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ABSTRACT Protein-protein bond formations, such as
antibody-antigen complexation or aggregation of protein
monomers into dimers and larger aggregates, occur with
bimolecular rate constants on the order of 10' M-l's-', which
is only 3 orders of magnitude slower than the diffusion-limited
Smoluchowski rate. However, since the protei-protein bond
requires rotational alignment to within a few angstroms of
tolerance, purely geometric estimates would suggest that the
observed rates might be 6 orders of magnitude below the
Smoluchowski rate. Previous theoretical treatments have not
been. solved for the highly specific docking criteria of protein-
protein association-the entire subunit interface must be
aligned within 2 A of the correct position. Several studies have
suggested that diffusion alone could not produce the rapid
association kinetics and have postulated "lengthy collisions"
and/or the operation of electrostatic or hydrophobic steering
forces to accelerate the association. In the present study, the
Brownian dynamics simulation method is used to compute the
rate of association of neutral spherical model proteins with the
stated docking criteria. The Brownian simulation predicts a
rate of 2 x 10' M-'s-' for this generic protein-protein
association, a rate that is 2000 times faster than that predicted
by the simplest geometric calculation and is essentially equal to
the rates observed for protein-protein association in aqueous
solution. This high rate is obtained by simple diffusive pro-
cesses and does not require any attractive or steering forces
beyond those achieved for a partially formed bond. The rate
enhancement is attributed to a diffusive entrapment effect, in
which a protein pair surrounded and trapped by water under-
goes multiple collisions with rotational reorientation during
each encounter.

The association of protein molecules to form dimers or larger
complexes is characterized by second-order rate constants
that are typically in the range 0.5-5 x 101 M-1ls-1. The
polymerization of ATP actin onto the barbed end of an actin
filament occurs with k2 = 2-8 x 106 M-1s-1 (1). The
association of hemoglobin dimers to form tetramers has k2 =
0.4-0.6 x 106 M-1ls-1 (2, 3). A very general example of
protein-protein association is antibody association to protein
antigens. Values of k2 = 0.6-1.0 x 106 have been reported
for polyclonal antibodies binding to hemoglobin and cy-
tochrome c (4). The binding of Fab fragments and recombi-
nant domains of antibody D1.3 to its antigen occurs with k2
= 2-4 x 106 M-1-s-1 (5). Many protein associations occur at
slower rates, no doubt reflecting a variety of energy barriers.
Faster bimolecular rates have been reported (6) for insulin
dimerization (k2 = 108 M-l s-1) and for interaction of cy-
tochrome c with cytochrome c peroxidase (7) and cy-
tochrome b5 (8) (k2 varies from 107 to 109, with the faster rates
at low ionic strength). These very fast reactions are the

results of strong attractive coulombic forces that highly favor
formation ofthe productive reaction complexes (8-11). Since
rates of k2 = 0.5-5 x 106 M-1-s-1 are achieved by many
protein associations, including the very general reaction of
antibodies with protein antigen, this range appears to repre-
sent the typical rate for proteins associating and docking at
the precise orientation for bond formation, without any
special steering forces.
When one considers the steric specificity of the bond

connecting protein subunits, this rate seems incredibly fast.
If the proteins were spheres of 18 A radius (typical of a small
protein), and if the spheres associated with every contact,
without regard to orientation, the diffusion-limited associa-
tion rate constant would be given by the Smoluchowski (12)
rate constant, k2 = 7 x 109 M-1 s-1. That the observed rates
are substantially slower than the diffusion-limited encounter
of spheres is easily explained as being due to steric specific-
ity-the proteins associate only by docking of very specific
patches on their surfaces. However, that the observed rates
are only 1000-fold slower than the Smoluchowski rate is
actually surprising given the extremely high steric specificity
that we now understand for the protein-protein bond.
The protein-protein bond, as described by Chothia and

