
graph-tool documentation
Release 2.2.24

Tiago de Paula Peixoto

May 06, 2013

CONTENTS

1 Quick start using graph-tool 3
1.1 Creating and manipulating graphs . 3

1.1.1 Iterating over vertices and edges . 6
1.2 Property maps . 6

1.2.1 Internal property maps . 7
1.3 Graph I/O . 8
1.4 An Example: Building a Price Network . 8
1.5 Graph filtering . 11

1.5.1 Graph views . 17

2 Cookbook 21
2.1 Animations with graph-tool . 21

2.1.1 SIRS epidemics . 21
2.1.2 Dynamic layout . 24

3 Module documentation 27
3.1 graph_tool - efficient graph analysis and manipulation 27

3.1.1 Summary . 27
3.1.2 How to use the documentation . 27
3.1.3 Contents . 28

3.2 Available subpackages . 39
3.2.1 graph_tool.centrality - Centrality measures 39
3.2.2 graph_tool.clustering - Clustering coefficients 60
3.2.3 graph_tool.collection - Dataset collection 65
3.2.4 graph_tool.community - Community structure 68
3.2.5 graph_tool.correlations - Correlations 93
3.2.6 graph_tool.draw - Graph drawing and layout 102
3.2.7 graph_tool.flow - Maximum flow algorithms 126
3.2.8 graph_tool.generation - Random graph generation 136
3.2.9 graph_tool.run_action - Inline C++ code embedding 163
3.2.10 graph_tool.search - Search algorithms 166
3.2.11 graph_tool.spectral - Spectral properties 186
3.2.12 graph_tool.stats - Miscellaneous statistics 190
3.2.13 graph_tool.topology - Assessing graph topology 194
3.2.14 graph_tool.util - Graph utilities . 222

4 Indexes and tables 225

Bibliography 227

Python Module Index 235

Python Module Index 237

i

ii

graph-tool documentation, Release 2.2.24

Contents:

CONTENTS 1

graph-tool documentation, Release 2.2.24

2 CONTENTS

CHAPTER

ONE

QUICK START USING GRAPH-TOOL

The graph_tool (page 27) module provides a Graph (page 28) class and several algorithms
that operate on it. The internals of this class, and of most algorithms, are written in C++ for
performance, using the Boost Graph Library.

The module must be of course imported before it can be used. The package is subdivided into
several sub-modules. To import everything from all of them, one can do:

>>> from graph_tool.all import *

In the following, it will always be assumed that the previous line was run.

1.1 Creating and manipulating graphs

An empty graph can be created by instantiating a Graph (page 28) class:

>>> g = Graph()

By default, newly created graphs are always directed. To construct undirected graphs, one
must pass a value to the directed parameter:

>>> ug = Graph(directed=False)

A graph can always be switched on-the-fly from directed to undirected (and vice versa), with
the set_directed() (page 29) method. The “directedness” of the graph can be queried with
the is_directed() (page 30) method,

>>> ug = Graph()
>>> ug.set_directed(False)
>>> assert(ug.is_directed() == False)

A graph can also be created by providing another graph, in which case the entire graph (and
its internal property maps, see Property maps (page 6)) is copied:

>>> g1 = Graph()
>>> # ... construct g1 ...
>>> g2 = Graph(g1) # g1 and g2 are copies

Above, g2 is a “deep” copy of g1, i.e. any modification of g2 will not affect g1.

Once a graph is created, it can be populated with vertices and edges. A vertex can be added
with the add_vertex() (page 29) method, which returns an instance of a Vertex (page 33)
class, also called a vertex descriptor. For instance, the following code creates two vertices,
and returns vertex descriptors stored in the variables v1 and v2.

>>> v1 = g.add_vertex()
>>> v2 = g.add_vertex()

3

http://www.boost.org

graph-tool documentation, Release 2.2.24

Edges can be added in an analogous manner, by calling the add_edge() (page 29) method,
which returns an edge descriptor (an instance of the Edge (page 34) class):

>>> e = g.add_edge(v1, v2)

The above code creates a directed edge from v1 to v2. We can visualize the graph we created
so far with the graph_draw() (page 111) function.

>>> graph_draw(g, vertex_text=g.vertex_index, vertex_font_size=18,
... output_size=(200, 200), output="two-nodes.pdf")
<...>

0

1

Figure 1.1: A simple directed graph with two vertices and one edge, created by the commands
above.

With vertex and edge descriptors, one can examine and manipulate the graph in an arbitrary
manner. For instance, in order to obtain the out-degree of a vertex, we can simply call the
out_degree() (page 34) method:

>>> print(v1.out_degree())
1

Analogously, we could have used the in_degree() (page 34) method to query the in-degree.

Note: For undirected graphs, the “out-degree” is synonym for degree, and in this case the
in-degree of a vertex is always zero.

Edge descriptors have two useful methods, source() (page 35) and target() (page 35),
which return the source and target vertex of an edge, respectively.

>>> print(e.source(), e.target())
0 1

The add_vertex() (page 29) method also accepts an optional parameter which specifies the
number of vertices to create. If this value is greater than 1, it returns an iterator on the added
vertex descriptors:

>>> vlist = g.add_vertex(10)
>>> print(len(list(vlist)))
10

Edges and vertices can also be removed at any time with the remove_vertex() (page 29) and
remove_edge() (page 29) methods,

4 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

>>> g.remove_edge(e) # e no longer exists
>>> g.remove_vertex(v2) # the second vertex is also gone

Note: Removing a vertex is an O(N) operation. The vertices are internally stored in a STL
vector, so removing an element somewhere in the middle of the list requires the shifting of
the rest of the list. Thus, fast O(1) removals are only possible if one can guarantee that only
vertices in the end of the list are removed (the ones last added to the graph).

Removing an edge is an O(ks + kt) operation, where ks is the out-degree of the source vertex,
and kt is the in-degree of the target vertex.

Each vertex in a graph has an unique index, which is numbered from 0 to N-1, where N is
the number of vertices. This index can be obtained by using the vertex_index (page 30)
attribute of the graph (which is a property map, see Property maps (page 6)), or by converting
the vertex descriptor to an int.

>>> v = g.add_vertex()
>>> print(g.vertex_index[v])
11
>>> print(int(v))
11

Note: Removing a vertex will cause the index of any vertex with a larger index to be changed,
so that the indexes always conform to the [0, N −1] range. However, property map values (see
Property maps (page 6)) are unaffected.

Since vertices are uniquely identifiable by their indexes, there is no need to keep the vertex
descriptor lying around to access them at a later point. If we know its index, one can obtain
the descriptor of a vertex with a given index using the vertex() (page 28) method,

>>> v = g.vertex(8)

which takes an index, and returns a vertex descriptor. Edges cannot be directly obtained by
its index, but if the source and target vertices of a given edge is known, it can be obtained
with the edge() (page 28) method

>>> g.add_edge(g.vertex(2), g.vertex(3))
<...>
>>> e = g.edge(2, 3)

Another way to obtain edge or vertex descriptors is to iterate through them, as described
in section Iterating over vertices and edges (page 6). This is in fact the most useful way of
obtaining vertex and edge descriptors.

Like vertices, edges also have unique indexes, which are given by the edge_index (page 30)
property:

>>> e = g.add_edge(g.vertex(0), g.vertex(1))
>>> print(g.edge_index[e])
1

Differently from vertices, edge indexes do not necessarily conform to any specific range. If no
edges are ever removed, the indexes will be in the range [0, E − 1], where E is the number of
edges, and edges added earlier have lower indexes. However if an edge is removed, its index
will be “vacant”, and the remaining indexes will be left unmodified, and thus will not lie in
the range [0, E − 1]. If a new edge is added, it will reuse old indexes, in an increasing order.

1.1. Creating and manipulating graphs 5

http://en.wikipedia.org/wiki/Vector_%28STL%29
http://en.wikipedia.org/wiki/Vector_%28STL%29

graph-tool documentation, Release 2.2.24

1.1.1 Iterating over vertices and edges

Algorithms must often iterate through vertices, edges, out-edges of a vertex, etc. The Graph
(page 28) and Vertex (page 33) classes provide different types of iterators for doing so. The
iterators always point to edge or vertex descriptors.

Iterating over all vertices or edges

In order to iterate through all the vertices or edges of a graph, the vertices() (page 28) and
edges() (page 28) methods should be used:

for v in g.vertices():
print(v)

for e in e.edges():
print(e)

The code above will print the vertices and edges of the graph in the order they are found.

Iterating over the neighbourhood of a vertex

The out- and in-edges of a vertex, as well as the out- and in-neighbours can be iter-
ated through with the out_edges() (page 34), in_edges() (page 34), out_neighbours()
(page 34) and in_neighbours() (page 34) methods, respectively.

from itertools import izip
for v in g.vertices():

for e in v.out_edges():
print(e)

for w in v.out_neighbours():
print(w)

the edge and neighbours order always match
for e,w in izip(v.out_edges(), v.out_neighbours()):

assert(e.target() == w)

The code above will print the out-edges and out-neighbours of all vertices in the graph.

Note: The ordering of the vertices and edges visited by the iterators is always the same as the
order in which they were added to the graph (with the exception of the iterator returned by
edges() (page 28)). Usually, algorithms do not care about this order, but if it is ever needed,
this inherent ordering can be relied upon.

Warning: You should never remove vertex or edge descriptors when iterating over them,
since this invalidates the iterators. If you plan to remove vertices or edges during iteration,
you must first store them somewhere (such as in a list) and remove them only after no
iterator is being used. Removal during iteration will cause bad things to happen.

