PREVIEW

Your changes have been published

This page has been removed

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

F

Langevin approach to generate synthetic turbulent flows

Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/9/4/10.1063/1.869201

References

  • A. C. Martí, J. M. Sancho, F. Sagués and A. Careta
  • Source: Phys. Fluids 9, 1078 (1997);
1.
1.A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, MA, 1975).
2.
2.G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University, Cambridge, England, 1970).
3.
3.W.D. Mc Comb, “Theory of turbulence,” Rep. Prog. Phys. 58, 1117 (1995);
3.W.D. Mc Comb, The Physics of Fluid Turbulence (Oxford University, Oxford, 1990).
4.
4.A. Careta, F. Sagués, and J.M. Sancho, “Generation of homogeneous isotropic turbulence with well-defined spectra,” Phys. Rev. E 48, 2279 (1993).
5.
5.A. Juneja, D.P. Lathrop, K.R. Sreenivasan, and G. Stolovitzky, “Synthetic turbulence,” Phys. Rev. E 49, 5179 (1994).
6.
6.M. Holzer and E.D. Siggia, “Turbulent mixing of a passive scalar,” Phys. Fluids 6, 1820 (1994).
7.
7.H. Kaplan and N. Dinar, “A three dimensional stochastic model for concentration fluctuation statistics in isotropic homogeneous turbulence,” J. Comput. Phys. 79, 317 (1988).
8.
8.Alternatively, an approach based on Langevin equation in a Lagrangian scheme is reviewed in S.B. Pope, “Lagrangian pdf methods for turbulent flows,” Annu. Rev. Fluid Mech. 26, 23 (1994).
9.
9.Zhen-Su She and S.A. Orzag, “Physical model of intermittency in turbulence: Inertial-range non-Gaussian statistic,” Phys. Rev. Lett. 66, 1701 (1991).
10.
10.P.D. Ronney, B.D. Haslam, and N.O. Rhys, “Front propagation rates in randomly stirred media,” Phys. Rev. Lett. 74, 3804 (1995);
10.Y. Shen, K.Q. Xia, and P. Tong, “Measured local-velocity fluctuations in turbulent convection,” Phys. Rev. Lett. 74, 437 (1995)., Phys. Rev. Lett.
11.
11.L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987).
12.
12.C.W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1985).
13.
13.H.P. Breuer and F. Petruccione, “Stochastic simulations of high-Reynolds-number turbulence in two dimensions,” Phys. Rev. E 50, 2795 (1994).
14.
14.J. Garcia-Ojalvo, J.M. Sancho, and L. Ramírez-Piscina, “Generation of spatiotemporal colored noise,” Phys. Rev. A 46, 4670 (1992).
15.
15.R.H. Kraichnan, “Diffusion by a random velocity field,” Phys. Fluids 13, 22 (1970).
16.
16.T.V. von Kárman, “Progress in the theoretical theory of turbulence,” Proc. Natl. Acad. Sci. USA 34, 530 (1948);
16.A.M. Obukhov, “On the distribution of energy in the spectrum of turbulent flow,” C. R. Acad. Sci. USSR 32, 19 (1941).
17.
17.G.I. Taylor, “Diffusion by continuous movements,” Proc. London Math. Soc. 20, 196 (1921);
17.H.K. Moffat, “Transport effect associated with turbulence,” Rep. Prog. Phys. 46, 621 (1983).
18.
18.K. Gawȩdzki and A. Kupiainen, “Anomalous scaling of passive scalar,” Phys. Rev. Lett. 75, 3834 (1995);
18.L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani, “Eddy diffusivities in scalar transport,” Phys. Fluids 7, 2725 (1995).
19.
19.A. Careta, F. Sagués, L. Ramírez-Piscina, and J.M. Sancho, “Effective diffusion in a stochastic velocity field,” J. Stat. Phys. 71, 235 (1993).
20.
20.A. Careta, F. Sagués, and J.M. Sancho, “Diffusion of passive scalar under stochastic convection,” Phys. Fluids 6, 349 (1994).
21.
21.P.H. Roberts, “Analytical theory of turbulent diffusion,” J. Fluids Mech. 11, 257 (1961).
22.
22.T.C. Lipscombe, A.L. Frenkel, and D. ter Haar, “On the convection of a passive scalar by a Gaussian velocity field,” J. Stat. Phys. 63, 305 (1991).
23.
23.A.M. Lacasta, J.M. Sancho, and F. Sagués, “Phase separation dynamics under stirring,” Phys. Rev. Lett. 75, 1791 (1995).
24.
24.F. Sagués, J.M. Sancho, and A. Marti, “Synthetic random flows: Generation and applications,” in Lectures on Stochastic Dynamics, edited by L. Schimansky-Geyer and T. Pöschel [Springer, Berlin (in press)].
http://aip.metastore.ingenta.com/content/aip/journal/pof2/9/4/10.1063/1.869201
Loading
Loading

Article metrics loading...

/content/aip/journal/pof2/9/4/10.1063/1.869201
1997-04-01
2014-01-13

Most read this month

Article
+ More - Less
content/aip/journal/pof2
Journal
5
3
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Langevin approach to generate synthetic turbulent flows
http://aip.metastore.ingenta.com/content/aip/journal/pof2/9/4/10.1063/1.869201
10.1063/1.869201
SEARCH_EXPAND_ITEM