Janin (13), consists of multiple noncovalent interactions
across an extensive interface. The interface is typically =20
A, accounting for =lo% of the surface area of the protein.
Most important for our analysis, the surfaces of the two
subunits are highly complementary over the entire interface,
fitting snugly together with multiple van der Waals contacts,
as well as some ionic and hydrogen bonds formed across the
interface. Displacement of >2 A from the maximally bonded
docking position would significantly compromise the chem-
ical contacts and the overall strength of the protein-protein
bond. An intuitive but incorrect approach to account for this
steric specificity would be to calculate the probability that a
random encounter would occur with the precise fit required
for bonding and to multiply this by the Smoluchowski rate.
As we show in the next section, this would predict a rate of
only 7 x 102 M-ls-1, 104 less than the observed values.

In a kinetic study that is closely related to the question of
protein-protein association, Sommer et al. (14) exploited a
chemical method for creating reactive patches on the surface
of proteins and measured the kinetics of interaction of these
patches. The reactive patches were disulfide anion radicals,
presumably one radical per protein molecule. Decay of the
radicals required a "contact" of radicals on two protein
molecules. Thus, the kinetics of radical decay indicated the
rate of these protein molecules interacting with their anion
radicals in contact. Rates of decay for a variety of proteins
gave second-order association rates in the range 108 and 109
M-l s-1 in low and high salt buffers, respectively. These
values were considered so high, and so close to the Smolu-
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chowski limit, that some mechanism for markedly acceler-
ating the association was sought.
Sommer et al. (14) proposed a mechanism that they called

"lengthy collisions between proteins" to accelerate the in-
teraction of the anion radicals. The hypothesis is that protein
molecules in solution form weakly bonded and rotationally
nonspecific complexes, in which the molecules are held
closely together for an extended period but are free to rotate.
Rotational diffusion during this lengthy collision would even-
tually bring the reactive regions into contact. Sommer et al.
(14) started with the Smoluchowski diffusion equation and
used the theory of Solc and Stockmayer (15) to estimate the
probability of a correct encounter. From this, they calculated
the lifetime of the lengthy collision that would be needed to
produce the accelerated reaction kinetics. Berg (16) extended
and corrected this analysis, concluding that the lengthy
collision complex would have a lifetime of a few microsec-
onds and a Kd of _1-4 M.
The hypothesis that proteins associate to form nonspecific

complexes with Kd = 10-4 M is, however, not supported by
experimental studies of several proteins at high concentra-
tion. Chymotrypsinogen (17), bovine serum albumin (18), and
hemoglobin (19) showed no evidence of association at the
highest concentrations examined (40, 100, and 300 mg/ml),
corresponding to protein concentrations of 1.5-6 mM. Since
even a 10-20% association would have been detected in these
studies, nonspecific complexes of these proteins would have
to have Kd larger than _10-2 M and a lifetime of <10 ns.
These observed lifetimes are at least 100 times shorter than
the lengthy collisions required for the hypothesis of Sommer
et al. (14). Thus, these lengthy collisions are not a generic
property of proteins in solution.

If the lengthy collisions do not exist, how can we explain
the rapid kinetics for the anion decay reaction and for the
formation of protein-protein bonds? The idea that these rates
require a special mechanism was based first on the simple
geometric probability calculation (see below). It has long
been recognized that reactions in solution, which are gov-
erned by diffusion, should be faster than the geometric rate
constants (15, 20, 21). Perhaps the most comprehensive
treatment is the paper of Shoup et al. (21), which provides a
general mathematical framework that incorporates and ex-
tends the previous treatments (15, 20). However, these
analytical approaches have never been developed to provide
a rate for protein-protein association. In particular, the
mathematical formulations include steric limitations about
two axes only (needed to define a "reactive patch"), whereas
the protein-protein interface is now known to require precise
orientation about three axes of each subunit. Since no
previous treatment has provided a satisfactory and quanti-
tative explanation of the observed kinetics of protein-protein
association, we decided to undertake an alternative approach
ofcomputer simulation through a Brownian dynamics model.