1.2 Property maps

Property maps are a way of associating additional information to the vertices, edges or to the
graph itself. There are thus three types of property maps: vertex, edge and graph. All of them
are handled by the same class, PropertyMap (page 35). Each created property map has an
associated value type, which must be chosen from the predefined set:

6 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

Type name Alias
bool uint8_t
int16_t short
int32_t int
int64_t long, long long
double float
long double
string
vector<bool> vector<uint8_t>
vector<int16_t> vector<short>
vector<int32_t> vector<int>
vector<int64_t> vector<long>, vector<long long>
vector<double> vector<float>
vector<long double>
vector<string>
python::object object

New property maps can be created for a given graph by calling the new_vertex_property()
(page 30), new_edge_property() (page 30), or new_graph_property() (page 30), for each
map type. The values are then accessed by vertex or edge descriptors, or the graph itself, as
such:

from itertools import izip
from numpy.random import randint

g = Graph()
g.add_vertex(100)
insert some random links
for s,t in izip(randint(0, 100, 100), randint(0, 100, 100)):

g.add_edge(g.vertex(s), g.vertex(t))

vprop_double = g.new_vertex_property("double") # Double-precision floating point
vprop_double[g.vertex(10)] = 3.1416

vprop_vint = g.new_vertex_property("vector<int>") # Vector of ints
vprop_vint[g.vertex(40)] = [1, 3, 42, 54]

eprop_dict = g.new_edge_property("object") # Arbitrary python object. In this case, a dictionary.
eprop_dict[g.edges().next()] = {"foo": "bar", "gnu": 42}

gprop_bool = g.new_edge_property("bool") # Boolean
gprop_bool[g] = True

Property maps with scalar value types can also be accessed as a numpy.ndarray, with the
get_array() (page 36) method, or the a (page 36) attribute, i.e.,

from numpy.random import random

this assigns random values to the vertex properties
vprop_double.get_array()[:] = random(g.num_vertices())

or more conveniently (this is equivalent to the above)
vprop_double.a = random(g.num_vertices())

1.2.1 Internal property maps

Any created property map can be made “internal” to the corresponding graph. This means
that it will be copied and saved to a file together with the graph. Properties are internalized
by including them in the graph’s dictionary-like attributes vertex_properties (page 31),
edge_properties (page 31) or graph_properties (page 31) (or their aliases, vp (page 31),

1.2. Property maps 7

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

graph-tool documentation, Release 2.2.24

ep (page 31) or gp (page 31), respectively). When inserted in the graph, the property maps
must have an unique name (between those of the same type):

>>> eprop = g.new_edge_property("string")
>>> g.edge_properties["some name"] = eprop
>>> g.list_properties()
some name (edge) (type: string)

Internal graph property maps behave slightly differently. Instead of returning the property
map object, the value itself is returned from the dictionaries:

>>> gprop = g.new_graph_property("int")
>>> g.graph_properties["foo"] = gprop # this sets the actual property map
>>> g.graph_properties["foo"] = 42 # this sets its value
>>> print(g.graph_properties["foo"])
42
>>> del g.graph_properties["foo"] # the property map entry is deleted from the dictionary

1.3 Graph I/O

Graphs can be saved and loaded in three formats: graphml, dot and gml. Graphml is the
default and preferred format, since it is by far the most complete. The dot and gml formats
are fully supported, but since they contain no precise type information, all properties are read
as strings (or also as double, in the case of gml), and must be converted by hand. Therefore
you should always use graphml, since it performs an exact bit-for-bit representation of all
supported Property maps (page 6), except when interfacing with other software, or existing
data, which uses dot or gml.

A graph can be saved or loaded to a file with the save (page 33) and load (page 33) methods,
which take either a file name or a file-like object. A graph can also be loaded from disc with
the load_graph() (page 36) function, as such:

g = Graph()
... fill the graph ...
g.save("my_graph.xml.gz")
g2 = load_graph("my_graph.xml.gz")
g and g2 should be copies of each other

Graph classes can also be pickled with the pickle module.

1.4 An Example: Building a Price Network

A Price network is the first known model of a “scale-free” graph, invented in 1976 by de Solla
Price. It is defined dynamically, where at each time step a new vertex is added to the graph,
and connected to an old vertex, with probability proportional to its in-degree. The following
program implements this construction using graph-tool.

Note: Note that it would be much faster just to use the price_network() (page 162)
function, which is implemented in C++, as opposed to the script below which is in pure
python. The code below is merely a demonstration on how to use the library.

1 #! /usr/bin/env python
2

3 # We probably will need some things from several places
4 import sys, os
5 from pylab import * # for plotting
6 from numpy.random import * # for random sampling

8 Chapter 1. Quick start using graph-tool

http://graphml.graphdrawing.org/
http://www.graphviz.org/doc/info/lang.html
http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-informatik/projects.html
http://docs.python.org/library/pickle.html#pickle
http://en.wikipedia.org/wiki/Derek_J._de_Solla_Price
http://en.wikipedia.org/wiki/Derek_J._de_Solla_Price

graph-tool documentation, Release 2.2.24

7 seed(42)
8

9 # We need to import the graph_tool module itself
10 from graph_tool.all import *
11

12 # let’s construct a Price network (the one that existed before Barabasi). It is
13 # a directed network, with preferential attachment. The algorithm below is
14 # very naive, and a bit slow, but quite simple.
15

16 # We start with an empty, directed graph
17 g = Graph()
18

19 # We want also to keep the age information for each vertex and edge. For that
20 # let’s create some property maps
21 v_age = g.new_vertex_property("int")
22 e_age = g.new_edge_property("int")
23

24 # The final size of the network
25 N = 100000
26

27 # We have to start with one vertex
28 v = g.add_vertex()
29 v_age[v] = 0
30

31 # we will keep a list of the vertices. The number of times a vertex is in this
32 # list will give the probability of it being selected.
33 vlist = [v]
34

35 # let’s now add the new edges and vertices
36 for i in range(1, N):
37 # create our new vertex
38 v = g.add_vertex()
39 v_age[v] = i
40

41 # we need to sample a new vertex to be the target, based on its in-degree +
42 # 1. For that, we simply randomly sample it from vlist.
43 i = randint(0, len(vlist))
44 target = vlist[i]
45

46 # add edge
47 e = g.add_edge(v, target)
48 e_age[e] = i
49

50 # put v and target in the list
51 vlist.append(target)
52 vlist.append(v)
53

54 # now we have a graph!
55

56 # let’s do a random walk on the graph and print the age of the vertices we find,
57 # just for fun.
58

59 v = g.vertex(randint(0, g.num_vertices()))
60 while True:
61 print("vertex:", v, "in-degree:", v.in_degree(), "out-degree:",\
62 v.out_degree(), "age:", v_age[v])
63

64 if v.out_degree() == 0:
65 print("Nowhere else to go... We found the main hub!")
66 break
67

68 n_list = []
69 for w in v.out_neighbours():

1.4. An Example: Building a Price Network 9

graph-tool documentation, Release 2.2.24

70 n_list.append(w)
71 v = n_list[randint(0, len(n_list))]
72

73 # let’s save our graph for posterity. We want to save the age properties as
74 # well... To do this, they must become "internal" properties:
75

76 g.vertex_properties["age"] = v_age
77 g.edge_properties["age"] = e_age
78

79 # now we can save it
80 g.save("price.xml.gz")
81

82

83 # Let’s plot its in-degree distribution
84 in_hist = vertex_hist(g, "in")
85

86 y = in_hist[0]
87 err = sqrt(in_hist[0])
88 err[err >= y] = y[err >= y] - 1e-2
89

90 figure(figsize=(6,4))
91 errorbar(in_hist[1][:-1], in_hist[0], fmt="o", yerr=err,
92 label="in")
93 gca().set_yscale("log")
94 gca().set_xscale("log")
95 gca().set_ylim(1e-1, 1e5)
96 gca().set_xlim(0.8, 1e3)
97 subplots_adjust(left=0.2, bottom=0.2)
98 xlabel("k_{in}")
99 ylabel("$NP(k_{in})$")

100 tight_layout()
101 savefig("price-deg-dist.pdf")

The following is what should happen when the program is run.

vertex: 36063 in-degree: 0 out-degree: 1 age: 36063
vertex: 9075 in-degree: 4 out-degree: 1 age: 9075
vertex: 5967 in-degree: 3 out-degree: 1 age: 5967
vertex: 1113 in-degree: 7 out-degree: 1 age: 1113
vertex: 25 in-degree: 84 out-degree: 1 age: 25
vertex: 10 in-degree: 541 out-degree: 1 age: 10
vertex: 5 in-degree: 140 out-degree: 1 age: 5
vertex: 2 in-degree: 459 out-degree: 1 age: 2
vertex: 1 in-degree: 520 out-degree: 1 age: 1
vertex: 0 in-degree: 210 out-degree: 0 age: 0
Nowhere else to go... We found the main hub!

Below is the degree distribution, with 100000 nodes. If you want to see a broader power law,
try to increase the number of vertices to something like 106 or 107.

We can draw the graph to see some other features of its topology. For that we use the
graph_draw() (page 111) function.

g = load_graph("price.xml.gz")
age = g.vertex_properties["age"]

graph_draw(g, output_size=(1000, 1000), vertex_color=age,
vertex_fill_color=age, vertex_size=1, edge_pen_width=1.2,
output="price.png")

10 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

100 101 102 103

kin

10−1

100

101

102

103

104

105

N
P

(k
in

)

Figure 1.2: In-degree distribution of a price network with 105 nodes.

