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Flow-induced aggregation of colloidal particles leads to aggregates with fairly high fractal dimension �df

�2.4–3.0� which are directly responsible for the observed rheological properties of sheared dispersions. We
address the problem of the decrease in aggregate size with increasing hydrodynamic stress, as a consequence
of breakup, by means of a fracture-mechanics model complemented by experiments in a multipass extensional
�laminar� flow device. Evidence is shown that as long as the inner density decay with linear size within the
aggregate �due to fractality� is not negligible �as for df �2.4–2.8�, this imposes a substantial limitation to the
hydrodynamic fragmentation process as compared with nonfractal aggregates �where the critical stress is
practically size independent�. This is due to the fact that breaking up a fractal object leads to denser fractals
which better withstand stress. In turbulent flows, accounting for intermittency introduces just a small deviation
with respect to the laminar case, while the model predictions are equally in good agreement with experiments
from the literature. Our findings are summarized in a diagram for the breakup exponent �governing the size
versus stress scaling� as a function of fractal dimension.
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I. INTRODUCTION

In phase transition dynamics, the formation of either
stable phases or states under �quasi�equilibrium conditions,
as well as the formation of metastable states, has been the
object of intense study in the past. However, in many appli-
cation as well as natural contexts, nucleation and growth
occur under driven conditions, for instance under an imposed
field of shear �1�. As shown in recent work �2�, even in the
simplest systems the presence of shear leads to complex
nucleation behaviors by affecting the rate of nucleation, the
growth of the aggregates, and their breakup. Here, it is our
aim to rationalize the effect of hydrodynamic stresses, in
either laminar or turbulent regime, on the �mechanical� sta-
bility and breakup of dense colloidal aggregates formed un-
der shearing conditions and the interplay with their fractal or
nonfractal morphology. Unlike the case of emulsions, where
the stability with respect to flow-induced breakup of single
drops can be straightforwardly evaluated �even under turbu-
lent conditions�, in terms of a balance between viscous and
capillary forces �see �3� and references therein�, the situation
for colloidal aggregates is more complicated. This is due to
the more complex structure of dense colloidal aggregates and
especially to their response to stress, which has remained
hitherto elusive despite its crucial role in the rheological be-
havior of colloidal gels and glasses, as recent works have
suggested �4�. In particular, the balance between clustering
�structure formation� and breakup �structure failure� is essen-
tial to understand the structural origin of the puzzling rheo-
logical properties of complex fluids, such as rheopexy �the
increase in viscosity with time under steady shearing�, often
found in biological fluids, and, its counterpart, thixotropy
�the decrease in viscosity with shearing time� �4�. Our aim
here is to provide a physical description of the hydrodynamic

failure of colloidal aggregates, without which no micro-
scopic understanding of complex fluid rheology is possible.

