution of the preshocks (t , 0) into the collision rate:
kjjjn2l . Pt21

Ð
dx
Ð 0

2t
dtð›y=›xÞ3kn2ðyÞl=lt .

Pt21ðl=aÞ1=3k~n2½aðl=aÞ2=3�l. Formula kjjjn2l assumes smoothness
over the scale a, so we introduced ~n½dy� coarse-grained over dy,
taking dy . aðl=aÞ2=3; which corresponds to dx . a.

After the shock (t . 0), folds appear in the map y(x) in the
region jxj, 2lðt=tÞ3=2=3 : for every x value there are three y values
which correspond to the three groups of droplets that came from
different places and have different velocities. Nearby droplets
from the same group have Dv . ja and contribute kjjjn2l .
Pt21ðl=aÞ1=2k~n2½ðlaÞ1=2�l: However, this contribution and that of
preshocks are both less than that given by collisions of droplets from
different groups. Groups coming from afar appear because droplets

Table 1 Parameters

Quantity Units Description
.............................................................................................................................................................................

n(a) cm24 Distribution of droplets over sizes in a unit volume
a cm Droplet radius
t s Time
r cm Spatial coordinate
q cm2 s21 Rate of condensational growth
K cm3 s21 Collision kernel
ug cm s21 Terminal fall velocity
g cm s22 Acceleration of gravity
n cm2 s21 Air viscosity
1 cm2 s23 Energy dissipation rate per unit mass
u (r, t) cm s21 Air velocity
.............................................................................................................................................................................

Figure 1 Normalized effective collection kernel for equal-size droplets at Re . 106

according to equations (2), (3), (4) and (6). From bottom to top, l ¼ 10, 15 and 20 s21.
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are shot out of curved streamlines with too high a centrifugal
acceleration, an effect known to anyone who has used a sling to
throw stones. That is why we call this the ‘sling effect’. Droplets
separated at the beginning of the free motion by a distance .l have
Dv . l=t and provide for the inertial collision kernel:

Kiða1;a2Þ. pða1þ a2Þ
2E

0
ðP1l1=t2þ P2l2=t2Þ=2: ð2Þ

Subscripts denote different droplet sizes, tða1Þ ¼ t1; P1 ¼ Pðjjj.
1=t1Þ: Because the velocities and the concentrations of the different
groups are uncorrelated, kKiða1;a2Þn1n2l¼ Kiða1;a2Þkn1lkn2l: The
collision efficiency E

0
in equation (2) can be expressed via E taken

for the effective sizes, giving the same Dv. We thus obtain E 0 <
0:93–0:98 in the interval 15–100 mm for collinear velocities (non-
collinearity further increases E 0 ; ref. 3), so with our accuracy,
E
0 < 1. We note that Ki(a, a) is larger than the contribution due

to droplets from the same group by the factorffiffiffiffiffiffi
l=a

p
k~n2½l�l=k~n2½ðlaÞ1=2�l: It is shown below that k~n2½r�l/ r2a

with a , 1 so that Ki indeed dominates. The ratio Ki=la3 .
PSt21ðl=aÞ has the smallness of P compensated by two large factors
and can exceed unity even at small St. Most importantly, Kiða;aÞ–
0:

We now describe concentration fluctuations and derive k12.
Because of inertia, the divergence of v is nonvanishing6, albeit
small: trj¼2

Ð
exp½ðt 0 2 tÞ=t�trj2ðt 0 Þdt 0 ,, jjj at tjjj,, 1:

Negative trj2 corresponds to elliptic flows (vortices) which act as
centrifuges decreasing n. Droplets concentrate in hyperbolic regions
(between the vortices) where trj2 . 0 . trj:Clusters of droplets are
created with sizes not exceeding h, as follows from theory13,14 and as
seen in numerics24 and observations25. We note in passing that as
clusters do not exceed h the fluctuations of droplet concentration do
not produce significant fluctuations in vapour concentration
(because the vapour diffusivity is comparable to the air viscosity)
so that droplet distribution over sizes cannot be significantly
broadened during the condensation stage; see also ref. 26. Cluster-
ing can be readily understood: a compressible flow with lagrangian
chaos creates a fractal concentration, the so-called Sinai–Ruelle–
Bowen measure16. The moments of the fractal measure behave as
powers of the scale ratio: k~n½r�bl . knlbðh=rÞgðbÞ, where g(b) is
convex and gð0Þ ¼ gð1Þ ¼ 0:As g