1.5 Graph filtering

One of the very nice features of graph-tool is the “on-the-fly” filtering of edges and/or
vertices. Filtering means the temporary masking of vertices/edges, which are in fact not
really removed, and can be easily recovered. Vertices or edges which are to be filtered
should be marked with a PropertyMap (page 35) with value type bool, and then set with
set_vertex_filter() (page 32) or set_edge_filter() (page 32) methods. By default, ver-
tex or edges with value “1” are kept in the graphs, and those with value “0” are filtered out.
This behaviour can be modified with the inverted parameter of the respective functions.
All manipulation functions and algorithms will work as if the marked edges or vertices were
removed from the graph, with minimum overhead.

Note: It is important to emphasize that the filtering functionality does not add any overhead
when the graph is not being filtered. In this case, the algorithms run just as fast as if the
filtering functionality didn’t exist.

Here is an example which obtains the minimum spanning tree of a graph, using the function
min_spanning_tree() (page 198) and edge filtering.

g, pos = triangulation(random((500, 2)) * 4, type="delaunay")
tree = min_spanning_tree(g)
graph_draw(g, pos=pos, edge_color=tree, output="min_tree.pdf")

The tree property map has a bool type, with value “1” if the edge belongs to the tree, and “0”
otherwise. Below is an image of the original graph, with the marked edges.

We can now filter out the edges which don’t belong to the minimum spanning tree.

g.set_edge_filter(tree)
graph_draw(g, pos=pos, output="min_tree_filtered.pdf")

1.5. Graph filtering 11

graph-tool documentation, Release 2.2.24

Figure 1.3: A Price network with 105 nodes. The vertex colors represent the age of the vertex,
from older (red) to newer (blue).

12 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

1.5. Graph filtering 13

graph-tool documentation, Release 2.2.24

This is how the graph looks when filtered:

Everything should work transparently on the filtered graph, simply as if the masked edges
were removed. For instance, the following code will calculate the betweenness() (page 42)
centrality of the edges and vertices, and draws them as colors and line thickness in the graph.

bv, be = betweenness(g)
be.a /= be.a.max() / 5
graph_draw(g, pos=pos, vertex_fill_color=bv, edge_pen_width=be,

output="filtered-bt.pdf")

The original graph can be recovered by setting the edge filter to None.

g.set_edge_filter(None)
bv, be = betweenness(g)
be.a /= be.a.max() / 5
graph_draw(g, pos=pos, vertex_fill_color=bv, edge_pen_width=be,

output="nonfiltered-bt.pdf")

Everything works in analogous fashion with vertex filtering.

14 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

1.5. Graph filtering 15

graph-tool documentation, Release 2.2.24

16 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

Additionally, the graph can also have its edges reversed with the set_reversed() (page 30)
method. This is also an O(1) operation, which does not really modify the graph.

As mentioned previously, the directedness of the graph can also be changed “on-the-fly” with
the set_directed() (page 29) method.

1.5.1 Graph views

It is often desired to work with filtered and unfiltered graphs simultaneously, or to temporarily
create a filtered version of graph for some specific task. For these purposes, graph-tool pro-
vides a GraphView (page 33) class, which represents a filtered “view” of a graph, and behaves
as an independent graph object, which shares the underlying data with the original graph.
Graph views are constructed by instantiating a GraphView (page 33) class, and passing a
graph object which is supposed to be filtered, together with the desired filter parameters. For
example, to create a directed view of the graph g constructed above, one should do:

>>> ug = GraphView(g, directed=True)
>>> ug.is_directed()
True

Graph views also provide a much more direct and convenient approach to vertex/edge filter-
ing: To construct a filtered minimum spanning tree like in the example above, one must only
pass the filter property as the “efilter” parameter:

>>> tv = GraphView(g, efilt=tree)

Note that this is an O(1) operation, since it is equivalent (in speed) to setting the filter in graph
g directly, but in this case the object g remains unmodified.

Like above, the result should be the isolated minimum spanning tree:

>>> bv, be = betweenness(tv)
>>> be.a /= be.a.max() / 5
>>> graph_draw(tv, pos=pos, vertex_fill_color=bv,
... edge_pen_width=be, output="mst-view.pdf")
<...>

Note: GraphView (page 33) objects behave exactly like regular Graph (page 28) objects. In
fact, GraphView (page 33) is a subclass of Graph (page 28). The only difference is that a
GraphView (page 33) object shares its internal data with its parent Graph (page 28) class.
Therefore, if the original Graph (page 28) object is modified, this modification will be reflected
immediately in the GraphView (page 33) object, and vice-versa.

For even more convenience, one can supply a function as filter parameter, which takes a
vertex or an edge as single parameter, and returns True if the vertex/edge should be kept
and False otherwise. For instance, if we want to keep only the most “central” edges, we can
do:

>>> bv, be = betweenness(g)
>>> u = GraphView(g, efilt=lambda e: be[e] > be.a.max() / 2)

This creates a graph view u which contains only the edges of g which have a normalized
betweenness centrality larger than half of the maximum value. Note that, differently from
the case above, this is an O(E) operation, where E is the number of edges, since the sup-
plied function must be called E times to construct a filter property map. Thus, supplying a
constructed filter map is always faster, but supplying a function can be more convenient.

The graph view constructed above can be visualized as

1.5. Graph filtering 17

graph-tool documentation, Release 2.2.24

Figure 1.4: A view of the Delaunay graph, isolating only the minimum spanning tree.

18 Chapter 1. Quick start using graph-tool

graph-tool documentation, Release 2.2.24

>>> be.a /= be.a.max() / 5
>>> graph_draw(u, pos=pos, vertex_fill_color=bv, output="central-edges-view.pdf")
<...>

Figure 1.5: A view of the Delaunay graph, isolating only the edges with normalized between-
ness centrality larger than 0.01.

Composing graph views

Since graph views are regular graphs, one can just as easily create graph views of graph
views. This provides a convenient way of composing filters. For instance, in order to isolate
the minimum spanning tree of all vertices of the example above which have a degree larger
than four, one can do:

>>> u = GraphView(g, vfilt=lambda v: v.out_degree() > 4)
>>> tree = min_spanning_tree(u)
>>> u = GraphView(u, efilt=tree)

The resulting graph view can be visualized as

1.5. Graph filtering 19

graph-tool documentation, Release 2.2.24

>>> graph_draw(u, pos=pos, output="composed-filter.pdf")
<...>

Figure 1.6: A composed view, obtained as the minimum spanning tree of all vertices in the
graph which have a degree larger than four.

20 Chapter 1. Quick start using graph-tool

CHAPTER

TWO

COOKBOOK

Contents:

2.1 Animations with graph-tool

The drawing capabilities of graph-tool (see draw (page 102) module) can be harnessed to
perform animations in a straightforward manner. Here we show some examples which uses
GTK+ to display animations in an interactive_window (page 122), as well as offscreen to
a file. The idea is to easily generate visualisations which can be used in presentations, and
embedded in websites.

2.1.1 SIRS epidemics

Here we implement a simple SIRS epidemics on a network, and we construct an animation
showing the time evolution. Nodes which are susceptible (S) are shown in white, whereas
infected (I) nodes are shown in black. Recovered (R) nodes are removed from the layout, since
they cannot propagate the outbreak.

The script which performs the animation is called animation_sirs.py and is shown below.

1 #! /usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 # This simple example on how to do animations using graph-tool. Here we do a
5 # simple simulation of an S->I->R->S epidemic model, where each vertex can be in
6 # one of the following states: Susceptible (S), infected (I), recovered (R). A
7 # vertex in the S state becomes infected either spontaneously with a probability
8 # ’x’ or because a neighbour is infected. An infected node becomes recovered
9 # with probability ’r’, and a recovered vertex becomes again susceptible with

10 # probability ’s’.
11

12 # DISCLAIMER: The following code is definitely not the most efficient approach
13 # if you want to simulate this dynamics for very large networks, and/or for very
14 # long times. The main purpose is simply to highlight the animation capabilities
15 # of graph-tool.
16

17 from graph_tool.all import *
18 from numpy.random import *
19 import sys, os, os.path
20

21 seed(42)
22 seed_rng(42)
23

24 # We need some Gtk and gobject functions
25 from gi.repository import Gtk, Gdk, GdkPixbuf, GObject

21

http://www.gtk.org/
http://en.wikipedia.org/wiki/Epidemic_model

graph-tool documentation, Release 2.2.24

26

27 # We will use the network of network scientists, and filter out the largest
28 # component
29 g = collection.data["netscience"]
30 g = GraphView(g, vfilt=label_largest_component(g), directed=False)
31 g = Graph(g, prune=True)
32

33 pos = g.vp["pos"] # layout positions
34

35 # We will filter out vertices which are in the "Recovered" state, by masking
36 # them using a property map.
37 removed = g.new_vertex_property("bool")
38

39 # SIRS dynamics parameters:
40

41 x = 0.001 # spontaneous outbreak probability
42 r = 0.1 # I->R probability
43 s = 0.01 # R->S probability
44

45 # (Note that the S->I transition happens simultaneously for every vertex with a
46 # probability equal to the fraction of non-recovered neighbours which are
47 # infected.)
48

49 # The states would usually be represented with simple integers, but here we will
50 # use directly the color of the vertices in (R,G,B,A) format.
51