II. MODEL DEVELOPMENT

Thus, we start from basic considerations on the structure
of colloidal aggregates formed in flows at high Peclet num-
bers, where aggregation is entirely dominated by convection
while Brownian motion has a negligible effect. Moreover,
coagulation in the primary minimum of interaction energy is
assumed. Aggregation mechanism is therefore essentially
ballistic, i.e., a superposition of ballistic particle-cluster and
ballistic cluster-cluster aggregation mechanisms. The first
mechanism results in the formation of aggregates with fractal
dimension up to df =d=3 �i.e., homogeneous� in three di-
mensions, while the second mechanism yields aggregates
with df �2. In reality it has been shown, within numerical
studies, that flow-induced aggregation events involve pairs
of aggregates which may exhibit significant disparity in size
�thus resembling particle-cluster ballistic aggregation� al-
though the resulting fractal dimension, due to the flow
streamlines getting screened from the interior of the larger
aggregates, is lower and typically df �2.5–2.6 �5�. These
values from numerics �5� agree well with measured values
which fall within the range 2.4�df �2.8 �6�. Aggregates
with such fairly high fractal dimension are dense and almost
compact, although not homogeneous, thus quite different
from the more studied fractals featuring df �2, for which
fractal elastic models, explicitly accounting for the fractal
nature of the stress-transmission network, have been pro-
posed �7�. In the following, we will use the term fractal
essentially to designate the power-law variation in volume
fraction in the aggregate as ��r��r−�d−df�, r being the radial
coordinate measured from the center of mass of the aggre-
gate, which defines df as what we call the aggregate fractal
dimension. Such dense fractals are found in a variety of
physical systems, e.g., the compaction of nanometer silica
particles �8�, the aggregation of proteins �9�, the structure of
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proteins themselves �10�, and as the building blocks of me-
tallic glasses, as suggested in �11�. Recently, it has been ob-
served that, in attractive colloids, under certain conditions
the interplay between spinodal phase separation and glass
transition leads to fractal aggregates with 2.4�df �2.6 and
inner �average� volume fraction ��0.5 �12�. Therefore, such
aggregates are internally amorphous �i.e., they possess the
short-range structure of liquids and glasses, with no long-
range order� at the same time exhibiting power-law decay of
density with linear size. Aggregates formed under flow,
which possess a fractal dimension in the same range, exhibit
a similar amorphous character which is quite evident, e.g., in
the micrographs in Ref. �6�. Motivated by these consider-
ations and by the recent observation that sufficiently large
dense colloidal aggregates break up in shear flow by unstable
propagation of cracks �13�, we propose a mean-field-like cri-
terion for breakup in analogy with amorphous solids. Based
on energy conservation, the �Griffith-type� critical condition
for breakup is given by equating the strain energy supplied
by the �external� hydrodynamic stress, dE1���2 /2E��d, to
the energy required to extend the fracture surface dE2
���d−1. Here, E is the Young modulus of the aggregate, � is
the applied stress, � is the characteristic radius of the initial
crack �typically of cusps on the aggregate surface�, and � is
the surface energy associated with the broken bonds in ex-
tending the crack surface �14�. This yields the following re-
lation for the critical stress,

�2 � E��−1, �1�

in analogy with disordered solids �14�, where � is the critical
value of applied stress. Each term on the right-hand side of
Eq. �1� is a function of the average particle volume fraction
in the aggregate, �. In recent work �15�, the shear modulus
of amorphous solids made of particles interacting via both
central and tangential �bond-bending� interactions has been
derived systematically using Alexander’s Cauchy-Born ap-
proach �16� in the continuum limit. The employed affine ap-
proximation is expected to yield small errors for overcon-
strained �hyperstatic� packings. Such situation occurs in
covalent glasses �e.g., Ge and Si�, where covalent bonds
�which can support significant bending moments� are very
effective in reducing the number of degrees of freedom per
particle. A similar situation is encountered with coagulated
colloids �17�, especially polymer colloids where mechanical
adhesion of the interparticle contacts stabilizes them against
tangential sliding �17�. According to �15�, the shear modulus
for a glass of spherical particles interacting via central �C� as
well as bond-bending �B� interactions can be estimated as
G���4 /5��	�z�C�+ �124 /135��	�z�B���R0

2−d, where 	� and
	� are the bond stiffness coefficients for central and bond-
bending interactions, respectively, R0 is the distance between
bonded particles in the reference configuration �defined as in
Cauchy-Born theory �15��, and z is the mean coordination
number. In a system of, identical, particles with bond-
bending resistance, it is z=z�C�=z�B�, and the volume fraction
scaling is thus given by

E � G � �z��� . �2�

In the absence of strong interparticle bonds, affinity is rea-
sonable only for significantly overconstrained packings, i.e.,
well above the �geometric� rigidity threshold or isostatic
point, J, where the number of geometric constraints just
equals the number of degrees of freedom �the latter given by
2d�. Close to the isostatic transition, the proper �critical�
scaling is G��J�z���−zJ�, where zJ and �J are the mean
coordination and the volume fraction at point J �15,18�.
Equation �2� is reasonably valid in the case we are consider-
ing here of dense aggregates ��
0.4� where interparticle
bonds can sustain significant bending moments since already
with z�B�=z�C�=3 the system is largely overconstrained �the
number of saturated degrees of freedom being equal to
z�C� /2+z�B��z�B�−1� /2=9� and nonaffine displacements are
small. The evolution with � of the mean coordination
�within the aggregate� can be estimated in analogy with
deeply quenched dense monoatomic glasses �for at such high
density the structure is dominated by the hard-sphere com-
ponent of interaction�. Thus, we integrate the radial distribu-

tion function g�l� of hard-sphere liquids, z�l† ;���24��0
l†�1

+ l�2g�l ;��dl, with a cutoff l† determined by the isostatic
point of hard spheres ���0.64�. For g�l ;�� we use standard
liquid theory, with the Verlet-Weis correction and the Hall
equation of state valid in the dense hard-sphere fluid �19�. In
the glassy regime of interest here �0.5���0.6�, the so ob-
tained z=z��� can be approximated with a power-law with
good accuracy �R2=0.993� yielding z���, with ��3.8 �see
�19� for the full derivation and details�, so that