Simulation Method

Brownian Dynamics (BD) Approach. The BD simulation
approach has been developed as an alternative to analytical
diffusion theories to study the diffusive dynamics and inter-
action between macromolecules (22). We use BD here in
conjunction with simple spherical models of proteins to
calculate the rates of protein-protein association. In BD, the
Brownian trajectory of the two interacting molecules in a
solvent is simulated as a series of small stochastic displace-
ments chosen from a distribution that is equivalent to the
short time solution of the diffusion equation with forces.
Trajectory statistics are then related to bimolecular rate
constants. The first application ofBD to macromolecules was
made successfully to the reaction of a small structureless
substrate with an enzyme-namely, the reaction of superox-

ide anion with superoxide dismutase (23, 24). Later, the
method was extended to treat the diffusion and interaction of
two whole proteins and was applied to association of cy-
tochromes (8-11, 25). In these systems, both simple spherical
models and more robust models based on complex surface
topography and charge distribution have been used. The
former have been successful in yielding important qualitative
understanding of the interplay between diffusion dynamics,
intermolecular forces, and steric considerations, while the
latter treatment has been found to be essential for more
quantitative predictions for specific systems and for predict-
ing effects of site mutations. In the present study, we return
to a simple and general model of two interacting protein
subunits and incorporate steric restraints appropriate for the
highly specific docking at the protein-protein interface.

Idealized Model System. The simplified and idealized model
system we used to study bimolecular rates of protein-protein
association is depicted in Fig. 1. Each protein is treated as a
diffusing hard sphere ofR = 18 A, typical of a small globular
protein, with translational and rotational diffusion coeffi-
cients determined by the Stokes-Einstein equation for
spheres in H20 at 250C. To emulate the steric complemen-
tarity of the protein-protein bond in a simple and computa-
tionally convenient fashion, we mounted on a particular
"face" of each spherical protein a set of four contact points
in a 17 x 17 A square arrangement on a plane tangential to the
sphere. The docking face of the model thus approximates the-
actual size of the interface between assembled semispherical
globular proteins. We assume that the proteins are correctly
docked when three of the four contact points are correctly
matched and are within a tolerance of 2 A.

Simulation of Rate Constants. The Ermak and McCammon
(26) BD algorithm for displacements Ar in the relative sep-
aration vector r of reactant centers of mass in time step At is

Ar = DF(kBT)-'At + S. [I]

Here D is the translational diffusion coefficient for relative
motion and is assumed to be spatially isotropic. The vector
F is the systematic interparticle force, kBT is the Boltzmann
constant times absolute temperature, and S is the stochastic
component of the displacement arising from random colli-
sions of particles with solvent molecules and is generated by
taking normally distributed random numbers obeying the
relationship

(52) = 2DAt. [2]

Identical equations govern the independent rotational
Brownian motion of each particle, with force replaced by
torque and D replaced by an isotropic rotational diffusion
coefficient Dr for each particle. Diffusion coefficients D and
Dr are given by the Stokes-Einstein relations D = kBT/6Tr-qR
and Dr = kBT/8i7n7R3, which yield numerical values of 1.36
x 10-6 cm2s-1 and 3.16 x 107 s-l, respectively, for 18-A
spheres in water at 250C.
The important connection of BD trajectory fate statistics

with bimolecular rate constants is made as follows (22).
Trajectories of diffusing species are begun at random orien-
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FIG. 1. Schematic of the idealized model system constructed to
mimic the association of two proteins requiring strict docking com-
plementarity. All four contacts lie in a tangential plane and must align
to within 2 A to fully specify complementary fit.
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tations from a separation r = b = 42 A and are calculat-
ed continuously until they reach a separation r = c = 200 A,
at which point the trajectory is terminated (the particles are
then sufficiently far apart that another collision is very
improbable). A large number of trajectories are monitored to
obtain the probability f3 of association of pairs in favorable
geometries for reaction before ultimate separation to distance
r = c. The diffusion-controlled bimolecular reaction rate
constant k may then be extracted from these probabilities by
applying the formula