52 S = [1, 1, 1, 1] # White color
53 I = [0, 0, 0, 1] # Black color
54 R = [0.5, 0.5, 0.5, 1.] # Grey color (will not actually be drawn)
55

56 # Initialize all vertices to the S state
57 state = g.new_vertex_property("vector<double>")
58 for v in g.vertices():
59 state[v] = S
60

61 # Newly infected nodes will be highlighted in red
62 newly_infected = g.new_vertex_property("bool")
63

64 # If True, the frames will be dumped to disk as images.
65 offscreen = sys.argv[1] == "offscreen" if len(sys.argv) > 1 else False
66 max_count = 500
67 if offscreen and not os.path.exists("./frames"):
68 os.mkdir("./frames")
69

70 # This creates a GTK+ window with the initial graph layout
71 if not offscreen:
72 win = GraphWindow(g, pos, geometry=(500, 400),
73 edge_color=[0.6, 0.6, 0.6, 1],
74 vertex_fill_color=state,
75 vertex_halo=newly_infected,
76 vertex_halo_color=[0.8, 0, 0, 0.6])
77 else:
78 count = 0
79 win = Gtk.OffscreenWindow()
80 win.set_default_size(500, 400)
81 win.graph = GraphWidget(g, pos,
82 edge_color=[0.6, 0.6, 0.6, 1],
83 vertex_fill_color=state,
84 vertex_halo=newly_infected,
85 vertex_halo_color=[0.8, 0, 0, 0.6])
86 win.add(win.graph)
87

88

22 Chapter 2. Cookbook

graph-tool documentation, Release 2.2.24

89 # This function will be called repeatedly by the GTK+ main loop, and we use it
90 # to update the state according to the SIRS dynamics.
91 def update_state():
92 newly_infected.a = False
93 removed.a = False
94

95 # visit the nodes in random order
96 vs = list(g.vertices())
97 shuffle(vs)
98 for v in vs:
99 if state[v] == I:

100 if random() < r:
101 state[v] = R
102 elif state[v] == S:
103 if random() < x:
104 state[v] = I
105 else:
106 ns = list(v.out_neighbours())
107 if len(ns) > 0:
108 w = ns[randint(0, len(ns))] # choose a random neighbour
109 if state[w] == I:
110 state[v] = I
111 newly_infected[v] = True
112 elif random() < s:
113 state[v] = S
114 if state[v] == R:
115 removed[v] = True
116

117 # Filter out the recovered vertices
118 g.set_vertex_filter(removed, inverted=True)
119

120 # The following will force the re-drawing of the graph, and issue a
121 # re-drawing of the GTK window.
122 win.graph.regenerate_surface(lazy=False)
123 win.graph.queue_draw()
124

125 # if doing an offscreen animation, dump frame to disk
126 if offscreen:
127 global count
128 pixbuf = win.get_pixbuf()
129 pixbuf.savev(r’./frames/sirs%06d.png’ % count, ’png’, [], [])
130 if count > max_count:
131 sys.exit(0)
132 count += 1
133

134 # We need to return True so that the main loop will call this function more
135 # than once.
136 return True
137

138

139 # Bind the function above as an ’idle’ callback.
140 cid = GObject.idle_add(update_state)
141

142 # We will give the user the ability to stop the program by closing the window.
143 win.connect("delete_event", Gtk.main_quit)
144

145 # Actually show the window, and start the main loop.
146 win.show_all()
147 Gtk.main()

If called without arguments, the script will show the animation inside an
interactive_window (page 122). If the parameter offscreen is passed, individual
frames will be saved in the frames directory:

2.1. Animations with graph-tool 23

graph-tool documentation, Release 2.2.24

$./animation_sirs.py offscreen

These frames can be combined and encoded into the appropriate format. Here we use the
mencoder tool from mplayer to combine all the frames into a single file with YUY format, and
then we encode this with the WebM format, using vpxenc, so that it can be embedded in a
website.

$ mencoder mf://frames/sirs*.png -mf w=500:h=400:type=png -ovc raw -of rawvideo -vf format=i420 -nosound -o sirs.yuy
$ vpxenc sirs.yuy -o sirs.webm -w 500 -h 400 --fps=25/1 --target-bitrate=1000 --good --threads=4

The resulting animation can be downloaded here, or played below if your browser supports
WebM.

This type of animation can be extended or customized in many ways, by dynamically modify-
ing the various drawing parameters and vertex/edge properties. For instance, one might want

to represent the susceptible state as either or , depending on

whether a neighbor is infected, and the infected state as . Properly
modifying the script above would lead to the following movie:

The modified script can be downloaded here.

2.1.2 Dynamic layout

The graph layout can also be updated during an animation. As an illustration, here we
consider a very simplistic model for spatial segregation, where the edges of the graph are
repeatedly and randomly rewired, as long as the new edge has a shorter euclidean distance.

The script which performs the animation is called animation_dancing.py and is shown
below.

1 #! /usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 # This simple example on how to do animations using graph-tool, where the layout
5 # changes dynamically. We start with some network, and randomly rewire its
6 # edges, and update the layout dynamically, where edges are rewired only if
7 # their euclidean distance is reduced. It is thus a very simplistic model for
8 # spatial segregation.
9

10 from graph_tool.all import *
11 from numpy.random import *
12 from numpy.linalg import norm
13 import sys, os, os.path
14

15 seed(42)
16 seed_rng(42)

24 Chapter 2. Cookbook

http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://www.mplayerhq.hu
http://www.webmproject.org
http://www.webmproject.org/docs/encoder-parameters/

graph-tool documentation, Release 2.2.24

17

18 # We need some Gtk and gobject functions
19 from gi.repository import Gtk, Gdk, GdkPixbuf, GObject
20

21 # We will generate a small random network
22 g = random_graph(150, lambda: 1 + poisson(5), directed=False)
23

24 # Parameters for the layout update
25

26 step = 0.005 # move step
27 K = 0.5 # preferred edge length
28

29 pos = sfdp_layout(g, K=K) # initial layout positions
30

31 # If True, the frames will be dumped to disk as images.
32 offscreen = sys.argv[1] == "offscreen" if len(sys.argv) > 1 else False
33 max_count = 5000
34 if offscreen and not os.path.exists("./frames"):
35 os.mkdir("./frames")
36

37 # This creates a GTK+ window with the initial graph layout
38 if not offscreen:
39 win = GraphWindow(g, pos, geometry=(500, 400))
40 else:
41 win = Gtk.OffscreenWindow()
42 win.set_default_size(500, 400)
43 win.graph = GraphWidget(g, pos)
44 win.add(win.graph)
45

46 # list of edges
47 edges = list(g.edges())
48

49 count = 0
50

51 # This function will be called repeatedly by the GTK+ main loop, and we use it
52 # to update the vertex layout and perform the rewiring.
53 def update_state():
54 global count
55

56 # Perform one iteration of the layout step, starting from the previous positions
57 sfdp_layout(g, pos=pos, K=K, init_step=step, max_iter=1)
58

59 for i in range(100):
60 # get a chosen edge, and swap one of its end points for a random vertex,
61 # if it is closer
62 i = randint(0, len(edges))
63 e = list(edges[i])
64 shuffle(e)
65 s1, t1 = e
66

67 t2 = g.vertex(randint(0, g.num_vertices()))
68

69 if (norm(pos[s1].a - pos[t2].a) <= norm(pos[s1].a - pos[t1].a) and
70 s1 != t2 and # no self-loops
71 t1.out_degree() > 1 and # no isolated vertices
72 t2 not in s1.out_neighbours()): # no parallel edges
73

74 g.remove_edge(edges[i])
75 edges[i] = g.add_edge(s1, t2)
76

77

78 # The movement of the vertices may cause them to leave the display area. The
79 # following function rescales the layout to fit the window to avoid this.

2.1. Animations with graph-tool 25

graph-tool documentation, Release 2.2.24

80 if count % 1000 == 0:
81 win.graph.fit_to_window(ink=True)
82 count += 1
83

84 # The following will force the re-drawing of the graph, and issue a
85 # re-drawing of the GTK window.
86 win.graph.regenerate_surface(lazy=False)
87 win.graph.queue_draw()
88

89 # if doing an offscreen animation, dump frame to disk
90 if offscreen:
91 pixbuf = win.get_pixbuf()
92 pixbuf.savev(r’./frames/dancing%06d.png’ % count, ’png’, [], [])
93 if count > max_count:
94 sys.exit(0)
95

96 # We need to return True so that the main loop will call this function more
97 # than once.
98 return True
99

100

101 # Bind the function above as an ’idle’ callback.
102 cid = GObject.idle_add(update_state)
103

104 # We will give the user the ability to stop the program by closing the window.
105 win.connect("delete_event", Gtk.main_quit)
106

107 # Actually show the window, and start the main loop.
108 win.show_all()
109 Gtk.main()

This example works like the SIRS example above, and if we pass the offscreen param-
eter, the frames will be dumped to disk, otherwise the animation is displayed inside an
interactive_window (page 122).

$./animation_dancing.py offscreen

Also like the previous example, we can encode the animation with the WebM format:

$ mencoder mf://frames/dancing*.png -mf w=500:h=400:type=png -ovc raw -of rawvideo -vf format=i420 -nosound -o dancing.yuy
$ vpxenc sirs.yuy -o dancing.webm -w 500 -h 400 --fps=100/1 --target-bitrate=5000 --good --threads=4

The resulting animation can be downloaded here, or played below if your browser supports
WebM.