E � ��+1, � � 3.8. �3�

From observations on a similar system �a disordered agglom-
erate of particles with mechanical adhesion in a dense range
of � starting from ��0.49�, Shahidzadeh-Bonn et al. �20�
showed that the surface energy term � obeys the same de-
pendence on volume fraction as the elastic modulus,

� � E � ��+1. �4�

The same relation may be obtained by Cauchy-Born expand-
ing �in two dimensions� the free energy of the fracture sur-
face �21�. Finally, the initial size of the crack ��� is a decreas-
ing function of �. A precise determination of this
dependence is nontrivial. Here, we should content ourselves
with two limiting cases. One is the case of a fully developed
fractal object where the simplest meaningful ansatz is ��L.
This is equivalent to observing that the size of the initial
crack be proportional to the linear size of the aggregate, L.
As previously mentioned, the local volume fraction in the
aggregate scales with the radial coordinate �r� as ��r�
�r−�d−df�, so that the average volume fraction in the aggre-
gate obeys ��L−�d−df�, or, in terms of the aggregate radius of
gyration ��Rg

−�d−df�, leading to ��L��−1/�d−df�. Use of the
latter �fractal� scaling and combination of Eqs. �2�–�4� into
Eq. �1� lead to the following power-law scaling for the criti-
cal stress required to initiate breakup:
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� � Rg
−�1/2��d−df��2��+1�+1/�d−df��. �5�

In the other limit of homogeneous �nonfractal� solids, the
relation between the average crack size and the volume frac-
tion is of direct proportionality. This may be seen if one
treats the initial cracks as inclusions of effective size �, such
that ���1−��3. It can be easily verified that in the range
0.4���0.7 the latter relation is practically equivalent to
the relation ���−0.4, found within well-known studies of
disordered solids in the past �22�. Thus, for aggregates with
high fractal dimension close to the limit df →d, we expect
the relation ��Rg

−�1/2��d−df��2��+1�+0.4� to apply instead of Eq.
�5�. Generalizing, we will have

� � Rg
−�1/2��d−df��2��+1�−�� �6a�

with either

� = − 1/�d − df� or � � − 0.4 �6b�

in ���� depending on whether the cracking is dominated by
fractality or by quasihomogeneous structural disorder, re-
spectively.

Thus, considering that for spatially heterogeneous flows
all aggregates are exposed to the highest flow-intensity re-
gions only in the steady-state limit �t→
�, the following
scaling for the steady-state aggregate size �Rg� and mass �X
�Rg

df� that are mechanically stable in heterogeneous flows at
a given stress � is finally derived as

lim
t→


Rg�t� 	 Rg
�s� � �−2/�d−df��2��+1�−�� = �p, �7a�

lim
t→


X�t� 	 X�s� � �−2df/�d−df��2��+1�−�� = �dfp, �7b�

with

p = − 2/�d − df��2�� + 1� − �� . �7c�

III. EXPERIMENTS, COMPARISON WITH THE MODEL,
AND DISCUSSION

A. Laminar flow

To test these predictions we have carried out experiments
using colloidal aggregates generated in a stirred vessel with a
well-characterized flow field from fully destabilized polysty-
rene particles of radius a�405 nm �Interfacial Dynamics,
USA�, with df =2.69�0.2, from optical microscopy, accord-
ing to the procedure reported in �23�. Detailed description of
the materials, methods, and devices can be found in �24�.
The aggregate suspension, under very dilute conditions �total
solid fraction of the aggregate dispersion equals 2�10−6� to
avoid further aggregation during the flow experiment, was
subsequently injected into a channel with a restriction in the
middle �convergent-divergent nozzle� which allows achiev-
ing a substantially intense flow �the highest velocity gradi-
ents being near the entrance of the nozzle�, as sketched in
Fig. 1. The contraction radius, Dn, was varied in the range of
0.25–1.5 mm. The extensional flow field realized in the
nozzle has been thoroughly characterized by numerically

solving Navier-Stokes equations using a CFD code whereby it
is shown that under all conditions the flow of the restriction
entrance is laminar �24�. The resulting contour plots of hy-
drodynamic stresses are shown elsewhere �24�. Conditions of
laminar flow are ensured when Re�1000. The steady-state
average gyration radius, Rg

