
Library Welcome Message Help
closeAttention, institutional online journal administrators: if the institution name printed in this screen message is incorrect, you can request a change by sending an email to librarynames@aip.org.
Please include your institutional account number, the account administrator's email address and the preferred online display name.
Transition zone dynamics in combined isotachophoretic and electro-osmotic transport
The present study focuses on the interplay of isotachophoresis (ITP) and electro-osmotic flow (EOF). While EOF is commonly suppressed in ITP applications, we investigate scenarios of the combination of both EOF and ITP. Experimental results of ITP/EOF experiments within cross-patterned polymer chips show characteristic deformations of fluorescent sample zones sandwiched between leading and trailing electrolytes. A changing curvature of the deformation is observed during ITP/EOF runs, but overal...
Damping of linear oscillations in axisymmetric liquid bridges
We analyzed experimentally the damping of both axial and lateral free oscillations of small amplitude in axisymmetric liquid bridges. We excited the first oscillation mode in nearly inviscid and in moderately viscous liquid bridges, and measured the parameters which characterize that mode. The axial spatial dependence of those parameters was determined, and the influence of the equilibrium shape on the oscillation frequency and damping rate was analyzed by considering liquid bridges with very d...
FULL-TEXT OPTIONS:
Phys. Fluids 21, 092003 (2009); http://dx.doi.org/10.1063/1.3227903 (7 pages)
History force on coated microbubbles propelled by ultrasound
1Physics of Fluids Group and Research Institute for Biomedical Technology BMTI, University of Twente, 7500 AE Enschede, The Netherlands
2CNR-INFM, Laboratorio Nazionale TASC, 34149 Trieste, Italy

(Received 10 June 2009; accepted 18 August 2009; published online 21 September 2009)
© 2009 American Institute of Physics
Article Outline
- INTRODUCTION
- EFFECT OF CONFINING GEOMETRY: MICROMANIPULATION OF BUBBLES
- EXPERIMENTAL PROCEDURE
- HYDRODYNAMIC MODEL
- RESULTS AND DISCUSSION
- SUMMARY AND CONCLUSIONS
RELATED DATABASES
KEYWORDS and PACS
Keywords
ARTICLE DATA
- M. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425 (2002).
- L. A. Crum and A. I. Eller, “Motion of bubbles in a stationary sound field,” J. Acoust. Soc. Am. 48, 181 (1970)JASMAN00004800001B000181000001. [ISI]
- L. A. Crum, “Bjerknes forces on bubbles in a stationary sound field,” J. Acoust. Soc. Am. 57, 1363 (1975)JASMAN000057000006001363000001.
- L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987).
- H. A. Oğuz and A. Prosperetti, “A generalization of the impulse and virial theorems with an application to bubble oscillations,” J. Fluid Mech. 218, 143 (1990). [Inspec] [ISI]
- A. J. Reddy and A. J. Szery, “Coupled dynamics of translation and collapse of acoustically driven microbubbles,” J. Acoust. Soc. Am. 112, 1346 (2002)JASMAN000112000004001346000001. [ISI] [MEDLINE]
- J. Magnaudet and D. Legendre, “The viscous drag force on a spherical bubble with time-dependent radius,” Phys. Fluids 10, 550 (1998)PHFLE6000010000003000550000001. [ISI]
- R. Toegel, S. Luther, and D. Lohse, “Viscosity destabilizes sonoluminescing bubbles,” Phys. Rev. Lett. 96, 114301 (2006). [MEDLINE]
- J. Magnaudet and I. Eames, “The motion of high-Reynolds-number bubbles in inhomogeneous flows,” Annu. Rev. Fluid Mech. 32, 659 (2000).
- V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962).
- A. Basset, A Treatise on Hydrodynamics (Deighton Bell, London, 1888), Vol. 2.
- G. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,” Trans. Cambridge Philos. Soc. 9, 8 (1851).
- R. Mei, “Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number,” J. Fluid Mech. 270, 133 (1994). [Inspec] [ISI]
- F. Takemura and J. Magnaudet, “The history force on a rapidly shrinking bubble rising at finite Reynolds number,” Phys. Fluids 16, 3247 (2004)PHFLE6000016000009003247000001. [ISI]
- B. B. Goldberg, J. Raichlen, and F. Forsberg, Ultrasound Contrast Agents: Basic Principles and Clinical Applications, 2nd ed. (Dunitz, London, 2001).
- N. de Jong, R. Cornet, and C. T. Lancée, “Higher harmonics of vibrating gas-filled microspheres. Part one: Simulations,” Ultrasonics 32, 447 (1994). [Inspec] [ISI]
- C. C. Church, “The effects of an elastic solid surface layer on the radial pulsations of gas bubbles,” J. Acoust. Soc. Am. 97, 1510 (1995)JASMAN000097000003001510000001. [ISI]
- K. Sarkar, W. T. Shi, D. Chatterjee, and F. Forsberg, “Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation,” J. Acoust. Soc. Am. 118, 539 (2005)JASMAN000118000001000539000001. [ISI] [MEDLINE]
- P. Marmottant, S. M. van der Meer, M. Emmer, M. Versluis, N. de Jong, S. Hilgenfeldt, and D. Lohse, “A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture,” J. Acoust. Soc. Am. 118, 3499 (2005)JASMAN000118000006003499000001.