26 Chapter 2. Cookbook

http://www.webmproject.org

CHAPTER

THREE

MODULE DOCUMENTATION

3.1 graph_tool - efficient graph analysis and manipulation

3.1.1 Summary

Graph (page 28) Generic multigraph class.
GraphView (page 33) A view of selected vertices or edges of another graph.
Vertex (page 33) Vertex descriptor.
Edge (page 34) Edge descriptor.
PropertyMap (page 35) This class provides a mapping from vertices, edges or whole graphs to arbitrary properties.
PropertyArray (page 36) This is a ndarray subclass which keeps a reference of its PropertyMap (page 35) owner, and detects if the underlying data has been invalidated.
load_graph (page 36) Load a graph from file_name (which can be either a string or a file-like object).
group_vector_property (page 36) Group list of properties props into a vector property map of the same type.
ungroup_vector_property (page 37) Ungroup vector property map vprop into a list of individual property maps.
infect_vertex_property (page 38) Propagate the prop values of vertices with value val to all their out-neighbours.
edge_difference (page 38) Return an edge property map corresponding to the difference between the values of prop of target and source vertices of each edge.
value_types (page 39) Return a list of possible properties value types.
show_config (page 39) Show graph_tool build configuration.

This module provides:

1. A Graph (page 28) class for graph representation and manipulation

2. Property maps for Vertex, Edge or Graph.

3. Fast algorithms implemented in C++.

3.1.2 How to use the documentation

Documentation is available in two forms: docstrings provided with the code, and the full
documentation available in the graph-tool homepage.

We recommend exploring the docstrings using IPython, an advanced Python shell with TAB-
completion and introspection capabilities.

The docstring examples assume that graph_tool.all has been imported as gt:

>>> import graph_tool.all as gt

Code snippets are indicated by three greater-than signs:

>>> x = x + 1

Use the built-in help function to view a function’s docstring:

27

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://graph-tool.skewed.de
http://ipython.scipy.org

graph-tool documentation, Release 2.2.24

>>> help(gt.Graph)

3.1.3 Contents

class graph_tool.Graph(g=None, directed=True, prune=False)
Generic multigraph class.

This class encapsulates either a directed multigraph (default or if directed=True) or an
undirected multigraph (if directed=False), with optional internal edge, vertex or graph
properties.

If g is specified, the graph (and its internal properties) will be copied.

If prune is set to True, and g is specified, only the filtered graph will be copied, and the
new graph object will not be filtered. Optionally, a tuple of three booleans can be passed
as value to prune, to specify a different behavior to vertex, edge, and reversal filters,
respectively.

The graph is implemented as an adjacency list, where both vertex and edge lists are C++
STL vectors.

copy()
Return a deep copy of self. All internal property maps (page 7) are also copied.

Iterating over vertices and edges

See Iterating over vertices and edges (page 6) for more documentation and examples.

vertices()
Return an iterator over the vertices.

Note: The order of the vertices traversed by the iterator always corresponds to the
vertex index ordering, as given by the vertex_index (page 30) property map.

Examples

>>> g = gt.Graph()
>>> vlist = list(g.add_vertex(5))
>>> vlist2 = []
>>> for v in g.vertices():
... vlist2.append(v)
...
>>> assert(vlist == vlist2)

edges()
Return an iterator over the edges.

Note: The order of the edges traversed by the iterator does not necessarily cor-
respond to the edge index ordering, as given by the edge_index (page 30) property
map. This will only happen after reindex_edges() (page 30) is called, or in cer-
tain situations such as just after a graph is loaded from a file. However, further
manipulation of the graph may destroy the ordering.

Obtaining vertex and edge descriptors

vertex(i, use_index=True)
Return the vertex with index i. If use_index=False, the i-th vertex is returned
(which can differ from the vertex with index i in case of filtered graphs).

28 Chapter 3. Module documentation

http://en.wikipedia.org/wiki/Adjacency_list
http://docs.python.org/library/stdtypes.html#iterator.__iter__
http://docs.python.org/library/stdtypes.html#iterator.__iter__

graph-tool documentation, Release 2.2.24

edge(s, t, all_edges=False)
Return the edge from vertex s to t, if it exists. If all_edges=True then a list is
returned with all the parallel edges from s to t, otherwise only one edge is returned.

This operation will take O(k(s)) time, where k(s) is the out-degree of vertex s.

Number of vertices and edges

num_vertices()
Get the number of vertices.

Note: If the vertices are being filtered, this operation is O(N). Otherwise it is O(1).

num_edges()
Get the number of edges.

Note: If the edges are being filtered, this operation is O(E). Otherwise it is O(1).

Modifying vertices and edges

The following functions allow for addition and removal of vertices in the graph.

add_vertex(n=1)
Add a vertex to the graph, and return it. If n > 1, n vertices are inserted and an
iterator over the new vertices is returned.

remove_vertex(vertex, fast=False)
Remove a vertex from the graph.

Note: If the option fast == False is given, this operation is O(N + E) (this is the
default). Otherwise it is O(k + klast), where k is the (total) degree of the vertex being
deleted, and klast is the (total) degree of the vertex with the largest index.

Warning: If fast == True, the vertex being deleted is ‘swapped’ with the last
vertex (i.e. with the largest index), which will in turn inherit the index of the
vertex being deleted. All property maps associated with the graph will be properly
updated, but the index ordering of the graph will no longer be the same.

The following functions allow for addition and removal of edges in the graph.

add_edge(source, target)
Add a new edge from source to target to the graph, and return it.

remove_edge(edge)
Remove an edge from the graph.

The following functions allow for easy removal of vertices of edges from the graph.

clear()
Remove all vertices and edges from the graph.

clear_vertex(vertex)
Remove all in and out-edges from the given vertex.

clear_edges()
Remove all edges from the graph.

Directedness and reversal of edges

Note: These functions do not actually modify the graph, and are fully reversible. They
are also very cheap, and have an O(1) complexity.

3.1. graph_tool - efficient graph analysis and manipulation 29

graph-tool documentation, Release 2.2.24

set_directed(is_directed)
Set the directedness of the graph.

is_directed()
Get the directedness of the graph.

set_reversed(is_reversed)
Reverse the direction of the edges, if is_reversed is True, or maintain the original
direction otherwise.

is_reversed()
Return True if the edges are reversed, and False otherwise.

Creation of new property maps

new_property(key_type, value_type)
Create a new (uninitialized) vertex property map of key type key_type (v, e or g),
value type value_type, and return it.

new_vertex_property(value_type)
Create a new (uninitialized) vertex property map of type value_type, and return it.

new_edge_property(value_type)
Create a new (uninitialized) edge property map of type value_type, and return it.

new_graph_property(value_type, val=None)
Create a new graph property map of type value_type, and return it. If val is not
None, the property is initialized to its value.

New property maps can be created by copying already existing ones.

copy_property(src, tgt=None, value_type=None, g=None)
Copy contents of src property to tgt property. If tgt is None, then a new property
map of the same type (or with the type given by the optional value_type parameter)
is created, and returned. The optional parameter g specifies the (identical) source
graph to copy properties from (defaults to self).

degree_property_map(deg)
Create and return a vertex property map containing the degree type given by deg.

Index property maps

vertex_index
Vertex index map.

It maps for each vertex in the graph an unique integer in the range [0,
num_vertices() (page 29) - 1].

Note: Like edge_index (page 30), this is a special instance of a PropertyMap
(page 35) class, which is immutable, and cannot be accessed as an array.

edge_index
Edge index map.

It maps for each edge in the graph an unique integer.

Note: Like vertex_index (page 30), this is a special instance of a PropertyMap
(page 35) class, which is immutable, and cannot be accessed as an array.

Additionally, the indexes may not necessarily lie in the range [0, num_edges()
(page 29) - 1]. However this will always happen whenever no edges are deleted
from the graph.

max_edge_index
The maximum value of the edge index map.

30 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

reindex_edges()
Reset the edge indexes so that they lie in the [0, num_edges() (page 29) - 1] range.
The index ordering will be compatible with the sequence returned by the edges()
(page 28) function.

Warning: Calling this function will invalidate all existing edge property maps, if
the index ordering is modified! The property maps will still be usable, but their
contents will still be tied to the old indexes, and thus may become scrambled.

Internal property maps

Internal property maps are just like regular property maps, with the only exception
that they are saved and loaded to/from files together with the graph itself. See internal
property maps (page 7) for more details.

Note: All dictionaries below are mutable. However, any dictionary returned below is
only an one-way proxy to the internally-kept properties. If you modify this object, the
change will be propagated to the internal dictionary, but not vice-versa. Keep this in
mind if you intend to keep a copy of the returned object.

properties
Dictionary of internal properties. Keys must always be a tuple, where the first
element if a string from the set {‘v’, ‘e’, ‘g’}, representing a vertex, edge or graph
property, respectively, and the second element is the name of the property map.

Examples

>>> g = gt.Graph()
>>> g.properties[("e", "foo")] = g.new_edge_property("vector<double>")
>>> del g.properties[("e", "foo")]

vertex_properties
Dictionary of internal vertex properties. The keys are the property names.

vp
Alias to vertex_properties (page 31).

edge_properties
Dictionary of internal edge properties. The keys are the property names.

ep
Alias to edge_properties (page 31).

graph_properties
Dictionary of internal graph properties. The keys are the property names.

gp
Alias to graph_properties (page 31).

list_properties()
Print a list of all internal properties.