k = kD(b)p/[1 - (1 - 3)kD(b)/kD(c)]. [31

Here the diffusive rate constant for first arrival at arbitrary
surface s is

kD(s) = 4irsD, [4]

where s is a starting or truncation surface radius (i.e., b or c,
respectively). The denominator of Eq. 3 corrects for trajec-
tories terminated at r = c that may return to r = b with some
small but finite probability.
Brownian simulation of500,000 trajectories was performed

both in the absence of any forces other than hard sphere
exclusion forces and in a parallel case in which a locking
potential is turned on when the N = 2 intermediate state is
achieved. This additional potential is described below.
Pathway and Rates for Forming the Protein-Protein Bond.

The formation of a fully orientation-specific complex of two
protein subunits can be viewed as a stepwise process, in
which the prqteins initially encounter in an orientationally
nonspecifc fashion, followed by rotational motions that lead
to formation of an increasing number of contacts (N = 1, 2,
and 3). The intermediate states are described below, and the
estimated rate constants ofachieving these states are given in
Table 1.

Collisions, encounters, and the state N = 0. The first step
is formation of a nonspecific collision complex, in which the
surfaces of the two proteins are within 2-4 A, but the
orientations are such that none of the four contact points is
within 2 A of its mate. It is important to differentiate here
between the terms collision and encounter. A collision is
defined as taking place when a protein pair attains a specified
small distance from one another, here taken to be 2 A; a
collision is terminated when the proteins move farther than 4
A apart. (The 4-A specification for termination of a collision
was -chosen to avoid counting the very large number of
diffusive recrossings of the 2-A surface as separate colli-
sions.) When the collision is terminated at this 4-A separa-
tion, the BD calculation shows that there is actually a high
probability of recolliding. Each time the proteins approach
within 2 A is counted as another collision. Eventually,
in most cases, the two proteins will separate far enough that
the probability of another collision is negligible. The com-
plete set of interactions from the initial collision to this
eventual separation constitutes an encounter. In our simu-

Table 1. Bimolecular rate constants for formation of
successively more constrained protein-protein
complexed states N

BD-simulated Geometric
rate constant, rate constant,

Complexation state N M-1 s-1 M-l s-l
1 3.8x108 2.2x106
2 4 x 106 1 x 104
3 (purely diffusive) 1 x lo, 1 x 103
3 (N = 2 locking potential) 2 x 106
Comparison is made of the BD-simulated diffusion-controlled rate

constant with the hypothetical geometric rate constant.

lations we found that there were an average of nine collisions
per encounter.
The situation for protein molecules in water may be

contrasted with the behavior ofgas molecules. In a gas, there
is only one collision per encounter, and it is of very short
duration; if the collision occurs outside the correct orienta-
tion, the two particles separate with negligible probability of
recolliding. The geometric rate constant in Table 1 is based
on the probability that diffusing spheres collide for the first
time in the correct geometric alignment. Specifically, this rate
is calculated as kDPN, where kD is the Smoluchowski rate
constant, and PN is the geometric probability of correct
alignment ofN contact points. We determined PN by gener-
ating random collisions and counting the number in correct
alignment. Values obtained were Pi = 3.0 x 10-4, P2 = 1.3
x 10-6, and p3 = 2 x 10-v. These small values are consistent
with the high degree of specificity (2 A tolerance) that
constitutes correct docking. The geometric rate constant for
the N = 3 complex is thus more than 3 orders of magnitude
below the rates observed for protein-protein association.

In water, however, as shown by the BD simulation, each
encounter comprises multiple collisions over an extended
time duration, during which the proteins can reorient by
rotational diffusion. The multiple collisions within an encoun-
ter greatly enhance the probability of correct interaction.
This point is best understood with numbers derived from the
simulation. First, for comparison, we note that the rotational
correlation time for an 18-A sphere is 5.3 ns. In the BD
simulation, the duration of the average collision is only 0.38
ns, so there will be very little rotational reorientation within
a single collision. The duration of the average encounter,
however, is 6.3 ns, essentially the same as rotational corre-
lation time. Thus, the interacting proteins can explore a
substantial fraction of rotational orientations during each
encounter.