0 (0) is negative13 (it is proportional
to the sum of the backward-in-time Lyapunov exponents of the
v-flow), then a ; gð2Þ. 0: Droplets of different sizes have
additional relative velocity jt1 2 t2jðgþ l2hÞ that stops clustering
at r . jt1 2 t2jðgþ l2hÞ=ld: We thus find:

k12 . k~n1ðaÞ~n2ðaÞl=ðkn1lkn2lÞ

. ½a=hþ ðlþ g=lhÞjt1 2 t2j ~e
21�2a ð3Þ

We distinguish a1 from a 2 only in jt1 2 t2j giving the sharpest
dependence. The exponent a is described by equation (6), derived
in the Methods section below. For sufficiently small droplets (St , 1
and e . 1) and not very high Re, we have a . St2F3; where F3 <
l23

Ð
jsj

3
PðsÞds is a growing function of Re that describes how

turbulence intermittency amplifies the effect of small droplet
inertia. At low Re and St , 1, a does not depend on e , so the
only dependence k11(e) can come from shock contribution and has
to be weak (logarithmic), which agrees with numerics12. At large Re,
both a and k12 have a maximum at St . e 2.

We now write the effective collision kernel for small heavy
particles in turbulence:

�Kða1;a2Þ. k12lða1þ a2Þ
3þ k12Kg þKi ð4Þ

To compare with numerics done for low Re without gravity9,10 we
use equations (2), (3), (4) and (6) with P . expð2St22Þ and l .
hSt1=2: Analytics and numerics agree well, showing fast growth of �K
with St at St , 1 and a (broad) maximum at a1 ¼ a2 (refs 9, 10). As
St approaches unity, k12 .. 1 and Ki .. lða1þ a2Þ

3;which explains
the observation9 that contributions of both preferential concen-
tration and relative velocity are important. Gravity suppresses Ki

increasing sb at e2 , St. It also makes k12 a sharp function of ja1 2
a2j so that the gravitational collision rate is only weakly enhanced by
preferential concentration, because k12 . 1 where Kg < 0. At small
St, we can also neglect the turbulence-induced increase of the
vertical flux12.

For practical applications to high-Re flows, a and Ki have to be
evaluated with P(s) determined experimentally. To make an esti-
mate from below, we numerically evaluate equations (2), (3), (4)
and (6) for moderate turbulence with Re . 106, taking P(s) from
ref. 27. Figure 1 shows the effective collision kernel �K normalized by
8la 3. The normalized kernel has a maximum at St . e2 which
corresponds to the balance between inertia and gravity when the
Stokes time t is the universal value (n/g2)1/3. Droplets of such size
take time t to fall through the vortex with a turnover time t. The
effect of centrifugal force is less both for smaller droplets (which are
less inertial) and for larger ones (which spend less time inside the
vortex). This is to be contrasted with the maximum at St . 1 in
low-Reynolds numerics without gravity9,10. How inertia and gravity
influence droplet settling is discussed in refs 12, 21, 28; see also refs
29, 30 on the role of turbulence.

We see that the interplay between gravity and turbulence inter-
mittency makes inertial enhancement of the turbulence-induced
collision rate significant only in the restricted interval of droplet
sizes that depends on the air density (between 20 and 60 m for
r¼ 1023 g cm23Þ: The condensation–coagulation bottleneck is
expected precisely in this interval, so turbulence must be able to
alleviate it. To illustrate the effect, we solve space-averaged equation
(1) numerically with the mean-field collection kernels Kgþ kK tl
(dashed line in Fig. 2) and with �K (solid line in Fig. 2) for
l ¼ 20 s21, h ¼ 6 mm and q¼ 5 £ 1029 cm2 s21: We took 50 drop-
lets per cm3 with initial sizes in the interval 2–3 mm. Even for such
relatively low level of turbulence and small size of droplets, the
difference in coalescence-produced secondary peaks is apparent
after only 10 min. The main peak is at a ¼ 25 mm. The number
density of coalescence-produced droplets is 1.06 cm23 with the
newly found �K versus 0.64 cm23 with the old mean-field values.