Examples

>>> g = gt.Graph()
>>> g.properties[("e", "foo")] = g.new_edge_property("vector<double>")
>>> g.vertex_properties["foo"] = g.new_vertex_property("double")
>>> g.vertex_properties["bar"] = g.new_vertex_property("python::object")
>>> g.graph_properties["gnat"] = g.new_graph_property("string", "hi there!")

3.1. graph_tool - efficient graph analysis and manipulation 31

graph-tool documentation, Release 2.2.24

>>> g.list_properties()
gnat (graph) (type: string, val: hi there!)
foo (vertex) (type: double)
bar (vertex) (type: python::object)
foo (edge) (type: vector<double>)

Filtering of vertices and edges.

See Graph filtering (page 11) for more details.

Note: These functions do not actually modify the graph, and are fully reversible. They
are also very cheap, and have an O(1) complexity.

set_vertex_filter(prop, inverted=False)
Choose vertex boolean filter property. Only the vertices with value different than
zero are kept in the filtered graph. If the inverted option is supplied with value
True, only the vertices with value zero are kept. If the supplied property is None,
any previous filtering is removed.

get_vertex_filter()
Return a tuple with the vertex filter property and bool value indicating whether or
not it is inverted.

set_edge_filter(prop, inverted=False)
Choose edge boolean filter property. Only the edges with value different than zero
are kept in the filtered graph. If the inverted option is supplied with value True,
only the edges with value zero are kept. If the supplied property is None, any
previous filtering is removed.

get_edge_filter()
Return a tuple with the edge filter property and bool value indicating whether or
not it is inverted.

Warning: The purge functions below irreversibly remove the filtered vertices or edges
from the graph, and return it to an unfiltered state. Note that, contrary to the func-
tions above, these are O(V) and O(E) operations, respectively.

purge_vertices(in_place=False)
Remove all vertices of the graph which are currently being filtered out, and return
it to the unfiltered state. This operation is not reversible.

If the option in_place == True is given, the algorithm will remove the filtered
vertices and re-index all property maps which are tied with the graph. This is a
slow operation which has an O(N2) complexity.

If in_place == False, the graph and its vertex and edge property maps are tem-
porarily copied to a new unfiltered graph, which will replace the contents of the
original graph. This is a fast operation with an O(N + E) complexity. This is the
default behaviour if no option is given.

purge_edges()
Remove all edges of the graph which are currently being filtered out, and return it
to the unfiltered state. This operation is not reversible.

Stashing and popping the filter state

stash_filter(edge=False, vertex=False, directed=False, reversed=False,
all=True)

Stash current filter state and set the graph to its unfiltered state. The optional
keyword arguments specify which type of filter should be stashed.

32 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

pop_filter(edge=False, vertex=False, directed=False, reversed=False, all=True)
Pop last stashed filter state. The optional keyword arguments specify which type of
filter should be recovered.

get_filter_state()
Return a copy of the filter state of the graph.

set_filter_state(state)
Set the filter state of the graph.

I/O operations

See Graph I/O (page 8) for more details.

load(file_name, fmt=’auto’, ignore_vp=None, ignore_ep=None, ignore_gp=None)
Load graph from file_name (which can be either a string or a file-like object). The
format is guessed from file_name, or can be specified by fmt, which can be either
“xml”, “dot” or “gml”.

If provided, the parameters ignore_vp, ignore_ep and ignore_gp, should contain
a list of property names (vertex, edge or graph, respectively) which should be ignored
when reading the file.

save(file_name, fmt=’auto’)
Save graph to file_name (which can be either a string or a file-like object). The
format is guessed from the file_name, or can be specified by fmt, which can be
either “xml”, “dot” or “gml”.

class graph_tool.GraphView(g, vfilt=None, efilt=None, directed=None, re-
versed=False)

Bases: graph_tool.Graph (page 28)

A view of selected vertices or edges of another graph.

This class uses shared data from another Graph (page 28) instance, but allows for lo-
cal filtering of vertices and/or edges, edge directionality or reversal. See Graph views
(page 17) for more details and examples.

The existence of a GraphView (page 33) object does not affect the original graph, except
if the graph view is modified (addition or removal of vertices or edges), in which case the
modification is directly reflected in the original graph (and vice-versa), since they both
point to the same underlying data. Because of this, instances of PropertyMap (page 35)
can be used interchangeably with a graph and its views.

The argument g must be an instance of a Graph (page 28) class. If specified, vfilt
and efilt select which vertices and edges are filtered, respectively. These parameters
can either be a boolean-valued PropertyMap (page 35) or a ndarray, which specify
which vertices/edges are selected, or an unary function which returns True if a given
vertex/edge is to be selected, or False otherwise.

The boolean parameter directed can be used to set the directionality of the graph view.
If directed = None, the directionality is inherited from g.

If reversed = True, the direction of the edges is reversed.

If vfilt or efilt is anything other than a PropertyMap (page 35) instance, the instan-
tiation running time is O(V) and O(E), respectively. Otherwise, the running time is O(1).

base
Base graph.

class graph_tool.Vertex
Vertex descriptor.

This class represents a vertex in a Graph (page 28) instance.

3.1. graph_tool - efficient graph analysis and manipulation 33

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

graph-tool documentation, Release 2.2.24

Vertex (page 33) instances are hashable, and are convertible to integers, corresponding
to its index (see vertex_index (page 30)).

all_edges(self)
Return an iterator over all edges (both in or out).

all_neighbours(self)
Return an iterator over all neighbours (both in or out).

get_graph()

get_graph((Vertex)arg1) -> object : Return the graph to which the vertex belongs.

C++ signature : boost::python::api::object get_graph(graph_tool::PythonVertex
{lvalue})

in_degree()

in_degree((Vertex)arg1) -> int : Return the in-degree.

C++ signature : unsigned long in_degree(graph_tool::PythonVertex {lvalue})

in_edges()

in_edges((Vertex)arg1) -> object : Return an iterator over the in-edges.

C++ signature : boost::python::api::object in_edges(graph_tool::PythonVertex
{lvalue})

in_neighbours(self)
Return an iterator over the in-neighbours.

is_valid()

is_valid((Vertex)arg1) -> bool : Return whether the vertex is valid.

C++ signature : bool is_valid(graph_tool::PythonVertex {lvalue})

out_degree()

out_degree((Vertex)arg1) -> int : Return the out-degree.

C++ signature : unsigned long out_degree(graph_tool::PythonVertex {lvalue})

out_edges()

out_edges((Vertex)arg1) -> object : Return an iterator over the out-edges.

C++ signature : boost::python::api::object out_edges(graph_tool::PythonVertex
{lvalue})

out_neighbours(self)
Return an iterator over the out-neighbours.

class graph_tool.Edge
Edge descriptor.

This class represents an edge in a Graph (page 28).

Edge (page 34) instances are hashable, and are convertible to a tuple, which contains
the source and target vertices.

get_graph()

get_graph((Edge)arg1) -> object : Return the graph to which the edge belongs.

C++ signature : boost::python::api::object get_graph(graph_tool::PythonEdge<boost::UndirectedAdaptor<boost::filtered_graph<boost::adj_list<unsigned
long>, graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::adj_edge_index_property_map<unsigned long> > >,
graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::typed_identity_property_map<unsigned long> > > > > > {lvalue})

is_valid()

34 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

is_valid((Edge)arg1) -> bool : Return whether the edge is valid.

C++ signature : bool is_valid(graph_tool::PythonEdge<boost::UndirectedAdaptor<boost::filtered_graph<boost::adj_list<unsigned
long>, graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::adj_edge_index_property_map<unsigned long> > >,
graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::typed_identity_property_map<unsigned long> > > > > > {lvalue})

source()

source((Edge)arg1) -> object : Return the source vertex.

C++ signature : boost::python::api::object source(graph_tool::PythonEdge<boost::UndirectedAdaptor<boost::filtered_graph<boost::adj_list<unsigned
long>, graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::adj_edge_index_property_map<unsigned long> > >,
graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::typed_identity_property_map<unsigned long> > > > > > {lvalue})

target()

target((Edge)arg1) -> object : Return the target vertex.

C++ signature : boost::python::api::object target(graph_tool::PythonEdge<boost::UndirectedAdaptor<boost::filtered_graph<boost::adj_list<unsigned
long>, graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::adj_edge_index_property_map<unsigned long> > >,
graph_tool::detail::MaskFilter<boost::unchecked_vector_property_map<unsigned
char, boost::typed_identity_property_map<unsigned long> > > > > > {lvalue})

class graph_tool.PropertyMap(pmap, g, key_type)
This class provides a mapping from vertices, edges or whole graphs to arbitrary proper-
ties.

See Property maps (page 6) for more details.

The possible property value types are listed below.

Type name Alias
bool uint8_t
int16_t short
int32_t int
int64_t long, long long
double float
long double
string
vector<bool> vector<uint8_t>
vector<int16_t> short
vector<int32_t> vector<int>
vector<int64_t> vector<long>, vector<long long>
vector<double> vector<float>
vector<long double>
vector<string>
python::object object

copy(self, value_type=None)
Return a copy of the property map. If value_type is specified, the value type is
converted to the chosen type.

get_graph(self)
Get the graph class to which the map refers.

key_type(self)
Return the key type of the map. Either ‘g’, ‘v’ or ‘e’.

value_type(self)
Return the value type of the map.

3.1. graph_tool - efficient graph analysis and manipulation 35

graph-tool documentation, Release 2.2.24

python_value_type(self)
Return the python-compatible value type of the map.

get_array(self)
Get a PropertyArray (page 36) with the property values.