�s�, and average zero-angle inten-
sity of scattered light, I�0� �the average is meant over the
population of aggregates�, were measured off site by small
angle light scattering �SALS�, Mastersizer 2000 �Malvern,
UK�, under very dilute conditions �total volume fraction of
the dispersion �10−5�. By repeatedly passing the aggregate
suspension through the nozzle, a stationary condition is
achieved where the average aggregate size reaches a steady
value, independent of the number of passes. Rg

�s� values have
been plotted in Fig. 2�a� as a function of the stress acting on
the aggregate, �, which is identified with the hydrodynamic
stress resulting from the mean velocity gradient �
��5 /2���L, where �L is the highest positive eigenvalue of
the velocity gradient tensor �evaluated from CFD calculations
�24�� and � is the fluid viscosity. The experimental data are
thus compared with predictions of Eq. �7a� using the experi-
mentally determined value df =2.7 which does not change
appreciably with increasing flow intensity, as found also in
previous work �7,24�. The agreement between the scaling
predictions of Eq. �7a� and the experimental trend is strik-
ingly good. However, considering that uncertainty on the ex-
perimentally determined fractal dimension is high, we have
analyzed the scattering properties of the aggregates and cal-
culated the zero-angle intensity of scattered light �propor-
tional to the aggregate mass, I�0��X�s�� of computer-
generated aggregates with tunable fractal dimension �where a
Voronoi tessellation-based densification algorithm was em-
ployed to generate clusters with df �2.5, as described in
�25��. Mean-field T-matrix theory �26� has been used to ac-
count for multiple scattering �which is particularly strong
with such dense aggregates�. Further, for the size of the
computer-generated aggregates we used Rg

�s� values from fit-
ting Eq. �7a� to the experimental data. The optimum quanti-
tative agreement, shown in Fig. 2�b�, between the calculated
and the measured I�0� is obtained when computer-generated
aggregates with df =2.7 are used for the calculation �some
offset at large I�0� values cannot be avoided and is ascribed
to the size polydispersity of the aggregate population in that
regime�. This confirms the value measured experimentally
and justifies its use for the comparison between model and
experiments in Fig. 2�a�. Predictions of the I�0� versus stress

Dentry � = 59�

lentry lexitln

Dn DexitDentry � = 59�

lentry lexitln

Dn DexitDentry � = 59�

lentry lexitln

Dn Dexit

FIG. 1. Geometry of the convergent-divergent multipass channel
used to realize the extensional flow to study aggregate breakup.
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scaling using Eq. �7b�, in accord with Rayleigh-Debye-Gans
theory of light scattering, which neglects multiple scattering,
are shown in Fig. 2�b�. They lie very far from the experimen-
tal data, thus indicating the importance of multiple-scattering
effects in the system.

B. Turbulent flow

Let us now consider a fully developed homogeneous tur-
bulent flow at high Reynolds numbers �Re�. Assuming the
aggregate size to be smaller than the Kolmogorov length
scale �, the hydrodynamic stress is associated with the local
energy dissipation rate �, whose fluctuations are highly in-
termittent. It has been recently shown in �27� that the
breakup kinetics in this regime is governed by the frequency
at which � exceeds a critical value ��crit� corresponding to
the critical stress for aggregate breakup. Further, it was found
that the obtained long-time or steady-state mass scaling with
shear rate from solving the full fragmentation equation �with
an appropriate breakup rate kernel� is equivalent to the scal-
ing limt→
 Rg�t�� �̇p��crit

p/2�
��p/2�� / l0
4��min−1�/��min+3��p/2,

derived in �28�, which makes use of the multifractal descrip-
tion of turbulence and where �̇ is the turbulent shear rate.
�Note the difference of a factor 2 with the definition of p

given in Ref. �27�.� The � / l0 is the length-scale separation,
�min is the lower limit of the scaling exponent of the multi-
fractal spectrum �corresponding to the harshest turbulent
event�, while p is treated as a lumped �free� parameter ac-
counting for the mechanical response of the aggregate
�27,28�. This relation is equivalent to replacing �� �̇��crit