State N = 1. This state is defined as a collision complex in
which one of the four pairs of contact points is matched
within 2 A, without any further orientational restriction (see
Fig. 2). The geometric rate constant for forming such an
alignment in a single, rapid collision is only 2.2 x 106 M-l so1.
However, the BD simulation shows that the probability of
achieving the alignment during the extended time of the
encounter is increased almost 200-fold, giving a rate constant
of 3.8 x 108 M-1ls'1. This is approximately the same as the
rate of anion radical decay observed by Sommer et al. (14),
which requires essentially the N = 1 state (see Discussion).

State N = 2. In the present analysis, we do not postulate
any stabilization of the N = 1 state. When the complex is
terminated, however, the proteins do not become rotationally
uncoupled until a time equivalent to the rotational relaxation
time. There is therefore an enhanced probability that in the
next collision the original contact points will still be close.
But in the time between collisions there is also the possibility
for rotation to bring another pair of contact points close to
each other. One additional factor will enhance the probability
of achieving theN = 2 state. Since the four contact points are
all on the same face of the protein molecule, once an N = 1
state is achieved the other contact points will necessarily be
closer than for random orientations. Although most N = 1

N=1 contact

1\,X,
N=2 contact

FIG. 2. Schematic showing loss oforientational freedom between
N = 1 and N = 2 contacts.

Proc. Natl. Acad. Sci. USA 89 (1992)



Proc. Natl. Acad. Sci. USA 89 (1992) 3341

complexes eventually separate, the BD simulation shows that
-1% of them actually lead to the N = 2 state. The BD-
simulated rate is 400 times greater than the geometric rate
constant, the enhancement being attributed to the multiple
collisions and rotational reorientation during the encounter.
Most important, the BD-simulated rate for N = 2 formation,
4 x 106 M-lso1, is very close to the rate observed for typical
protein-protein bonds.
The achievement of the N = 2 state can be argued as the

key point in the pathway, leading with high probability to
completion of the final complex. This is because the area of
contact in this state is an extended zone of contact along the
entire line connecting the two points and constitutes a
substantial fraction of the complete interface. Since this zone
is aligned in the same fashion as in the final complex, van der
Waals bonds, complementary ionic and hydrogen bonds, and
hydrophobic interactions will be virtually complete over
this entire zone. If the contact points are 17 A apart and the
zone of correct fit is -4 A wide, this N = 2 zone will comprise
23% of the area of the complete interface. We can expect,
therefore, that the N = 2 complex will be stabilized by a bond
energy -1/4 of the total for the completely correct interface.
This stabilization significantly prolongs the lifetime of the N
= 2 collision complex beyond that obtained when no stabi-
lizing forces are involved.
To include this important effect in our model, we per-

formed a simulation in which a locking potential was added
to stabilize specifically this N = 2 intermediate state. This
potential energy was estimated to be -4.2 kcal/mol (1 cal =
4.184 J), 1/4 of the total typical intrinsic protein-protein bond
energy.§ No special forces are invoked until this state is
attained, after which the locking potential is turned on. Any
Brownian displacements taken in the N = 2 state that cause
the loss of either of the two contacts are accepted only with
a probability of exp(-4.2/RT), with rejected steps being
repeated. In these simulations we found a lifetime of 2.3 ns
for the N = 2 state. This is only a 6-fold increase over the
duration of the average nonspecific collision (0.38 ns) but is
sufficient to achieve a substantial rate enhancement for
achievement of N = 3 (Table 1).