Note: An array is returned only if the value type of the property map is a scalar.
For vector, string or object types, None is returned instead. For vector and string
objects, indirect array access is provided via the get_2d_array() (page ??) and
set_2d_array() (page ??) member functions.

Warning: The returned array does not own the data, which belongs to the
property map. Therefore, if the graph changes, the array may become invalid
and any operation on it will fail with a ValueError exception. Do not store the
array if the graph is to be modified; store a copy instead.

a
Shortcut to the get_array() (page 36) method as an attribute. This makes assign-
ments more convenient, e.g.:

>>> g = gt.Graph()
>>> g.add_vertex(10)
<...>
>>> prop = g.new_vertex_property("double")
>>> prop.a = np.random.random(10) # Assignment from array

fa
The same as the a (page 36) attribute, but instead an indexed array is returned,
which contains only entries for vertices/edges which are not filtered out. If there
are no filters in place, the array is not indexed, and is identical to the a (page 36)
attribute.

Note that because advanced indexing is triggered, a copy of the array is returned,
not a view, as for the a (page 36) attribute. Nevertheless, the assignment of values
to the whole array at once works as expected.

ma
The same as the a (page 36) attribute, but instead a MaskedArray object is returned,
which contains only entries for vertices/edges which are not filtered out. If there
are no filters in place, a regular PropertyArray (page 36) is returned, which is
identical to the a (page 36) attribute.

get_2d_array(self, pos)
Return a two-dimensional array with a copy of the entries of the vector-valued
property map. The parameter pos must be a sequence of integers which specifies
the indexes of the property values which will be used.

set_2d_array(self, a, pos=None)
Set the entries of the vector-valued property map from a two-dimensional array a. If
given, the parameter pos must be a sequence of integers which specifies the indexes
of the property values which will be set.

is_writable(self)
Return True if the property is writable.

class graph_tool.PropertyArray
Bases: numpy.ndarray

This is a ndarray subclass which keeps a reference of its PropertyMap (page 35) owner,
and detects if the underlying data has been invalidated.

36 Chapter 3. Module documentation

http://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

graph-tool documentation, Release 2.2.24

prop_map
PropertyMap (page 35) owner instance.

graph_tool.load_graph(file_name, fmt=’auto’, ignore_vp=None, ignore_ep=None, ig-
nore_gp=None)

Load a graph from file_name (which can be either a string or a file-like object).

The format is guessed from file_name, or can be specified by fmt, which can be either
“xml”, “dot” or “gml”.

If provided, the parameters ignore_vp, ignore_ep and ignore_gp, should contain a
list of property names (vertex, edge or graph, respectively) which should be ignored when
reading the file.

graph_tool.group_vector_property(props, value_type=None, vprop=None,
pos=None)

Group list of properties props into a vector property map of the same type.

Parameters props : list of PropertyMap (page 35)

Properties to be grouped.

value_type : string (optional, default: None)

If supplied, defines the value type of the grouped property.

vprop : PropertyMap (page 35) (optional, default: None)

If supplied, the properties are grouped into this property map.

pos : list of ints (optional, default: None)

If supplied, should contain a list of indexes where each correspond-
ing element of props should be inserted.

Returns vprop : PropertyMap (page 35)

A vector property map with the grouped values of each property map
in props.

Examples

>>> from numpy.random import seed, randint
>>> from numpy import array
>>> seed(42)
>>> gt.seed_rng(42)
>>> g = gt.random_graph(100, lambda: (3, 3))
>>> props = [g.new_vertex_property("int") for i in range(3)]
>>> for i in range(3):
... props[i].a = randint(0, 100, g.num_vertices())
>>> gprop = gt.group_vector_property(props)
>>> print(gprop[g.vertex(0)].a)
[51 25 8]
>>> print(array([p[g.vertex(0)] for p in props]))
[51 25 8]

graph_tool.ungroup_vector_property(vprop, pos, props=None)
Ungroup vector property map vprop into a list of individual property maps.

Parameters vprop : PropertyMap (page 35)

Vector property map to be ungrouped.

pos : list of ints

A list of indexes corresponding to where each element of vprop
should be inserted into the ungrouped list.

3.1. graph_tool - efficient graph analysis and manipulation 37

graph-tool documentation, Release 2.2.24

props : list of PropertyMap (page 35) (optional, default: None)

If supplied, should contain a list of property maps to which vprop
should be ungroupped.

Returns props : list of PropertyMap (page 35)

A list of property maps with the ungrouped values of vprop.

Examples

>>> from numpy.random import seed, randint
>>> from numpy import array
>>> seed(42)
>>> gt.seed_rng(42)
>>> g = gt.random_graph(100, lambda: (3, 3))
>>> prop = g.new_vertex_property("vector<int>")
>>> for v in g.vertices():
... prop[v] = randint(0, 100, 3)
>>> uprops = gt.ungroup_vector_property(prop, [0, 1, 2])
>>> print(prop[g.vertex(0)].a)
[51 92 14]
>>> print(array([p[g.vertex(0)] for p in uprops]))
[51 92 14]

graph_tool.infect_vertex_property(g, prop, vals=None)
Propagate the prop values of vertices with value val to all their out-neighbours.

Parameters prop : PropertyMap (page 35)

Property map to be modified.

vals : list (optional, default: None)

List of values to be propagated. If not provided, all values will be
propagated.

Returns None : None

Examples

>>> from numpy.random import seed
>>> seed(42)
>>> gt.seed_rng(42)
>>> g = gt.random_graph(100, lambda: (3, 3))
>>> prop = g.vertex_index.copy("int32_t")
>>> gt.infect_vertex_property(g, prop, [10])
>>> print(sum(prop.a == 10))
4

graph_tool.edge_difference(g, prop, ediff=None)
Return an edge property map corresponding to the difference between the values of prop
of target and source vertices of each edge.

Parameters prop : PropertyMap (page 35)

Vertex property map to be used to compute the difference..

ediff : PropertyMap (page 35) (optional, default: None)

If provided, the difference values will be stored in this property map.

Returns ediff : PropertyMap (page 35)

Edge differences.

38 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

Examples

>>> gt.seed_rng(42)
>>> g = gt.random_graph(100, lambda: (3, 3))
>>> ediff = gt.edge_difference(g, g.vertex_index)
>>> print(ediff.a)
[63 74 70 -19 1 -41 -54 -38 -68 -87 -85 -40 -41 -6 -3 4 12 -40
-1 1 -47 -31 -49 -39 28 -37 -50 -32 -34 -12 -1 -4 5 10 8 -51

-27 18 -3 45 -13 42 3 -31 25 -21 44 -28 -34 53 -5 -7 47 -26
67 7 28 -24 30 50 24 39 43 45 64 78 74 84 -7 32 73 47
34 70 2 -2 -78 -92 81 22 80 37 66 -2 1 26 95 26 62 66
30 7 56 79 69 80 74 84 8 47 73 54 11 79 71 60 72 57
41 -15 33 -15 -28 -4 -29 -13 -8 -40 -6 6 -19 -22 15 10 -7 -13

-29 -10 32 -9 -30 -14 -63 -60 -2 -13 -39 10 12 14 -37 -29 -16 -65
1 -52 -21 -49 -43 -57 54 31 62 -40 -66 -53 -12 -71 -92 -18 -49 -65

-83 -80 -33 -67 -70 -58 -40 -53 -44 -71 -46 -75 -37 -44 -57 -3 -15 -76
4 16 -55 -10 1 -33 16 -6 -7 -66 -49 -57 -58 -35 -32 20 -28 -58
9 28 7 -67 29 6 -17 -54 -8 -31 24 -37 -29 -19 -5 -13 17 -39

-25 17 25 62 65 -17 34 -7 12 3 17 -13 -5 40 74 80 36 73
75 52 4 75 67 43 17 33 57 44 40 34 -26 -15 -5 31 30 51

-17 21 5 -19 34 -1 12 -1 62 -27 33 -22 43 -22 -39 33 -24 41
-37 17 -31 45 -40 -39 -36 49 16 36 -19 44 36 -51 -35 -13 4 14
-44 -16 -8 -13 9 -29 10 -62 -26 -47 -44 3]

graph_tool.value_types()
Return a list of possible properties value types.

graph_tool.show_config()
Show graph_tool build configuration.

3.2 Available subpackages

3.2.1 graph_tool.centrality - Centrality measures

This module includes centrality-related algorithms.

Summary

pagerank (page 39) Calculate the PageRank of each vertex.
betweenness (page 42) Calculate the betweenness centrality for each vertex and edge.
central_point_dominance (page 46) Calculate the central point dominance of the graph, given the betweenness centrality of each vertex.
closeness (page 43) Calculate the closeness centrality for each vertex.
eigenvector (page 48) Calculate the eigenvector centrality of each vertex in the graph, as well as the largest eigenvalue.
katz (page 49) Calculate the Katz centrality of each vertex in the graph.
hits (page 51) Calculate the authority and hub centralities of each vertex in the graph.
eigentrust (page 53) Calculate the eigentrust centrality of each vertex in the graph.
trust_transitivity (page 57) Calculate the pervasive trust transitivity between chosen (or all) vertices in the graph.

Contents

graph_tool.centrality.pagerank(g, damping=0.85, pers=None, weight=None,
prop=None, epsilon=1e-06, max_iter=None,
ret_iter=False)

Calculate the PageRank of each vertex.