1/2

in Eqs. �7a�–�7c�. It has been assumed that after a sufficiently
long time all aggregates have sampled the whole multifractal
spectrum, including the highest local velocity gradients �as-
sociated with �crit and �min� which determine the critical
stress. Thus, on the basis of these considerations and of Eqs.
�8a� and �8b� as derived here, the lumped power-law expo-
nent in Ref. �27� can be identified as p=−2 / �d−df��2��
+1�−�� �with the aforementioned difference of a factor 2 in
the definition of p with respect to �27��. Due to the large
scale heterogeneity in stirring devices, near the impeller
blades the local energy dissipation rate, �, can reach values
orders of magnitude higher than the volume averaged value,

�� �23,29�. We note that 
�� represents a flow-intensity pa-
rameter easily accessible, e.g., by torque measurements. Tak-
ing this into consideration, also the length-scale separation
� / l0 can be estimated by means of CFD simulations as a
function of 
��. In stirring devices, the length-scale separa-
tion is a power law of 
��, � / l0�
���. Hence, we derive

lim
t→


X�t� 	 X�s� � 
���−df/�d−df��2��+1�−��
�1+4���min−1�/��min+3��,

�8a�

lim
t→


Rg�t� 	 Rg
�s� � 
��−1/�d−df��2��+1�−���1+4���min−1�/��min+3��.

�8b�

We now compare predictions of Eqs. �8a� and �8b� with ex-
perimental data from �23�, referring to aggregate breakup
under turbulent flow in a stirring apparatus �1.2�104�Re
�6�104�, where our assumptions are fulfilled. Again, dilu-
tion was such that aggregate breakup is unaffected by aggre-
gation phenomena. The colloid system and particle radius
was the same as in the experiments reported here, i.e., a
�405 nm. The relation � / l0�
��−0.234 was determined from
numerical simulations of the flow field in the stirring appa-
ratus in �23�. Also in this case, the aggregate fractal dimen-
sion does not change appreciably with the average flow in-
tensity, thus with 
��, and was estimated in �23� as df
=2.62�0.2. The value �min�0.12, a property of the multi-
fractal spectrum corresponding to the most intense turbulent
event, has been employed according to �27�. Thus, the com-
parison between predictions of Eq. �8a�, with df =2.63, and
the experimental data in �23� is shown in Fig. 3�a�. The
agreement between the predicted scaling and the experimen-
tal trend, once more, is excellent. We note that the effect of
intermittency, as already pointed out in �27�, amounts to in-
creasing the absolute value of the power-law exponent by
only 24% of the value for laminar flow �the latter given by
Eqs. �6a� and �6b��. This is a rather small correction. The
uncertainty in the experimentally measured fractal dimension
in �23� requires an independent estimate. By the same analy-
sis as explained above, we found that in order to obtain the
best quantitative agreement between the I�0� values mea-
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FIG. 2. �a� Comparison between experimental data of steady-
state aggregate size in extensional flow �see text� and the scaling
prediction from Eq. �7a� with df =2.7. �b� Comparison between the
steady-state zero-angle scattered light intensity, I�0��X�s�, mea-
sured experimentally by SALS �squares�, and simulations of I�0�
for computer-generated aggregates with df =2.7 �circles�. Also
shown is the scaling, as from Eq. �7b�, without accounting for mul-
tiple scattering.
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sured experimentally �in �23�� and those calculated from
computer-generated aggregates, as shown in Fig. 3�b�, the
fractal dimension must be df =2.63, thus consistent with the
value df =2.62�0.18 experimentally found in �23�. This jus-
tifies the df value used for the comparison with experiments
and confirms the general good agreement between our scal-
ing approach and the experimental data also in the case of
turbulent flows. Also in this case, as shown in Fig. 3�b�, the
error that one makes if multiple scattering is not taken into
account is very large.

