QUICK FACTS

Name: Tiago de Paula Peixoto

Backround: Theoretical physics, statistical mechanics.

Areas of activity: Networks, complex systems, statistical inference.

Scientific trajectory:

- ▶ 2008 → PhD in theoretical physics, USP, Brazil.
- ▶ 2008 2011 \rightarrow Post-doc, TU Darmstadt, Germany. (Alexander von Humboldt Fellowship)
- ▶ 2011 2016 \rightarrow Post-doc, University of Bremen, Germany.
- $\blacktriangleright~2015$ present \rightarrow Ext. researcher, ISI Foundation, Turin, Italy
- \blacktriangleright August 2016 present \rightarrow Mathematical Sciences, University of Bath

Networks

Networks form the substrate of a wide variety of systems.

Structure \leftrightarrow Dynamics \leftrightarrow Evolution

HOW TO CHARACTERIZE LARGE-SCALE STRUCTURE?

Find a meaningful network partition that provides:

- ► A division of nodes into groups that share similar properties.
- ► An understandable summary of the large-scale structure.
- ▶ An insight on function and evolution.

INFERRING MODULAR STRUCTURE

Generative models

Model likelihood: $P(\boldsymbol{A}|\boldsymbol{\theta},\boldsymbol{b})$

A
ightarrow network

- $\boldsymbol{b} \rightarrow$ partition of the nodes into groups
- $\theta \rightarrow$ more model parameters

Bayesian inference

$$P(\boldsymbol{b}|\boldsymbol{A}) = \frac{P(\boldsymbol{A}|\boldsymbol{b})P(\boldsymbol{b})}{P(\boldsymbol{A})}$$

$$P(\boldsymbol{A}|\boldsymbol{b}) = \int P(\boldsymbol{A}|\boldsymbol{\theta}, \boldsymbol{b}) P(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}$$

Structure \rightarrow Function and dynamics

Arbitrary modular structures.

Distribution of eigenvalues.

EVOLUTION OF ROBUSTNESS

Structural phase transitions

CENTRE FOR NETWORKS AND COLLECTIVE BEHAVIOUR (CNCB)

- ▶ Alastair Spence
- ▶ Jonathan Dawes
- \blacktriangleright Dick James

- ▶ Tim Rogers
- ▶ Kit Yates