State N = 3. The stabilization of the N = 2 complex not
only prolongs the time available for reachingN = 3, but it also
tacitly steers the complex in the correct direction, with the
main freedom of movement in the N = 2 complex being a
rocking along the line of contact. Any other movement (i.e.,
away from the N = 2 complex) would require breaking the
specific bonds and hydrophobic interactions in the zone of
contact. Moreover, rocking away from the correct position
will similarly involve breaking bonds, while rocking toward
the correct position will lead to formation of additional
favorable bonds as the area of the bonded interface is
increased. Therefore, once the N = 2 complex is formed, the
rocking toward the fully docked interface is ensured with a
high probability. As we show in Table 1, the rate constant for
the formation of N = 3, which represents the fully formed
protein-protein bond, is 1 x 105 M-1-s-l without the locking
potential, and 2 x 106 M-1-s- with the locking potential.
Even without the locking potential, the N = 3 state is formed
at a rate 2 orders of magnitude faster than would be expected
based purely on geometric probability arguments. With the
locking potential invoked, 50% of the N = 2 complexes
proceed to the fully docked N = 3 state, and the calculated

§Assume for the completely docked complex Kd = 10-7 M, the
overall free energy for complex formation, RT InKd, is -9.7
kcal/mol, but we need the intrinsic bond energy (see ref. 27 for this
calculation). Assuming an entropic free energy of +7 kcal/mol, the
intrinsic bond energy for the full complex is -16.7 kcal/mol. We set
the intrinsic bond energy of the N = 2 state to 1/4 of this (-4.2
kcal/mol).

rate constant is equal to that observed in typical protein-
protein associations.

Discussion

The BD analysis has correctly predicted the rate constants
observed for typical protein-protein interactions as arising
directly from the diffusive interactions of the protein mole-
cules in solvent. The 400-fold difference between the geo-
metric rate constant and the BD-simulated rate for achieving
the N = 2 intermediate complex, the key step along the
pathway, may be attributed to the diffusion entrapment
effect. Protein-protein association in solution must proceed
by diffusive transport, which is very different from the
interaction of molecules in the gas phase. In diffusive trans-
port, the BD simulation shows that each encounter consists
of a large number of diffusive steps. During a single encoun-
ter, the two molecules have time to undergo substantial
rotational reorientation while remaining trapped in the vicin-
ity of each other and undergoing multiple collisions.

Besides explaining the rate of protein-protein bond for-
mation, the BD simulation also explains the very high rates
of anion decay observed by Sommer et al. (14). The decay
reaction they studied required contact of a single point on
each of two protein molecules, without any additional ori-
entational restriction. This is essentially the formation of the
N = 1 complex in our schemed for which the BD simulation
gives a rate of 3.8 x 108 M-l sol. This is very close to the
rates of 108-109 M-1ls-1 that Sommer et al. (14) observed for
reactions on a wide variety of proteins and for which they
invoked a nonspecific attractive force to achieve a lengthy
collision. One might well describe the encounter as a lengthy
collision, but we now see that this is a natural result of the
diffusive entrapment effect and does not require any non-
specific attractive forces.

In the present analysis, we have not invoked any attractive
or steering forces, apart from stabilization of the N = 2
complex by the partially formed bond. The rate of formation
of this complex is already equal to that of a typical protein-
protein association. Previous applications of BD dynamics
have demonstrated further enhancements in rates by includ-
ing the net charge of the molecules and dipole moments.
Clearly, these can be invoked as necessary to explain the
examples of particularly rapid protein-protein association. In
particular, the extremely large rate constants observed for
electron transfer reactions between oppositely charged cy-
tochromes (107-109 M-1 s-1 for reactions of cytochrome c
with cytochrome b5 or cytochrome c peroxidase) are accu-
rately reproduced in BD simulations (8-11) that rigorously
consider the detailed electrostatic forces and torques oper-
ating between these molecules.

1There are two compensating numerical differences between our N
= 1 complex and the anion-decay reaction. Our rate was calculated
for overlap of any one of the four possible pairs of contacts, so the
rate for a single contact pair should be reduced by a factor of 4. On
the other hand, our contact was specified with a tolerance of 2 A,
while the anion decay was proposed to require only a 5-A contact.
Calculating the volumes of the contacts, we should increase our rate
by a factor of (5/2)3 = 16. Overall, the anion decay might be
expected to occur -4 times faster than our BD-simulated rate for N
= 1-namely, 1.5 x 109.
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