C. Breakup exponent versus fractal dimension

Our findings and the emerging picture are summarized in
Fig. 4, as a breakup exponent versus fractal dimension dia-
gram, where our model predictions are compared with ex-
perimental and simulation data from several authors. We ob-
serve that upon increasing df in the range 2.4�df �2.8, the
breakup exponent p decreases very slowly from about −0.3
to about −0.8. Further, using �=−0.4 rather than �=−1 / �d
−df� does not lead to significant differences in this regime.
However, starting from df �2.8 and getting closer to the ho-
mogeneous limit df →d, the curves for the two values of �
differ substantially. In particular, we expect the scaling with

�=−0.4 to be the more realistic one in this regime as it
recovers the correct limit p→−
 at df =d, where the stress
must eventually become independent of the aggregate size.
Thus, in the regime 2.4�df �2.8, which is still dominated
by fractality, hence by a significant decay of the inner density
with the linear size of the aggregate, our model predictions
are in excellent agreement not only with the experimental
data from our laboratory, as shown above, but also with the
simulations of Higashitani et al. �30�. In this regime, if the
fractal dimension does not change upon breaking up �as ob-
served experimentally�, the fragments generated upon in-
creasing the hydrodynamic stress are significantly denser
than the precursor aggregate �since they are smaller�, thus
they better withstand the hydrodynamic stresses. This leads
to a considerable mitigation of the breakup-induced decrease
in the average stable size upon increasing the stress which is
reflected in low absolute values ��1� of the breakup expo-
nent p. On the other hand, in the limit of weakly fractal or
quasihomogeneous and eventually homogeneous �nonfractal�
aggregates �df �2.8�, once the critical stress is applied, any
fragment will undergo breakup regardless its size, thus re-
sulting in a value of critical stress practically independent of
the aggregate size, hence in high ��1� absolute values of p.
This limit is captured equally well by our model if the scal-
ing with �=−0.4, valid indeed for nonfractal disordered sol-
ids, is used, as confirmed by the agreement between the our
model predictions and the experimental data in Refs. �13,31�
shown in Fig. 4. When df �d, the fracture criterion of non-
fractal aggregates should be more properly given in terms of
the volume fraction as �����+1�−�/2. We also note that this
picture remains valid in turbulent flows at least for the fully
developed fractal regime in which experimental data are
available �inset of Fig. 4�.
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FIG. 3. �a� Comparison between experimental data of steady-
state aggregate size in turbulence from Ref. �23� and the scaling
prediction from Eq. �8a� with df =2.63 �solid line�. �b� Comparison
between the zero-angle scattered light intensity, I�0��X�s�, mea-
sured experimentally by SALS in Ref. �23� �squares� and simula-
tions of I�0� for computer-generated aggregates with df =2.63
�circles�. Also shown is the scaling without accounting for multiple
scattering, as from Eq. �8b�.
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function of fractal dimension for laminar flows. Curves 1 and 2 are
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Inset: same comparison for turbulent flow. Symbols: ��� experi-
mental data from Ref. �23�.
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IV. CONCLUSION

In summary, we have shown the evidence that the breakup
of dense colloidal aggregates with df �2.4–3.0, under an
applied laminar or turbulent flow, can be understood in terms
of a critical hydrodynamic stress associated with a critical
strain energy given by the bond energy required for unstable
crack propagation in the aggregate. The inner dense amor-
phous structure of such aggregates as those formed under
flow conditions is responsible for a brittle mechanical re-
sponse typical of glassy materials. However, with aggregates
in the fractal dimension range df �2.4–2.8, owing to the
significant decay of volume fraction with the linear size of
the aggregate, the observed decrease of the stable size with
the hydrodynamic stress is made much less steeper in com-
parison with homogenous �nonfractal� solids for which the
critical stress is practically independent of the aggregate size.
This picture has been found to agree well with experimental

results from our laboratory as well as with simulations and
experiments from the literature in both laminar and turbulent
flows. These findings will be used in future work to improve
our current understanding of the microscopic origin of the
peculiar rheological properties of strongly sheared interact-
ing colloids where breakup greatly affects the structure-
formation and structure-failure processes �by limiting the
former and enhancing the latter�, whose interplay is respon-
sible for puzzling behaviors such as thixotropy and rheopexy
�4�.
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