We thus conclude that turbulence-induced inertial effects can
substantially accelerate the transition from condensation to coalesc-
ence stage in the interval of few tens of micrometres. Our results are
valid for a low concentration of small droplets and not very
energetic turbulence, conditions compatible with the data for
most clouds1,2,4,5, so we believe that equations (2), (3), (4) and (6)
provide for an effective tool in rain prediction. A

Methods
To determine a from equation (3) we consider13 the prehistory of a cluster with the

Figure 2 Distribution over sizes after 10 min. The dashed line is the solution of equation

(1) with the mean-field collision kernel and the solid line is the solution of equation (1) with

equation (4).
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smallest size r. It is formed by a gradual deformation of an h-size region with an initially
uniform concentration. The shock contribution to the moment, k~n2½r�l/

Ð
dxð›y=›xÞ2/

lnðl=rÞ1=2; contains a logarithm that is of order unity in our case. Therefore, we neglect
shocks and consider fluctuations with jjj , t21. The smallest size of the region evolves as
h exp[ldt], where ld is the most negative Lyapunov exponent estimated as jldj.Ð

dtktrjT ð0ÞjðtÞl . l ~e ¼ leð1þ e2Þ21=2: Therefore, concentration fluctuations
accumulate during the time lnðh=rÞ=jldj: Because _n¼2ntrj in the droplets’ frame and
the contribution of each cluster to the spatial average is proportional to its volume
exp½

Ð t

0trjðt
0
Þdt

0
�; we obtain:

k~n2½r�l¼ knl2

*
exp 2

ðlnðh=rÞ=ld

0

trjðt
0
Þdt

0

" #+

¼ knl2 exp t

ð lnðh=rÞ=ld

0

trj2ðt
0
Þdt

0

" #* +
¼ knl2 h

r

� �a

; for a

. t2=jldj

ð
dtRtrj2ð0Þtrj2ðtÞS ð5Þ

where we assumed that ln(h/r)/jldj is much larger than the correlation time of trj2. The
higher terms of the cumulant expansion cannot be parametrically larger than the estimate
(5) since they contain integrals estimated as Rttrj2½ttcðjÞtrj

2�2mþ1S; for m $ 1, and both
the correlation time tc(j) and t are less than jjj21 in the integration domain. Moreover, if
kt2tc(j)(trj2)2l is determined by jjj,, t21 then equation (5) is correct not only
parametrically but also numerically. To evaluate a we express it via the single-time PDF
P(jjj):

a . ðt2=l ~eÞ

ð
tjjj,1

djj4tcðjÞPðjjjÞ ð6Þ

To relate P(j) to P(s) measured experimentally we note that tcðsÞ. t for s , s* ¼
t21 min{1; e2=St} so that PðjjjÞ ¼ Pðjsj ¼ jjjÞ there. At s . s* the fluctuations of s
contributing to P(j) have tc(s) , t and can occur at any moment within t. The
extrapolation formulas at St , e are PðjjjÞ ¼ ð1þ j2=s2

* ÞPðjsj ¼ jjj þ j2=s* Þ and
tcðjjjÞ ¼ tþ ðjjj þ l1=2jjj

1=2
e21Þ21: Our theory is valid as long as St min{1; e} , 1:
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Many issues in biological oceanography are regional or global in
scope1; however, there are not many data sets of extensive areal
coverage for marine plankton. In microbial ecology, a fruitful
approach to large-scale questions is comparative analysis2,3

wherein statistical data patterns are sought from different eco-
systems, frequently assembled from unrelated studies4. A more
recent approach termed macroecology characterizes phenomena
emerging from large numbers of biological units by emphasizing
the shapes and boundaries of statistical distributions, because
these reflect the constraints on variation5. Here, I use a set of flow
cytometric measurements to provide macroecological perspec-
tives on North Atlantic phytoplankton communities. Distinct
trends of abundance in picophytoplankton and both small and
large nanophytoplankton underlaid two patterns. First, total
abundance of the three groups was related to assemblage
mean-cell size according to the 3/4 power law of allometric
scaling in biology6,7. Second, cytometric diversity8 (an ataxo-
nomic measure of assemblage entropy) was maximal at inter-
mediate levels of water column stratification9. Here, intermediate
disturbance shapes diversity through an equitable distribution of
cells in size classes, from which arises a high overall biomass. By
subsuming local fluctuations, macroecology reveals meaningful
patterns of phytoplankton at large scales.

The data were collected from 23 oceanographic cruises spanning
a 13-year period. We have published previously a description of the
14 earlier cruises (1989–98), a map of the stations, and sampling
methods10. More recently (1999–2001), we re-occupied the stations
on the Scotian shelf in spring and autumn, and the Labrador Sea in
spring. Although stations were located across seven biogeochemical
provinces1, only measurements in the four northwestern ones,
representing 82% of the data set, were included in the present
analysis. These four contiguous provinces were Atlantic Arctic
(ARCT), boreal polar (BPLR), northwest Atlantic shelves (NWCS)
and Gulf Stream (GFST). The stations were in an area bounded
approximately by 388 N, 618 N, 428 Wand 678 W. The extracted data
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