- J. R. Lindner, “Microbubbles in medical imaging: Current applications and future directions,” Nat. Rev. Drug Discovery 3, 527 (2004). [MEDLINE]
- A. L. Klibanov, “Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications,” Invest. Radiol. 41, 354 (2006). [MEDLINE]
- S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering,” Phys. Med. Biol. 54, R27 (2009). [MEDLINE]
- P. A. Dayton, J. S. Allen, and K. W. Ferrara, “The magnitude of radiation force on ultrasound contrast agents,” J. Acoust. Soc. Am. 112, 2183 (2002)JASMAN000112000005002183000001. [ISI] [MEDLINE]
- J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic, Dordrecht, 1983).
- V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M. L. J. Overvelde, S. M. van der Meer, N. de Jong, D. Lohse, and M. Versluis, “Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high speed imaging,” Appl. Phys. Lett. 90, 114103 (2007)APPLAB000090000011114103000001. [ISI]
- B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: An acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970 (1988)JASMAN000083000003000970000001. [ISI]
- V. Garbin, D. Cojoc, E. Ferrari, R. Z. Proietti, S. Cabrini, and E. Di Fabrizio, “Optical micro-manipulation using Laguerre–Gaussian beams,” Jpn. J. Appl. Phys., Part 1 44, 5773 (2005). [Inspec]
- C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum. 74, 5026 (2003)RSINAK000074000012005026000001. [ISI]
- S. M. van der Meer, B. Dollet, M. M. Voormolen, C. T. Chin, A. Bouakaz, N. de Jong, M. Versluis, and D. Lohse, “Microbubble spectroscopy of ultrasound contrast agents,” J. Acoust. Soc. Am. 121, 648 (2007)JASMAN000121000001000648000001. [MEDLINE]
- C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
- A. A. Doinikov, “Translational motion of two interacting bubbles in a strong acoustic field,” Phys. Rev. E 64, 026301 (2001). [MEDLINE]
- A. Harkin, T. J. Kaper, and A. Nadim, “Coupled pulsation and translation of two gas bubbles in a liquid,” J. Fluid Mech. 445, 377 (2001). [Inspec] [ISI]
- Y. A. Ilinskii, M. F. Hamilton, and E. A. Zabolotskaya, “Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics,” J. Acoust. Soc. Am. 121, 786 (2007)JASMAN000121000002000786000001. [MEDLINE]
- J. N. Chung, “The motion of particles inside a droplet,” Trans. ASME, Ser. C: J. Heat Transfer 104, 438 (1982)JHTRAO000104000003000438000001.
- I. Kim, S. Elgobashi, and W. A. Sirignano, “On the equation for spherical-particle motion: Effect of Reynolds and acceleration numbers,” J. Fluid Mech. 367, 221 (1998). [Inspec] [ISI]
- P. M. Lovalenti and J. F. Brady, “The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number,” J. Fluid Mech. 256, 561 (1993). [Inspec] [ISI]
- B. Dollet, S. M. van der Meer, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, “Nonspherical oscillations of ultrasound contrast agent microbubbles,” Ultrasound Med. Biol. 34, 1465 (2008). [MEDLINE]
- A. Prosperetti, “Viscous effects on perturbed spherical flows,” Q. Appl. Math. 34, 339 (1977). [Inspec] [ISI]
References
Figures (click on thumbnails to view enlargements)
FIG.1 Download High Resolution Image (.zip file) |
Export Figure to PowerPoint
FIG.2 Download High Resolution Image (.zip file) |
Export Figure to PowerPoint

FIG.3 Download High Resolution Image (.zip file) |
Export Figure to PowerPoint
FIG.4 Download High Resolution Image (.zip file) |
Export Figure to PowerPoint
FIG.5 Download High Resolution Image (.zip file) |
Export Figure to PowerPoint
Multimedia
- 019909phfv1.mov (626 KB)
Related Patents 
- PROPELLER BLADES HAVING ICEPHOBIC COATING
- Forced air coat hanger
- FORCE MEASURING SYSTEM, METHOD FOR MEASURING FORCES AND TORQUES ON A ROTATING BODY AND WIND TUNNEL WITH A MODEL ARRANGED THEREIN AND COMPRISING AT LEAST ONE PROPELLER WITH A FORCE MEASURING SYSTEM
- Self-propelled climbing apparatus for stripping, trimming and coating palm trees
- Suspending, guiding and propelling vehicles using magnetic forces
- View All