Parameters g : Graph (page 28)

3.2. Available subpackages 39

graph-tool documentation, Release 2.2.24

Graph to be used.

damping : float, optional (default: 0.85)

Damping factor.

pers : PropertyMap (page 35), optional (default: None)

Personalization vector. If omitted, a constant value of 1/N will be
used.

weight : PropertyMap (page 35), optional (default: None)

Edge weights. If omitted, a constant value of 1 will be used.

prop : PropertyMap (page 35), optional (default: None)

Vertex property map to store the PageRank values. If supplied, it
will be used uninitialized.

epsilon : float, optional (default: 1e-6)

Convergence condition. The iteration will stop if the total delta of all
vertices are below this value.

max_iter : int, optional (default: None)

If supplied, this will limit the total number of iterations.

ret_iter : bool, optional (default: False)

If true, the total number of iterations is also returned.

Returns pagerank : PropertyMap (page 35)

A vertex property map containing the PageRank values.

See Also:

betweenness (page 42) betweenness centrality

eigentrust (page 53) eigentrust centrality

eigenvector (page 48) eigenvector centrality

hits (page 51) hubs and authority centralities

trust_transitivity (page 57) pervasive trust transitivity

Notes

The value of PageRank [pagerank-wikipedia] (page 227) of vertex v, PR(v), is given iter-
atively by the relation:

PR(v) =
1− d
N

+ d
∑

u∈Γ−(v)

PR(u)

d+(u)

where Γ−(v) are the in-neighbours of v, d+(w) is the out-degree of w, and d is a damping
factor.

If a personalization property p(v) is given, the definition becomes:

PR(v) = (1− d)p(v) + d
∑

u∈Γ−(v)

PR(u)

d+(u)

If edge weights are also given, the equation is then generalized to:

PR(v) = (1− d)p(v) + d
∑

u∈Γ−(v)

PR(u)wu→v
d+(u)

40 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

where d+(u) =
∑
y Au,ywu→y is redefined to be the sum of the weights of the out-going

edges from u.

The implemented algorithm progressively iterates the above equations, until it no longer
changes, according to the parameter epsilon. It has a topology-dependent running time.

If enabled during compilation, this algorithm runs in parallel.

References

[pagerank-wikipedia] (page 227), [lawrence-pagerank-1998] (page 227), [Langville-
survey-2005] (page 227), [adamic-polblogs] (page ??)

Examples

>>> g = gt.collection.data["polblogs"]
>>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
>>> pr = gt.pagerank(g)
>>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
... vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
... vorder=pr, output="polblogs_pr.pdf")
<...>

Now with a personalization vector, and edge weights:

>>> d = g.degree_property_map("total")
>>> periphery = d.a <= 2
>>> p = g.new_vertex_property("double")
>>> p.a[periphery] = 100
>>> pr = gt.pagerank(g, pers=p)
>>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
... vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
... vorder=pr, output="polblogs_pr_pers.pdf")
<...>

graph_tool.centrality.betweenness(g, vprop=None, eprop=None, weight=None,
norm=True)

Calculate the betweenness centrality for each vertex and edge.

Parameters g : Graph (page 28)

Graph to be used.

vprop : PropertyMap (page 35), optional (default: None)

Vertex property map to store the vertex betweenness values.

eprop : PropertyMap (page 35), optional (default: None)

Edge property map to store the edge betweenness values.

weight : PropertyMap (page 35), optional (default: None)

Edge property map corresponding to the weight value of each edge.

norm : bool, optional (default: True)

Whether or not the betweenness values should be normalized.

Returns vertex_betweenness : A vertex property map with the vertex be-
tweenness values.

edge_betweenness : An edge property map with the edge betweenness
values.

See Also:

3.2. Available subpackages 41

graph-tool documentation, Release 2.2.24

Figure 3.1: PageRank values of the a political blogs network of [adamic-polblogs] (page ??).

42 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

Figure 3.2: Personalized PageRank values of the a political blogs network of [adamic-polblogs]
(page ??), where vertices with very low degree are given artificially high scores.

3.2. Available subpackages 43

graph-tool documentation, Release 2.2.24

central_point_dominance (page 46) central point dominance of the graph

pagerank (page 39) PageRank centrality

eigentrust (page 53) eigentrust centrality

eigenvector (page 48) eigenvector centrality

hits (page 51) hubs and authority centralities

trust_transitivity (page 57) pervasive trust transitivity

Notes

Betweenness centrality of a vertex CB(v) is defined as,

CB(v) =
∑

s 6=v 6=t∈V
s 6=t

σst(v)

σst

where σst is the number of shortest geodesic paths from s to t, and σst(v) is the number of
shortest geodesic paths from s to t that pass through a vertex v. This may be normalised
by dividing through the number of pairs of vertices not including v, which is (n− 1)(n−
2)/2.

The algorithm used here is defined in [brandes-faster-2001] (page 227), and has a com-
plexity of O(V E) for unweighted graphs and O(V E+V (V +E) log V) for weighted graphs.
The space complexity is O(V E).

If enabled during compilation, this algorithm runs in parallel.

References

[betweenness-wikipedia] (page 227), [brandes-faster-2001] (page 227), [adamic-polblogs]
(page ??)

Examples

>>> g = gt.collection.data["polblogs"]
>>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
>>> vp, ep = gt.betweenness(g)
>>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=vp,
... vertex_size=gt.prop_to_size(vp, mi=5, ma=15),
... edge_pen_width=gt.prop_to_size(ep, mi=0.5, ma=5),
... vorder=vp, output="polblogs_betweenness.pdf")
<...>

graph_tool.centrality.closeness(g, weight=None, source=None, vprop=None,
norm=True, harmonic=False)

Calculate the closeness centrality for each vertex.

Parameters g : Graph (page 28)

Graph to be used.

weight : PropertyMap (page 35), optional (default: None)

Edge property map corresponding to the weight value of each edge.

source : Vertex (page 33), optional (default: None)

If specified, the centrality is computed for this vertex alone.

vprop : PropertyMap (page 35), optional (default: None)

44 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

Figure 3.3: Betweenness values of the a political blogs network of [adamic-polblogs] (page ??).

3.2. Available subpackages 45

graph-tool documentation, Release 2.2.24

Vertex property map to store the vertex centrality values.

norm : bool, optional (default: True)

Whether or not the centrality values should be normalized.

harmonic : bool, optional (default: False)

If true, the sum of the inverse of the distances will be computed,
instead of the inverse of the sum.

Returns vertex_closeness : PropertyMap (page 35)

A vertex property map with the vertex closeness values.

See Also:

central_point_dominance (page 46) central point dominance of the graph

pagerank (page 39) PageRank centrality

eigentrust (page 53) eigentrust centrality

eigenvector (page 48) eigenvector centrality

hits (page 51) hubs and authority centralities

trust_transitivity (page 57) pervasive trust transitivity

Notes

The closeness centrality of a vertex i is defined as,

ci =
1∑
j dij

where dij is the (possibly directed and/or weighted) distance from i to j. In case there is
no path between the two vertices, here the distance is taken to be zero.

If harmonic == True, the definition becomes

ci =
∑
j

1

dij
,

but now, in case there is no path between the two vertices, we take dij → ∞ such that
1/dij = 0.

If norm == True, the values of ci are normalized by ni−1 where ni is the size of the (out-)
component of i. If harmonic == True, they are instead simply normalized by N − 1.

The algorithm complexity of O(N(N + E)) for unweighted graphs and O(N(N + E) logN)
for weighted graphs. If the option source is specified, this drops to O(N + E) and
O((N + E) logN) respectively.

If enabled during compilation, this algorithm runs in parallel.

References

[closeness-wikipedia] (page 227), [opsahl-node-2010] (page 227), [adamic-polblogs]
(page ??)

Examples

46 Chapter 3. Module documentation

graph-tool documentation, Release 2.2.24

>>> g = gt.collection.data["polblogs"]
>>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
>>> c = gt.closeness(g)
>>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=c,
... vertex_size=gt.prop_to_size(c, mi=5, ma=15),
... vorder=c, output="polblogs_closeness.pdf")
<...>

Figure 3.4: Closeness values of the a political blogs network of [adamic-polblogs] (page ??).

graph_tool.centrality.central_point_dominance(g, betweenness)
Calculate the central point dominance of the graph, given the betweenness centrality of
each vertex.

Parameters g : Graph (page 28)

Graph to be used.

betweenness : PropertyMap (page 35)

Vertex property map with the betweenness centrality values. The
values must be normalized.

3.2. Available subpackages 47

graph-tool documentation, Release 2.2.24

Returns cp : float

The central point dominance.

See Also:

betweenness (page 42) betweenness centrality

Notes

Let v∗ be the vertex with the largest relative betweenness centrality; then, the central
point dominance [freeman-set-1977] (page 227) is defined as:

C ′B =
1

|V | − 1

∑
v

CB(v∗)− CB(v)

where CB(v) is the normalized betweenness centrality of vertex v. The value of CB lies in
the range [0,1].

The algorithm has a complexity of O(V).

References

[freeman-set-1977] (page 227)

Examples

>>> g = gt.collection.data["polblogs"]
>>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
>>> vp, ep = gt.betweenness(g)
>>> print(gt.central_point_dominance(g, vp))
0.11610685614353008

graph_tool.centrality.eigenvector(g, weight=None, vprop=None, epsilon=1e-06,
max_iter=None)

Calculate the eigenvector centrality of each vertex in the graph, as well as the largest
eigenvalue.

Parameters g : Graph<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>